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Figure 1: Our approach synthesizes images of clothes from a database of images by interpolating image warps as well as

intensities in pose space.

Abstract

This paper introduces a new image-based rendering approach for articulated objects with complex pose-dependent
appearance, such as clothes. Our approach combines body-pose-dependent appearance and geometry to synthe-
size images of new poses from a database of examples. A geometric model allows animation and view interpo-
lation, while small details as well as complex shading and reflection properties are modeled by pose-dependent
appearance examples in a database. Correspondences between the images are represented as mesh-based warps,
both in the spatial and intensity domain. For rendering, these warps are interpolated in pose space, i.e. the space
of body poses, using scattered data interpolation methods. Warp estimation as well as geometry reconstruction is
performed in an offline procedure, thus shifting computational complexity to an a-priori training phase.

Categories and Subject Descriptors (according to ACM CCS): 1.4 [Computer Graphics]: Image Processing and

Computer Vision—

1. Introduction

In this paper, we address the task of visualizing artic-
ulated objects with complex pose-dependent appearance,
such as clothes. One subtle but very characteristic effect of
clothes is wrinkling. Garments that roughly follow a per-
son’s shape, e.g. shirts or pants, typically exhibit fine wrin-
kles and buckling patterns, especially near joints. For such
type of clothing, it is a feasible assumption that wrinkling
is pose-dependent [WHRO10]. Traditionally, the visualiza-
tion of clothes relies on a textured 3D computer graphics
model while foldings and dynamics of the cloth are syn-
thesized. Current cloth simulation techniques can produce
highly realistic results for animated clothing with detailed
wrinkling patterns but require complex physical simulation
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of the cloth characteristics [VMTF09, WHRO10]. An al-
ternative to physical synthesis is observation of appearance
through a number of images. In image-based rendering ap-
proaches, a database of previously recorded images of an
object is used to generate new viewpoint images by appro-
priate interpolation and merging [LH96, BBM*01].

In our method, we approach the task of clothing visualiza-
tion in an image-based manner, using as much information
from real images of a piece of clothing as possible - pro-
viding examples of the clothing’s appearance. We assume
that clothing appearance (wrinkling and shading) is body
pose-dependent, concentrating on clothes that roughly fit the
shape of a human body. An image-based approach exploits
the fact that all characteristics, such as texture deformation
and shading properties, are captured by the example images.
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This information can be extracted as spatial and photomet-
ric warps between the images and exploited to synthesize
images of new pose configurations. The pose-dependency
assumption allows a mapping of the extracted information
onto a lower dimensional space, the pose space, i.e. the space
of body poses, to synthesize new images as a function of
body pose. For the interpolation of warps and image intensi-
ties, we utilize scattered data interpolation methods that have
already been successfully used in pose space deformation
(PSD) methods for animation [LCF00, SRCO1].

Our approach is driven by the following assumptions:

e We are rather aiming at a plausible photo-realistic and
perceptually correct visualization of clothes than at phys-
ically accurate and correct reconstruction.

e Texture and shading represent strong cues for the percep-
tion of shape such that fine details can be modeled by im-
ages (appearance). Hence, rough shape is modeled in a
geometric model to allow animation while small but sub-
tle details are represented by appearance.

e Wrinkles, creases, and appearance of clothes that roughly
follow a person’s shape are mainly influenced by the per-
son’s pose. Although external forces might also affect
wrinkling behavior, appearance especially at fine wrinkles
is mainly affected by nearby joints [WHRO10].

e Wrinkling behavior is primarily affected by the nearest
joints. Hence, we can split up the pose space into sub-
spaces of body parts with lower degrees of freedom, thus
reducing the dimensionality of the interpolation domain
as well as the number of required examples.

This paper is organized as follows. Sec. 2 reviews related
work and states the contribution of our work. Sec. 3 de-
scribes the definition and construction of a database for pose
space image-based rendering (PS-IBR). Sec. 4 describes
how the extracted information in the database is used to syn-
thesize images for new poses. Sec. 5 discusses results and
describes possible application scenarios.

