
ACCELERATED VIDEO STREAMING FOR GAMING ARCHITECTURE

Arto Laikari, Philipp Fechteler, Benjamin Prestele, Peter Eisert, Jukka-Pekka Laulajainen
arto.laikari@vtt.fi, {philipp.fechteler, benjamin.prestele, peter.eisert}@hhi.fraunhofer.de,

jukka-pekka.laulajainen@vtt.fi

VTT Technical Research Centre of Finland
Software architectures and platforms

Vuorimiehentie 3, Espoo, FI-02044 VTT, Finland

Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute
Image Processing Department

Einsteinufer 37, D-10587 Berlin, Germany

ABSTRACT

Computer game processing requirements for the CPU and
graphics performance are growing all the time higher. At the
same time many low cost and modest performance CE devices
are gaining popularity. People are already used to mobile life
style inside home and on the go and they want to enjoy enter-
tainment everywhere. This paper describes an accelerated video
streaming method used in a gaming system, called
Games@Large, which enables heavy PC game playing on low
cost CE devices without the need of game software modifica-
tion. The key innovations of the Games@Large system are
game execution distribution, game streaming, including graph-
ics/video and audio streaming and game control decentralization
as well as network quality of service management. This paper
concentrates on the advanced video streaming techniques used
in Games@Large.

Index Terms — games, graphics, rendering, video coding,
video codecs

1. INTRODUCTION

Future home is considered to be an always-on connected digital
home with wide variety of appliances. Entertainment equipment
have already conquered the homes, although some other future
home appliances are still not so popular.. Computer gaming has
been utilizing network infrastructures at home already for a
long time. Modern games have become highly realistic and they
are consumed by a wide population, not only youngsters. As the
games have turned to be realistic connected virtual worlds they
have become even more demanding towards the computer
hardware. High CPU processing power and graphics perform-
ance is required to play these games.

Mobility and digital home entertainment appliances have
generated the desire to play not only in front of a home PC, but
everywhere inside the house and also on the go. As the result of
TV evolution, Set-Top Boxes (STBs) have entered homes and
mini-laptops have gained popularity. Several low cost consumer
electronic end devices (CE) are already available at home. Al-
though these devices are capable to execute software, modern
3D computer games are too heavy for them. Games@Large
system enhances the usage of these modest execution power CE

devices also to heavy PC game playing terminals without the
need of modifying the games. Commercial games are supported
by the Games@Large platform regardless of the 3D technique
used in the game, which can be either DirectX or OpenGL,
because the platform provides cross-streaming from DirectX to
OpenGL and vice-versa.

The Games@Large project [1] has developed a system for
gaming both for homes and for enterprise environments, like
hotels, internet cafés and elderly homes. [1, 5]

In the Games@Large system the key concepts are execu-
tion distribution, audio and graphic streaming and rendering
and decoupling of input control commands. Games are executed
in one or more servers and the game display and audio is cap-
tured and streamed to the end device, where the stream is ren-
dered and the game is actually played. Game control is captured
at the end device and streamed back to the server and injected
to the game.

There is a number of commercial Gaming on Demand sys-
tems, overviewed in [5], that have been presented to the market.
More recently, there have been some new announcements about
the upcoming systems such as Playcast Media Systems, Gai-
kai’s Streaming Worlds technology, Onlive and GameTree.tv
from TransGaming Technologies. However, there is very little
detailed technical information publicly available about the com-
mercial systems.

This paper presents briefly the Games@Large architecture
and concentrates on the accelerated video streaming system
used in the project. The work builds on the basic video encod-
ing presented in [5] adding advanced methods especially suit-
able for gaming purposes. In [5] the video streaming is pre-
sented as a research proposal and in this paper more details and
results of the implemented solution are presented.

2. GAMES@LARGE ARCHITECTURE

The Games@Large system depicted in Figure 2 consists of
three major element classes: servers, end devices and access
points. Games are played on the end devices and executed on
the servers. Games run on the Local Processing Server (LPS),
which utilizes also the Local Storage Server (LSS). In the home
version, these logical entities will be located in the same physi-
cal computer. In an enterprise version, the server entities are

Figure 1: Input frame-buffer from game (left), corresponding depth map with blue colored skybox region (middle) and difference image of input frame-
buffer and per pixel prediction based on previous frame (right)

distributed into several physical computers. End devices,
like Setup-top-Boxes (STB) or Enhanced Multimedia Extenders
(EME), Enhanced Handheld Devices (EHD) and notebooks are
connected to the server either with a wireless or wired connec-
tion.

