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Abstract

We present a system to capture high accuracy 3D models
of faces by taking just one photo without the need of special-
ized hardware, just a consumer grade digital camera and
beamer. The proposed 3D face scanner utilizes structured
light techniques: A colored pattern is projected into the face
of interest while a photo is taken. Then, the 3D geometry is
calculated based on the distortions of the pattern detected
in the face. This is performed by triangulating the pattern
found in the captured image with the projected one.

The main focus of our work lies in the enhancement of
the systems robustness with respect to environment illumi-
nation, color cross-talk, reflectance characteristics of the
scanned face etc. For this purpose the color classification
of the proposed system is made adaptive to the character-
istics of the captured image to compensate for such distor-
tions. Further improvements are concerned with enhancing
the quality of the resultant 3D models. Therefore we replace
the typical general-purpose image preprocessing with spe-
cialized low-level algorithms performing on raw CCD sen-
sor data.

The presented system is suitable for generating high
speed scans of moving objects because it relies only on one
captured image. Furthermore, due to the adaptive nature of
the used color classifier, it generates high quality 3D models
even under perturbing light conditions.

1. Introduction

The construction of 3D models out of 2D views on a
scene is a field of ongoing research for some decades now.
One common way of approaching this problem is Stereo
Vision. In this case the corresponding points of two or more
different views are triangulated to create a 3D model. A
good overview and evaluation on such algorithms is given
in [6].

Very similar to the Stereo Vision approach is the Struc-

Figure 1. top: Resulting 3D models as wire frame model, surface
and textured surface, down: input images

tured Light method which is used in this work. Here the
task is simplified by using controlled illumination. There
are various different structured light approaches, for exam-
ple: in [12] a real-time system is proposed which runs on
specialized hardware; in [7] a method is presented for gen-
erating high resolution depth maps of complex scenes by us-
ing multiple projectors, cameras and several snapshots per
camera; in [9] a method is shown which uses just one pro-
jector and one camera without any modifications running
on a typical PC. This last mentioned work has motivated
us to develop a structured light 3D scanner specialized for
faces [2], which poses the foundation of the presented sys-



tem.

In recent research significant effort has been made to en-
hance the performance of such systems with respect to the
resulting 3D models. In [10] high quality depth maps are
generated by a spacetime stereo technique which is based on
a video stream captured while the projected pattern changes.
In [11] the authors present an approach to capture high res-
olution 3D models of faces utilizing several synchronized
video cameras.

The major contribution of the presented work lies in the
improvement of structured light systems with respect to ro-
bustness to ambient light and reflectance characteristics of
the object to be scanned. Additionally we present low level
image processing algorithms suited for the generation of
high accuracy 3D models.

2. Framework and Architecture

A 3D model of a face is computed by first projecting
a simple colored stripe pattern onto the face. The depth
information is then calculated by taking into account the
distortion of the stripes in the face caused by its shape. To
measure the degree of distortion, correspondences between
projected and detected stripes are established. The depth is
evaluated for all correspondences with respect to the focal
point of the camera. After having a cloud of 3D points it
is converted into a mesh of triangles. This mesh constitutes
the surface of the 3D model. Optionally the mesh can be
textured with a picture taken additionally with regular white
light.

Figure 2. Devices and setting used in this framework

The hardware used by our framework consists of reg-
ular devices: a digital camera and a projector (see figure
2). Both devices are controlled by a typical PC running the
framework. The devices are mounted so that their image
centers are one upon the other.

In order to generate a 3D model of a face the following
steps are performed:

1. take image I;,,; of the face illuminated with a color
stripe pattern Ijqsern, and optionally capture an image
Ireguiar With regular white light

2. extract prospective stripes

3. extract colors corresponding to prospective stripes

4. match the prospective stripes with the projected ones
5. calculate 3D coordinates of correspondences

6. create a triangle mesh from the 3D point cloud

7. optionally project I;.cguiqr ONto the surface as texture

To create a 3D model of a face, the goal is to find the
most probable correspondences between I, ¢¢erpn and Iy, pot
among all possibilities. This is achieved by performing
a global optimization after having extracted hypothetical
stripes in Ly, as well as their colors.