2. Related Work and Contributions

Image-based Rendering and Interpolation. Our intention
of generating new images by warping and merging existing
images from a database is closely related to image-based
rendering and image interpolation. In image-based render-
ing (IBR), view-dependent appearance of an object is pre-
sented by a number of images. New viewpoint images are
synthesized by appropriate filtering and interpolating these
images [LH96, BBM*01]. IBR techniques can be classified
based on how much geometry information about the scene
is exploited [SKOO]. Basically, the amount of images and
geometry is a trade-off between photo-realism and compres-
sion of the model. While purely image-based representations
have the advantage of photo-realistic rendering, they have
high costs of data acquisition and storage requirements such
that geometry is often exploited to reduce the number of im-
ages [DTM96, BBM*01].

Image interpolation transforms two images of the same
scene (separated in space and/or time) to generate in-
between images with a seamless transition [LLB*10,
SLW™11]. This is generally done by determining image cor-
respondences and gradually warping both images onto each
other. A space-time interpolation method of complex real-
world scenes was recently proposed in [LLB*10]. The cap-
tured images are parameterized in a space-time interpola-
tion domain and a tetrahedralization of that space is used to
interpolate correspondences between the images. Our pro-
posed approach is related to their method, as we, too, in-
terpolate warps between images. However, our interpolation
domain is the high-dimensional space of body poses in con-
trast to the 3-dimensional space/time-domain, making ani-
mations possible. Furthermore, we extract not only spatial
warps between images but also photometric ones to cap-
ture shading differences, especially at wrinkles with com-
plex shading patterns.

Pose Dependency. Little research has been done in body-
pose-dependent image-based rendering. One of the earli-
est work that approached the problem of modeling pose-
dependent appearance was presented in [Dar98] who learned
the silhouette appearance of an articulated arm as a func-
tion of its end position. Later, methods were proposed for
textured non-rigid scenes, which separated the scene into
several rigid scene parts and treated each part separately
[CYJ02]. Recently, methods for image-based rendering of
persons or clothes have been proposed that account for pose-
dependency of appearance [XLS*11, HSR11]. These ap-
proaches search a texture in a database of images (based
on pose [XLS*11] or silhouette information [HSR11]) to be
mapped onto a 3D model. Both approaches search the best
texture based on pose-related information but the synthesis
procedure is not pose-dependent. In [HE12], an image-based
animation method is proposed for a reduced scenario of an
arm bending sequence with one degree of freedom and a lin-
ear interpolation between different poses, resulting in a 4D
interpolation space, similar to time/space-interpolation.

While to our knowledge, a pose-dependent synthesis is new
to image-based rendering, interpolation in pose space has
been previously applied to geometry deformation in ani-
mation techniques, called pose space deformation (PSD)
[LCF00, SRCO1, WSLGO7]. These methods provide exam-
ples of pose-dependent shape of an animated object for a
number of example poses. Typically, the examples are mod-
eled by an animator but body scans [ACZP02] or examples
from computationally demanding simulations [WHRO10]
have also been used. These examples guide the geometric
deformation (e.g. muscle bulging) during animation which
pure skinning methods like skeletal subspace deformation
(SSD, details in [LCF00]) cannot model. PSD methods cal-
culate vertex displacements between an animated reference
shape and a provided example shape for predefined example
poses. These example poses are located at scattered posi-
tions in pose space, e.g. the space of articulated body poses
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Figure 2: The base representation consists of appearance (images and alpha masks) and rough shape information for several
body poses and views. Each image is associated with a skeleton model, parameterizing the images in pose space. Additionally,
parameters for spatio-intensity image warps are stored between images that lie close to each other in pose space. In a pose
graph, nodes represent images and connections represent estimated image warps between them.

[LCF00, WSLG07, WHRO10]. To generate the shape for a
new position in this space, the vertex displacements are inter-
polated by scattered data interpolation methods, e.g. radial
basis functions (RBF) [LCF00, SRCO1] or k-nearest neigh-
bor interpolation [ACZP02].

