
STREAMING GRAPHICAL CONTENT FOR HIGHLY
INTERACTIVE 3D APPLICATIONS

Philipp Fechteler, Benjamin Prestele, Peter Eisert

Fraunhofer Heinrich Hertz Institute, Berlin, Germany
{philipp.fechteler, benjamin.prestele, peter.eisert}@hhi.fraunhofer.de

Abstract

We present a video streaming solution to provide fluent remote
access to highly interactive 3D applications, such as games.
To fulfill the very low delay and low complexity constraint
for this class of applications, several optimizations have
been developed. Image preprocessing is implemented on the
graphics card to make efficient reuse of the rendered output, as
well as the GPU’s parallel processing capabilities. H.264/AVC
video encoding is accelerated by extracting additional
information from the rendering context, which allows for
direct calculation of motion vectors and partitioning of
macroblocks, thereby omitting the demanding search of
generic video encoders. A highly optimized client software has
been developed to provide very low delay playback of streamed
video and audio, using minimum buffering. In experiments a
hardly noticeable delay of less than 40 ms could be achieved.

Keywords: Games on demand, low delay video streaming.

Introduction
Remote visualization of interactive 3D applications with high
quality and low delay is a long-standing goal. The proposed
method is embedded into a larger framework for remote
gaming and targets at providing a platform for hotels, internet
cafes, and other local environments [1]. Instead of executing
the game locally on a PC, it runs on a central server and
the output is distributed over a LAN to smaller and cheaper
end-devices. Since commercial games shall be supported
off-the-shelf, no modifications to the game code can be
accepted. Instead, the rendering is intercepted at the graphics
API and the output is encoded as video and transmitted to the
end-devices. To ensure interactive gaming, it is necessary to
achieve very low delay. Furthermore, the encoding complexity
should be small, since the encoding is executed in parallel to
the game.

Efficient Capturing and GPU Preprocessing
Access to the graphics library (OpenGL/DirectX) is intercepted
to capture the frame-buffer after each frame update [2]. In
order to accelerate the video encoding, additional render
context information is captured during rendering, namely the

depth map and transformation matrices. Since the images are
generated on the graphics board, the enhanced GPU processing
capabilities can be exploited for image processing without
any overhead. Inspired by [3], the color conversion and
sub-sampling from RGB 4:4:4 to YCbCr 4:2:0 is performed
efficiently on the GPU, which also accelerates the GPU→CPU
transfer due to the data reduction by a factor of two.

Enhanced Video Encoding on CPU and GPU
H.264/AVC motion vectors are calculated directly using
captured depth maps and transformation matrices [2], thereby
omitting the demanding search of generic video encoders.
Also, predictions for macroblock partitions are calculated
from this information. Additional acceleration is achieved by
calculating the motion vectors on the GPU, thereby further
reducing the amount of data that has to be transferred from the
GPU to the CPU, as well as speeding up the overall processing
due to the parallel pipeline of the GPU.

Low Delay Client
Most available H.264/AVC streaming clients are optimized
for reliable playback with respect to network jitter. This is
achieved by using buffering of up to several seconds, which
is unsuitable for interactive applications. To ensure minimum
delay, an optimized client software has been developed which
uses intelligent buffering for audio and video.

Experimental Results
For evaluation purposes, we have measured the delay
between server-side image generation and client-side
image presentation, including capturing, encoding,
localhost RTP transmission, decoding, and rendering.
Experiments at SVGA (800x600) resolution showed
a barely noticeable delay of less than 40 ms. The
reductions in processing time for the enhanced coding,
while preserving coding efficiency, are summarized in the
following table at a fixed PSNR image quality of 35 dB:

enc-time [ms] bit-rate [MBit/s]
Total Overdose1 22.7 (-15.4)% 0.6 (+1.8)%

Extreme Tux Racer2 31.8 (-15.5)% 1.3 (+0.4)%
1 Ego-shooter, 32 bit WindowsXP; 2 Racing game, 64 bit Linux

References

[1] A. Jurgelionis et al. Platform for Distributed 3D Gaming. Int. J.
of Computer Games Technology, 2009.

[2] P. Fechteler and P. Eisert. Accelerated Video Encoding Using
Render Context Information. In Proc. of ICIP 2010.

[3] D. Van Rijsselberger. YCoCg(-R) Color Space Conversion on the
GPU. In Proc. of FirW PhD Symposium, 2005.