The system exploits an adaptive streaming architecture and
uses Quality of Service (QoS) functionalities to ensure good
quality gaming to a variety of devices connected to the wireless
network. The details of each component have been presented in
earlier publications [1,5]

Games@Large platform interacts with the games without
the need to make any modifications to the games.This brings
the advantage that there is no need to create specific
Games@Large- designed games, but almost any existing game
can be used with the platform as they are. Platform provides
also the cross steaming option from DirectX to OpenGL and
vice-versa, which makes it possible to mix various operating
systems for the end devices, which are used to play the games.
Because the games are executed in the server, the end device
does not need to possess the processing power, which the game
would require, if it would be run natively on the client.

The objective of the streaming architecture is to support
various end devices with an efficient and high quality game
experience, independent of software or hardware capabilities.
To meet these demands a streaming architecture has been de-
veloped that is able to support two streaming strategies to dis-
play the game remotely: graphics and video streaming.

Graphics Streaming is used for end devices with acceler-
ated graphics support, like computers or set-top-boxes, typically
having screens of higher resolution. Here the graphics com-
mands from the running game are captured, transmitted and
rendered locally on the end device. In this way, high image
quality is achieved, since the scenes are always directly ren-
dered for the desired screen.

The alternative approach, video streaming, is used mainly
for end devices without a GPU, like handheld devices, typically
having screens of lower resolution. Here the graphical output is
rendered on the game server and the frame-buffer is captured
and transmitted encoded as H.264 video stream. In Video
Streaming the bit rates are in general much more predictable in
comparison to Graphics Streaming. However, H.264 encoding
on server side as well as decoding on end devices is computa-
tional demanding. This is described in more detail in the next
chapter. Skybox/skysphere techniques are used in many current
3D games, which are on the market. Games@Large platform
can exploit this during the encoding for acceleration as is de-
scribed in this paper and more detailed in [2].

Figure 2: Games@Large architecture

3. ACCELERATED VIDEO STREAMING

3.1 Low complexity H.264 video encoding on server-side

Since video encoding is typically demanding in terms of compu-
tational load and because the CPU is already consumed by the
running computer game, as well as additional gaming sessions,
several optimizations have been developed in order to reduce
the computational complexity of encoding. The basic idea is to
exploit additional information which is accessible from the
render context. This is achieved by overloading the original
graphics library (described in [3] for Linux and OpenGL) with-
out the need of any game modifications. This idea has already
been published in [5] as a research proposal, without any details
or results, which are presented here. In contrast to adaptive
streaming techniques, where the video stream is adapted to the
client after its creation, e.g. during transmission [6], in the
Games@Large framework the visual output is already gener-
ated with respect to the clients capabilities. As each graphics
command issued by the game passes through our proxy DLL
library, the parameters are adapted to render images which are
optimal for streaming to the corresponding client: for example
the viewport is adapted to the client’s screen size, so that no
additional image adjustment besides video encoding is needed.
This in turn reduces the delay, computational load and provides
maximum image quality, because e.g. rescaling artifacts do not
occur.

A method called skybox/skysphere, which is used by many
3D computer games, can be exploited to achieve acceleration in
H.264 encoding [2]. The skybox technique is used to render the
far away environment, e.g. sky, mountain panoramas etc. Since
the depth buffer is disabled during skybox rendering, such re-
gions can be detected unambiguously by checking the z-buffer,
as can be seen as the blue region in the middle of Figure 1.
Since skybox regions are homogenous moving textures, corre-
sponding macroblocks need not to be split into smaller parti-
tions, and assigning one common motion vector is sufficient. By
identifying the macroblocks which reside completely within
skybox regions, further checks for partitions with finer granu-
larity can be omitted, hence accelerated encoding is achieved in
comparison to macroblock partitioning techniques of generic
H.264 encoders.

Additionally, skybox regions are rendered at the beginning
of each frame-buffer update so that the scene is rendered in
front of it. This allows capturing the projection matrices used to
render the skybox regions without any ambiguity. The captured
projection information of the current and previous frame pro-
vides the basis for the direct calculation of motion vectors, simi-
lar to the method presented in [3]. The computationally de-
manding motion vector search algorithms of generic H.264 en-
coders are omitted. Results of per pixel prediction in skybox
regions are shown as blue area of the right image in Figure 1.
The impact gained by exploiting the skybox region and corre-
sponding projection information for macroblock partitioning
and direct motion vector calculation is depicted in Figure 3.

In order to calculate the motion vectors directly for non-
skybox regions, suitable projection information is needed. For
major parts the projection information can be captured by inter-
cepting each drawing command, registering the used projection
matrices and analyzing which projection matrices where used
for most objects. By choosing these most-used projection matri-
ces for prediction, the calculated motion vectors are sufficient
for major parts of the frame. In cases where other scene ele-
ments were rendered, like figures etc, a threshold on the rate-
distortion-cost may be used to decide for such disadvantageous
cases to fall back to generic H.264 motion vector search algo-
rithms. Results of per pixel predictions for the scene are shown
in the green part of the right image of Figure 1. The accelera-
tion we achieved by integrating the direct motion vector calcula-
tion into the H.264 encoder can be seen in Figure 3.