Recently, methods for learning the pose-dependent shape
of clothing have been proposed in [WHRO10, GRH*12].
These methods learn pose- and body-shape-depended cloth
wrinkling and drapery from high accurate physical clothing
simulation to dress virtual characters. While these methods
are purely shape-based, we combine pose-dependency with
image-based rendering techniques.

Contributions. In contrast to classical IBR which is re-
stricted to viewpoint interpolation, we have developed a
body pose-dependent method that generates new images
based on pose parameters by interpolating and merging im-
ages of clothes from a database in pose space. The concept of
interpolating sample body poses is transferred and modified
from PSD methods in animation [LCF00,SRCO1, WSLGO07]
to IBR and we address related issues, such as blending
and photo-consistency. The high dimensionality of the pose
space is addressed by splitting up this space into subspaces
of body parts to reduce the dimensionality of the interpo-
lation domain as well as the number of required examples.
This allows for a modeling of different body parts from dif-
ferent database images which are finally merged based on
influence fields per body part.

3. Database Definition and Creation

Input to our visualization method is a set of skeleton joint an-
gles or a comparable parameterization of a human pose. This
pose parameterization defines the position in pose space to
be interpolated from the database. The main idea of our
approach is to capture a database of images in an a-priori
training phase from different calibrated viewpoints show-
ing different body poses. The poses parameterize the im-
ages in pose space, thereby providing scattered examples of
pose-dependent appearance. To render an image for an arbi-
trary pose, a subset of images is selected from the database
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based on pose similarity. These images are warped and in-
terpolated to the new pose and finally fused to one result by
blending. In the following, we describe the definition of our
image-based representation as well as the construction of a
database. Sec. 4 concentrates on the synthesis by scattered
data interpolation in pose space.

3.1. Base Model Representation

Our database (Fig. 2) consists of a set of calibrated images
ZIp.v (appearance) for various poses p and views v. Each im-
age is associated with an alpha mask and a view-dependent
3D mesh M5, = {V5,,, Fpv} (shape), with vertices V5, =
[V} ...vy] and topology F) v, representing coarse geometry.
For calibration and reconstruction of the coarse geome-
try, we use Bundler [SSSO8] and refine the resulting depth
maps/disparities by registering two neighboring stereo pairs
onto each other. To do so, we triangulate the alpha masks
using [She96] and estimate vertex correspondences be-
tween the images using the intensity-based image registra-
tion method of [HSE10]. From the estimated correspon-
dences and calibration information, we can assign a depth
to each vertex and store a depth map represented as a mesh
/\/l?,,v = {V?,,V,J-"pﬁv} for each image.

For animation and parameterization purposes, each image
is associated with a skeleton, representing the body pose
p, e.g. as a vector of joint angles qp, which positions the
image in pose space. For pose estimation, we fit a generic
body model with skeleton information to the coarse geom-
etry information of each image [FHE12]. Skinning weights
between the meshes and the skeletons for SSD animation are
calculated using the method of [BPO7].

3.2. Image Warps

In addition to the base model, we store parameters for spatio-
intensity image warps between images in the database. The
information which images are connected by warps is orga-
nized in a graph structure which we call pose graph (Fig. 2).
In this section, we explain the concept of pose graphs and
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mesh-based spatio-intensity warps used for our representa-
tion. For simplicity reasons, we omit the subscript v, indicat-
ing the viewpoint, in the following. In fact, different view-
points can be treated as different poses and interpolation be-
tween view points is akin to pose interpolation.