2.1. Offline Pattern Creation

The pattern projected onto faces should allow an easy
assignment of imaged parts to parts of the pattern. There-
fore we have chosen a stripe pattern with horizontal lines
having fully saturated colors with empty (black) spaces in
between. This reduces the search for correspondences to a
1D search along the corresponding scan columns. The col-
ors in the resulting pattern image Ipq¢zern are (see figure
3): red, green, blue, white, cyan, magenta and yellow. To
ease the unique assignment of detected stripes to projected
ones we have chosen a series of stripe colors with a big pe-
riod. Besides that, we introduced the constraint that two
consecutive stripes have to differ in at least two channels.
With this latter constraint we achieve an enhanced delimi-
tation of successive stripes, and the unique identification is
simplified. This is the reason why we do not use de Bruijn
sequences [3], which are often used in similar contexts to
generate sequences with big periods. The smaller periodic-
ity due to the additional constraint in our case is no problem,
as long as the period of the pattern is smaller than the largest
jump in depth. Taking this into account the pattern Ipttern
can be determined with a simple depth-first search.

Figure 3. A cut-out of the used pattern rotated by 90°

3. Detection of Stripes

After capturing an image I;npy: of a face illuminated
with the pattern Ip,¢tern the stripes corresponding to the
projected pattern stripes are detected in Iy, . First of all,
the region of interest in the image is defined with a simple
face shaped model. All the pixels outside are set to black, so
that all subsequent steps will ignore them. The remaining
image of the face will be searched for the projected stripes.
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Figure 4. Different cases of parabola fitting through pixel values along scan columns; vertical line indicates maximum of parabola

3.1. Sub-Pixel Resolution

To achieve a highly accurate 3D model the stripes are
detected with sub-pixel resolution.

Therefore all the “general-purpose” image preprocess-
ing in the camera is skipped, which is generally “special-
purpose” to generate visually appealing images: Bayer in-
terpolation, gamma correction, white balancing etc. In-
stead, the presented framework uses the plain CCD sensor
values with full 12-bit resolution instead of the typical 8
bits. Among others, this means, we treat the pixel values
differently depending on which sensor type they were mea-
sured on, red, green or blue.

As the input image is in raw CCD sensor format, there
are no de-bayered RGB pixels, but columns of single-
channel pixels with alternating color sensitivity: RGR-
GRG...and GBGBGB. ..

Extracting the prospective stripes is done separately for
all three color channels as well as for every scan column.
A pixel is taken as a stripe candidate if the values of the
preceding and succeeding pixels are not bigger. This results
in three lists of stripe candidates, one for each sensor color
type.

We are interested in sub-pixel resolution. So we deter-
mine the centers of the stripe candidates by fitting parabo-
las through their intensities, the pixel values: p(x) = az? +
bx + ¢, with a, b, ¢ being the parameters of the parabola p(+)
and z the pixel location along the scan column, again for
all three color channels separately. The center of the stripes
is assumed to be at the maximum point of the parabola, its
mode. Fitting the parabolas is performed via squared dis-
tance minimization: miny, (X - p — y)?, with the parameter
vector p = (a,b,¢)T, the matrix X holding the different
powers of the pixels locations along the scan column, and y
containing the actual pixel values.

In the regular case with one pixel value bigger than its
two vertical neighbours, the parabola is fitted through these
three points. In cases where two adjoining pixels hold the
same value bigger than the two surrounding ones, these four
pixels are used for this. If there are more than two equal
valued pixels, the inner most pixels are ignored. In this case

the parabola is fitted with respect to the two starting and the
two closing pixels of that interval. The latter case occurs
when the sensor is saturated, e.g. too much light. See figure
4 for illustration of all these cases.

Most projected stripes produce responses in more than
one kind of color sensor, e.g. magenta light should excite
the sensors for red and blue. And even if a sensor gets illu-
minated with light it is not sensitive to, a response is mea-
surable with probability bigger than zero. This is formally
known as color-cross talk. That’s why one projected stripe
often results in several detected stripes which are found in
the lists corresponding to the different sensor types.