The H.264 encoded video is then transmitted to the client,
using standard compliant RTP over UDP streaming protocols.

3.2 Client for low delay video streaming

While any standard compliant client software will be able to
play back the RTP packetized H.264/AAC streams, most media
players do not fulfill the requirements of very low delay decod-
ing and rendering. They are usually implemented with the focus
on smooth and reliable playback of accurately synchronized
audio and video: meeting these goals in a robust fashion, espe-
cially in the case of wide area networks with potentially large
network jitter, inevitably requires generous buffering at many
stages of the processing chain. This in turn results in typical
delays of approx. 100ms to few seconds with most players.
Such large delays on the client side would obviously not be
acceptable for gaming and also cancel out much of the effort put
into low delay encoding and streaming on the server side and
the networking layer.

Figure 3: Results of H.264 encoding based on skybox and scene en-
hancement

However, the specific scenario and system design allow re-
laxing some of the aforementioned restrictions. Firstly, the net-
work is a dedicated and controlled environment with optional
QoS optimizations put in place to reduce network jitter and
delay. Secondly, many games use sound only for background
music or to provide aural feedback to user interactions, which
usually is not vital to the game's functionality. Since audio and
video streams are encoded and transmitted with very low delay,
and since there is no increasing drift between the streams over
time, we found it beneficial for this scenario to waive perfect
synchronization in favor of instantaneous playback.

Custom client software has been implemented for this pur-
pose, relaxing on the synchronization requirements and focusing
on minimal buffering and instant playback of video and audio
instead. While each video frame is being decode and displayed
immediately after the corresponding H.264 NAL units have
arrived at the client, the decoded AAC audio frames undergo an
additional preprocessing step prior to being rendered on the
sound card. This showed to be necessary, since even small tem-
poral interruptions of the audio bit stream may result in very
distracting discontinuities (clicking noise) in the PCM audio
signal to be rendered. Therefore an adaptive retiming algorithm
is being applied to the yet unplayed audio samples, which
smoothly stretches or compresses available samples to reflect
the current arrival speed of new audio samples. This allows the
client to compensate for low to medium jittering on the network
level with almost no noticeable distortion of the audio, while on
average still maintaining minimal buffering and perceived de-
lay.

4. CONCLUSION

Games@Large has implemented an innovative architecture,
transparent to legacy game code, that allows distribution of a
cross-platform gaming and entertainment on a variety of low-
cost networked devices. Virtually extending the capabilities of
such devices the Games@Large system is opening important
opportunities for new services and experiences in a variety of
fields and in particular for the entertainment in the home and
other popular environments. This paper has presented the ad-
vancements in the field of video encoding optimized for game
use.

5. ACKNOWLEDGEMENTS

This work has been carried out in the IST Games@Large pro-
ject (http://www.gamesatlarge.eu) [1], which is an Integrated
Project under contract no IST038453 and is partially funded by
the European Commission.

6. REFERENCES

[1] Games@Large project website,
http://www.gamesatlarge.eu

[2] P. Fechteler, P. Eisert, “Depth Map Enhanced Macroblock
Partitioning for H.264 Video Coding of Computer Graphics
Content,” in Proc. of IEEE Int. Conf. on Image Processing
(ICIP2009), Cairo, Egypt, Nov. 2009, pp. 3441-3444

[3] S. Stegmaier, J. Diepstraten, M. Weiler, T. Ertl, “Widen-
ing the Remote Visualization Bottleneck,” in Proc. of 3rd

Int. Symposium on Image and Signal Processing and
Analysis (ISPA2003), Rome, Italy, Sept. 2003, vol. 1, pp.
174– 179.

[4] L. Cheng, A. Bhushan, R. Pajarola, M. El Zarki, “Realtime
3D Graphics Streaming Using MPEG-4,” in Proc. of
IEEE/ACM Workshop on Broadband Wireless Services and
Applications (BroadWise ’04), pp. 1–16, San Jose, Calif,
USA, July 2004.

[5] A. Jurgelionis, P. Fechteler, P.Eisert, et al., “Platform for
Distributed 3D Gaming”, in Intern. Journal of Computer
Games Technology, Article ID 231863, 2009

[6] J. Brandt, L. Wolf, “Adaptive Video Streaming for Mobile
Clients”, in 18th Intern. Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV2008), Braunschweig, Germany, May 2008