Pose Space and Pose Graph. Each image is associated with
a pose parameterization qp which defines its position in pose
space. We use an axis-angle representation of each skeleton
joint (the axes are also represented by two angles) and con-
catenate the angles in qp. Any other pose representation like
joint quaternions or relative joint positions can also be used.
As distance measure between two poses in pose space we
use the Ly-norm:

dij = d(ap,ap,) = |lap — ap, | )

Image warps (see below) are estimated between close im-
ages in pose space, i.e. image pairs with a distance d;; below
a predefined threshold. In the pose graph (Fig. 2), we store
the information which images are connected by warps, en-
abling smooth transitions between the poses. In this graph,
nodes represent images (plus shape, silhouette and pose) and
edges represent warps (note, that each image is also con-
nected to itself). We define the neighborhood of image Zp,,
i.e. all images that are connected to Z,, by an edge, by Np,.
In other words, V), defines the set of images with associated
warps from and to Z,.

General Definition of Mesh-based Warps. A spatial image
warp W;(x) from a source image Z; to a target image Z;
moves the pixels X to a new location such that the warped
image Z;(Ws(x)) best resembles Z;:

Li(Ws(x)) = Tj(x)

A mesh-based spatial warp between Z; and Z; can be defined
by a 2D mesh M,2 = {V,, F;} on the source image, with ver-
tices V; = [v;, ...v;,] and topology F;, and additional vertex
displacements AV;_, ;, defining corresponding vertex posi-
tions V; +AV;_, ; in the target image (Fig. 3):

Wi {Vi, Fi,AV;} 2

Such a warp moves the pixels with barycentric interpolation
between vertex positions:

3
Wi(x) =x+ Z B:Avy,_, 3)

=1
where Av; are the vertex displacements of the triangle sur-
rounding x and P, are the corresponding barycentric coordi-
nates. However, differences between images cannot always
be modeled by pure spatial warps due to e.g. varying light-
ing or shading patterns. In these cases, a photometric warp
Wp(Z(x)) can be used to modify the intensities in the image,

such that W (Z;(Ws(x))) best resembles Z; [HSE10]:

Wp(Zi(Ws(x))) = Z;(x)

Often, such a photometric warp is modeled as an intensity

W = {V,-.f,l,AVHpP,'_»,/}

Figure 3: A spatio-intensity image warp between I; and I ;
can be defined by a mesh ./\/ll2 onZ; and vertex displacements
into L; as well as one intensity scale parameter per vertex.

Figure 4: A shading map generated from the photometric
warps accounts for local shading at small wrinkles (left) as
well as more global lighting changes (right).

scale field multiplied to the image (Fig. 3 and Fig. 4):
Wh(Z(x)) = Wp(x)-Z(x) Q)

A mesh-based photometric warp can be defined by one in-
tensity scale parameter p per vertex and the pixel intensity
scale field is interpolated using barycentric coordinates:

3
W[’ (X) = Z Blpti—>j (%)
=1

A joint spatio-intensity warp between Z; and Z; can then be
defined by a mesh in the source image plus vertex displace-
ments and a vector of the intensity scale parameters:

Wi*)j:{Vh]:iaAVi*)j7pi4)j} (6)

Creating Pose Graph Warps. We estimate and store joint
spatio-intensity warps as defined above for each edge in the
pose graph. For later interpolation, we split up the warps be-
tween the database images into a coarse image warp, induced
by animating the associated 3D shape and subsequent pro-
jection into the desired view, and additional fine scale warps.

To animate a pose image Zp, to an arbitrary pose pa, we
use skeleton subspace deformation (SSD) of the associated
3D mesh M?,,. and project the animated mesh into the new
virtual camera. The established 2D vertex correspondences
can then be used to warp the image to the new pose and
view. We call these warps induced by SSD-animation and
projection SSD-guided warp:

W;S;ippa = {VPH]:PMAVf,'igM? 1} (7)

(© 2013 The Author(s)
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Figure 5: Fine-scale warp estimation. From left to right: Source and target poses overlaid, SSD-warped source pose image
(note the deformation at the arm) and final warped source pose image. Note, how lighting is adapted in the fine-scale warped

image (right).

Figure 6: Fine wrinkling patterns are modeled by the inten-
sity warp: spatially warped image without intensity adapta-
tion, spatio-intensity warped image and target image.

where V), denotes the original vertices of ./\/l?,l. projected

into the camera of Z, and AVf‘i‘i?,a denotes the vertex dis-

placements induced by SSD animation to the desired pose
and projection into the desired view.