In order to get one common list with all stripes found in
the input image Ijy,p,: the three lists are fused to one single
set. Thereby detected stripes of different lists (emerging
from different sensor types) which belong to one projected
stripe are combined to one common representation. The
common center Ceommon 1S calculated as a weighted sum of
the two original centers c; and cs:

€101 + C2a2
a1 + as

Ccommon =

weighted with their ”sharpness” parameter in the parabola
equation p(x) = az? + bx + c. Here again a scan column is
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Figure 5. Two parabolas resulting in one common center



Figure 6. Colors of prospected stripes in RGB space, left: picture taken under ideal conditions, right: picture taken under bad illumination

processed one after another, but now under consideration of
the two different color channels present. Every two parabo-
las in a single scan column from the two different sensor
types are fused together if their centers are not to far apart,
see figure 5.

For establishing correspondences the colors are com-
pared between the projected stripes and the detected ones.
Therefore every prospective stripe is a color assigned using
sub-pixel Bayer interpolation. This means, that stripe candi-
dates get their red, green and blue values by assigning them
as a weighed mean of their neighboring sensor values. The
weights used here are inverted Euclidean distances between
the stripes’ centers and the pixel locations.

3.2. Probability of Stripes

At the later over-all-optimization, detected stripes which
deviate from the pattern sequence order to much and which
are not bold enough are cancelled out. For this purpose ev-
ery detected prospective stripe is assigned a likelihood of
being a correctly recovered projected stripe. This likelihood
is proportional to the same “sharpness” parameter of the fit-
ted parabola as the one mentioned above.

All the parabolas are opened to the lower side, so a < 0.
And parabolas with a low absolute value of a near zero are
flatter then the ones with more negative values of a. To nor-
malize the derived likelihoods p; ,q1:q Of a stripe candidate
p: to be a valid stripe to a range of [0, 1] the sharpness pa-
rameter a; is divided by the lowest value of all a’s among
all parabolas of the same sensor type.

a;

Diwvalid =
Amin

This means, that indistinct stripes will correspond to flatter
fitted parabolas which in turn results in lower probability
weights.

4. Color Classification of Detected Stripes

The result of the previous steps is a list of all the stripe
candidates. Each stripe candidate is specified by a scan col-
umn index, a position along that scan column and a RGB
color value. For every detected stripe the likelihoods of be-
ing projected with the different colors of the pattern are de-
rived. Hence every stripes pixel is assigned one probability
value for each projected color, seven in our case.

4.1. Classifying the Detected Colors

Experiments have shown that projected colors, reflected
by skin and recorded by cameras encounter various dif-
ferent distortions. Additionally, sensor noise as well as
color-cross talk is detected between the projector spectra
and the sensor filters. In figure 6 two RGB space repre-
sentations of prospective stripes are depicted: one captured
under controlled conditions, the other one in a usual office
environment. Color clusters are roughly identifiable cor-
responding to the projected colors, without a clear separa-
tion between them. The visible clusters are approximately
shaped along more or less straight lines which seem to be
slightly displaced versions of the black—red, black—cyan
etc. axes. The plots in figure 6 show how crucial the light
conditions of the environment are. Without any disturbing
light sources in the environment, the clusters are identifiable
quite clearly. But with increasing ambient light the clusters
become more and more fuzzy until there is only one big
blob of data points in RGB space.

4.2. Adaptation to Statistics in Captured Image

In order to determine the color each detected stripe pixel
was projected with, straight lines g. : o. + ar. are fitted
through these clusters to form prototypes of these clusters;
one line for each pattern color ¢ € {r, g, b, c,y, m,w}. The
classification of data point p; (a stripes’ color) is then per-
formed by calculating the distances d(p;, g.) of that point



p; to all the prototype lines g., and assigning the color of
the prototype with the smallest distance.

This fitting of straight 3D lines through clusters is a form
of orthogonal distance regression (ODR), and the classifi-
cation of the projected colors is a form of model selection.
The parameters for this mixture model (the straight lines g.)
are determined out of the measured data. For this purpose
the KMeans algorithm [5] is adapted. The classical KMeans
method works broadly in the following way:

1. initialize the parameters of the classifier, the mixture
of straight 3D lines

2. repeat until no changes in labeling are registered

* label the data with current classifier parameters

* adapt classifier parameters

There are efficient general-purpose initialization meth-
ods for the standard KMeans method, e.g. [1]. These meth-
ods are not applicable for our adapted KMeansLineFit be-
cause here the cluster means are not in the same space as
the data, but in parameter space of straight lines. However,
by knowing the originally projected colors, our initial guess
of classifier parameters are straight lines, originating from
black (0, 0, 0) and pointing to the fully saturated colors red
(1, 0, 0), magenta (1, 0, 1) etc.

The labeling step means to assign every stripe the color
label it was most probably projected with according to the
current classifier. This is the color of the prototype line g,
with the smallest distance to the stripes color p;.

The adaptation step is slightly more complex: Every pro-
totype line g. is moved into the center of the data points
which are currently labeled with the same color. At a first
glance this can be done for every cluster independently. The
calculation of a straight line g. in 3D space is performed by
searching the offset point o. and a direction vector r.. The
parameters minimizing the squared distance to the given
data are the datas’ mean as the offset point o., and r. can
be determined by using Eigenvalue decomposition of the
datas’ covariance matrix.

Experiments have shown that the resulting lines do not
lie in the cluster centers, because all the clusters are fused
together at dark colors. The prototype lines do not pass from
dark colors near black to lighter colors near the fully satu-
rated ones and they do not cross the clusters in their cen-
ter. To overcome this, an artificial constraint has been intro-
duced, that all the prototype lines must contain one common
point near black, which is also adapted by the KMeansLin-
eFit algorithm. This seems to be plausible as it is the pixels’
value achieved when dimming any color more and more.

The problem of finding all prototype lines passing
through one common point poses a system of coupled equa-
tions which are not solvable in closed form. Therefore it is

Figure 7. Prototype lines found by adapted KMeansLineFit in
RGB space

solved approximately by first calculating the direction vec-
tor r. for every color ¢, and then determining the common
offset point o best fitting all the new prototypes g. to the
corresponding data. The former is again the same Eigen-
value decomposition problem. The later problem can be
solved by minimizing the sum of squared distances for each
given data point p; and its corresponding prototype line g.:

C N. C N,
min D =Y " " d*(pei,ge) = D Y [[re X (pei — o)
e=1i=1 e=1i=1
The offset o minimizing this squared distance D can be cal-
culated by deriving D with respect to o’s components and
setting them to zero. The resulting three equations, resolved
for o’s components can be combined into an equation sys-
tem of the form A - o = b which can be solved with stable
matrix inversion.

After having iterated over the labeling-adaptation-loop
until no changes in labeling are registered, the classifier is
adapted to the statistical characteristics of the input image.
For every stripe the distance to the different prototype lines
is defined. Figure 7 shows the results of an example.

4.3. Probability of Color Assignments

These distance measurements are transformed into like-
lihoods by utilizing a softmax like function. The distance
measurements are inverted and normalized to the range of
[0..1] with the sum of the reciprocal of all distances:

d=! (pi,colorv gCOlOT)
C _
Zczl d 1(pi,cvgc)

Special care has to be taken for RGB pixel values close to o
to ensure that no division by zero occurs.

Di,color =



To speed up the convergence an intelligent initialization
can be used: Fit an origin passing line through the complete
data set and let it be the white representative. The remaining
prototypes are put aside the white prototype into the direc-
tion of the fully saturated axes, depending on the expansion
of the whole data point cloud.

With the presented method we have a soft color classi-
fier which assigns probabilities in contrast to absolute val-
ues. Additionally by utilizing the proposed non-parametric
KMeansLineFit method the soft color classifier is adapted
to the characteristics of the given input image I;ppy: in
terms of color-cross talk, albedo etc. without explicitly
modeling these effects.

5. Matching Detected Stripes with Projected
Ones

During the previous steps a list has been achieved con-
taining all the detected stripe candidates. Each one is spec-
ified by a location (scan column index and position along
that one), a likelihood to be a valid stripe and the likelihoods
to be projected with the pattern colors. The current task
is to establish correspondences between projected and de-
tected stripes and to skip all invalid stripe candidates which
have been emerged due to non-optimal light, skin and sen-
sor conditions. This constitutes the probabilistic over-all-
optimization.