The SSD-guided warps do not model real deformations,
e.g. cloth wrinkling when an arm is bent. Hence, using SSD-
guided image warps alone would result in implausible im-
age warps. To compensate for the insufficiencies in the SSD-
guided warp and to assure photo-consistency between poses,
we estimate additional example fine-scale warps Wf,mﬁ pn ON
top of the SSD-guided warps between pose images Zp, and
Zp,, Pn € Np, connected by an edge in the pose graph. The
concatenated warp registers the images accurately both spa-
tially and photometrically (Fig. 5 and 6). Formally, the con-
catenation @ of these warps can be expressed as:

SSD ine
Whoi—ps = WpZ5p, @ Wfi—>[7n

SSD

= {Vp,, Fp, AV avire ofine 3 ©
*{ Pis Pi» pi%Pn_F Pi‘>Pn7pp,‘~>pn}

where V), and AV;;‘EEH are defined as above and AVQ'E, P

and pg"j p, are the parameters of the fine scale warps. To es-
timate these parameters between a SSD-warped source pose
image 7, (W},Siibpn (x)) and a target pose image Zp, (X), pn €

N, we use the method of [HSE10].

We now have created a database representation which de-
fines pose-dependent appearance at scattered positions in
pose space by assigning a pose parameterization to each im-
age. Furthermore, for each image, we have estimated warp
parameters to other images at scattered positions in pose
space. Both warp parameters as well as image intensities
represent our example data which will be interpolated during
rendering (Sec. 4).

(© 2013 The Author(s)
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4. Pose Space Image-Based Rendering

To synthesize an image for a new pose p, we select the clos-
est n images ZLp, to p, in pose space. For clarity reasons, we
will first explain how we interpolate warps from the selected
images to the new pose p, before we explain how these im-
ages are selected (Sec. 4.2). Sec. 4.3 explains the blending
of the selected images. Sec. 4.4 focuses on a separation of
the pose space in subspaces to allow for a larger variety of
poses and to reduce the number of required examples.

4.1. Warp Interpolation

For each of the selected n images, a warp to the new pose
Pa is unknown and needs to be interpolated from the stored
example image warps Wp,—p,,pn € Np,. Recall, that the
database warps are concatenated warps, consisting of an
SSD-guided warp as well as a fine scale warp. The SSD-
guided warps are fully defined by the geometry and the
skeleton information and we only need to interpolate the fine
scale warp parameters on top of the SSD-guided warp. Let
VNVPH, p. denote the interpolated warp from pose p; to a new
pose pq:

Wi = Wi, @ WS, ©
where the interpolated fine scale warp W4™,. is repre-
sented by the interpolated vertex displacements and intensity
scale parameters AVQ’E, p. and Abg'ﬁ Pa
The poses pp € Nj, define example poses where a warp
from Zp, is known to. These poses are located at scat-
tered positions in pose space and the interpolation prob-
lem is thus a problem of scattered data interpolation. One
interpolation strategy also used in some PSD approaches
[ACZP02, SRCO1], is to find a smooth weighting function
per example such that the interpolated warp parameters are
a linear combination of the stored parameters from p; to

Pn E./\/’pi:

VL= X walan) AVAS,

PnENY,
fine fine ( 10)
Ppi—spa = Z wn(Gp) - P s p,
PnEN,,

This means that we need to define weight functions wy, to all
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Figure 7: lllustration of PS-IBR. Each database image
is positioned in pose space by a skeleton parameterization
(graph nodes). For a new pose (red dot), the closest n images
are selected (colored dots, size reflects blending weight), for
which we interpolate a warp to the new position from the
database warps (graph edges, colored arrows in the lower
image).

poses pn € Np,. These weight functions should fulfill three
constraints [ACZP02]:

e The weights should sum to one:

Y walgp) =1 (11)

PnEN,,

e If p, falls onto a pose pn, € N, connected to p; in the
pose graph, the weight for that sample must be one, and
all other weights must be zero:

wn(Qp,) =1 if pn = pa (12)

e The weights should be continuous so that the transitions
are smooth during animation.