This matching is a typical combinatorial optimization
problem (COP): Which combination of correspondences
fits best. We follow the usual way to solve such tasks by
setting up an objective function which has to be maximized
in order to find the best combination. The objective function
takes all the available information for all stripe candidates
into account, which is:

e likelihood to be a valid stripe (p; va1id)

e likelihood to be projected with the different pattern
colors (pi,color)

e deviation of detected sequence from projected pattern
(pi,sequence)

This problem is solved for each vertical scan column sepa-
rately. The objective function we have developed is the sum
over all the available probabilistic weights. We distinguish
between the two cases of stripe candidates are matched
(p € M) and skipped (p ¢ M):

L= Zvie]\,{ Pi color + Divalid + Pi,sequence
+ ngM 1 — pivatia
L contains the probability of being invalid for every rejected

stripe candidate. For every successfully matched stripe it
contains the sum of the likelihood of being a valid stripe,

the likelihood that this stripe was projected with the cor-
responding pattern color and the likelihood that this color
occurs in this sequence in the projected pattern. The latter
term is often called a jump weight because it assigns good
scores for stripes being in order with the pattern and bad
scores for incoherent sequences.

This COP is solved efficiently with the Dynamic Pro-
gramming (DP) method [8]. The typical Dynamic Program-
ming approach is to set up a table containing scores for the
assignments and traversing through it. Afterwards the best
score achieved is traced back and all the encountered cor-
respondences are found respectively the prospective stripes
marked as invalid are skipped.

6. Experimental results

Figure 8. Results of stripe detection, color classification and stripe
matching without any post-processing

The final depth of every correspondence is evaluated by
triangulating the 3D point cloud. Therefore the projection
matrices of the camera and projector are needed, which we
get by calibration.

The depth calculation is done by calculating the intersec-
tion of the two lines of sight through the focal points and the
image points of the camera respective projector [4].

In our experiments we use a DLP projector Projection
Design F1+” with a SXGA+ resolution (1400 x 1050) and
a camera “Canon EOS 20D” with a resolution of 8.2 mega
pixel (3522 x 2348). The pattern contains stripes with a
width of 2 pixels and 3 pixels intersection.

The C++ running time for generating a 3D model of a
face lies in the range of a minute on a 3 GHz Pentium-4
computer. It depends on the amount of detected vertices.
The KMeansLineFit algorithm converges in 5 to 15 itera-
tions for optimal light conditioned scenes. With captured
images of non-ideal scenes the amount of required itera-
tions rises up to 50.

Many experiments have been performed with the 3D face
scanner. Figure 1 shows the results of a typical scenario.
Two pictures have been taken, one with regular white light
and one with the structured light pattern shown in figure 3.
After selecting the interesting region, the system has set up
a color classifier suitable for the given scene (shown in fig-
ure 7). After classifying the detected stripes and establish-



ing correspondences the 3D model of the face is calculated
and optionally presented as wire frame model, surface or
textured 3D face.

In figure 8 a region around the mouth is depicted to
demonstrate the main stripe matching including stripe de-
tection and color classification. Here no post processing
has been performed which is normally done to remove resp.
align outliers. Despite the bad quality and the partial satu-
rated color channels in the input image the system produces
good results.

7. Conclusion and Future Work

We have presented a system for high resolution 3D face
scanning based on single captured images. The system gen-
erates high accuracy 3D models by exploiting specialized
low-level algorithms performing on raw CCD sensor data.
Additionally the 3D face scanner has been made robust in
terms of light conditions, skin, color-cross talk etc. This is
achieved by adapting the color classification to the charac-
teristics of the captured image utilizing the proposed non-
parametric KMeansLineFit algorithm without the need to
explicitly model any of these disturbing effects.

Experiments with scanned faces under non-ideal light
conditions are presented to demonstrate the systems perfor-
mance.

The simple setup and its easy usage make the presented
system ideal suited for various 3D model creation scenarios,
e.g. virtual environments like 3D games or human machine
interfaces.

Interesting for future work could be to use a global op-
timization for the whole input image, which does not han-
dle every scan column separately. E.g. Dynamic Program-
ming could match all scan columns simultaneously by tak-
ing all the possible combinations of current stripe matches
as a single state. Another interesting enhancement could be
to adapt the color classifier to local regions instead of the
whole image. Additionally a significant speed up could be
gained by running several parts of the system in parallel ex-
ploiting todays multi-core processors.
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