Several interpolation methods have been proposed in the
PSD literature. Most approaches use radial basis functions
[LCFO00,SRCO1, WSLGO7]. However, one problem with ra-
dial basis functions is that they can give negative weights
which can lead to exaggerated warps [ACZP02]. An alterna-
tive interpolation scheme is k-nearest neighbors (kNN) inter-
polation which was proposed by Buehler et al. [BBM*01]
for view point interpolation in image-based rendering and
also used by Allen et al. [ACZP02] in PSD. It selects k clos-
est example points (in our case, k = |\, |) and assigns each
of them a weight based on their inverse distance:

1 1
n a) = B B
f (qP ) d(quqpn) d(ql’wqpk) ( )

where d(qp,,qp,) is the distance between the new pose and
the example pose parameterization qp, as given in Eq. (1)
and py, is the K" closest pose in N, Finally, the weights are
normalized such that they sum to one:

 lan) 14
wa(ap,) prej\/’pif’(qpﬂ) (14)

We interpolate a warp Wpi—ma for each of the selected
images from their stored example warps using kNN-
interpolation. Next, the warped images are blended as de-
scribed in Sec. 4.3.

4.2. Selection of Images

With the interpolation scheme introduced above, a pose pq
for which a warp can be interpolated from a sample pose p;
is constrained by

Q=Y wip, ,0<wy <1 15)
PnEN,,

Hence, the possible warps depend on the number and posi-
tion of each image’s neighbors in the pose graph and it is
not enough to simply search for the 7 closest pose images by
minimizing e.g. Eq. (1). We rather have to take into account
the pose graph neighbors forming the set of sample warps:

2
eai = ||qp, — Z wadp, || - (16)
PnEN,,

Such a measure reflects how well a position in pose space
qp, can be interpolated from the stored warps. As the dis-
tance between the selected images and the new position in
pose space should not be neglected completely, we search
the n pose images for which the following combined dis-
tance measure is minimized:

dyi = Oy +Yeqi (17)

where d,; is a distance between the poses p; and p, accord-
ing to Eq. (1). In our experiments, we used oo =y = 0.5.

4.3. Image Blending

After we have interpolated a warp from each selected image
Zp; to the new position in pose space, we blend the warped
images to synthesize an image for the new pose p, by

n
Ip. = ZW%(QPH)WPHP{I (Zp:) (18)

i=1

where w,b,,. is the blending weight for image Zp, in contrast to
the weight functions for warp interpolation. Again, we use
the KNN method to calculate the blending weights w?,/..

In contrast to PSD, the warps are interpolated from differ-
ent reference poses. If we select n images for warping and
blending, one pose space warp interpolation is performed for
each of these images separately. For each image, the set of
example warps is defined by the edges in the pose graph.
This means, that for each image, we interpolate from a dif-
ferent set of examples. While for each selected image the
kNN interpolation scheme results in a smooth animation se-
quence when traveling through the pose graph, the images
to be blended might differ slightly. This is a consequence
of different reference positions for each of the interpolation
problems. To assure photo-consistency during blending, we

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.



A. Hilsmann, P. Fechteler & P. Eisert / Pose Space IBR 271

0.1 X%

N
right %
2

0.58 A Qo 0.4 T
y left

A

Figure 8: Left to right: Influence weights for the right body part (red = 1, blue =~ 0) and a synthetic image generated by local
warping and blending (n = 3 per body part); selected images from the database for each subspace with blending weights; the
two pose graphs and positions of the selected images as well as the new image in the pose graphs.

\

Figure 9: Left: Blending without and with silhouette clean-
up; right: calculation of mean silhouette from the two images
with the highest blending weights.

adjust the silhouettes of the warped images onto a weighted
mean silhouette of the two images with the highest blending
weights (weighted according to the blending weights, see
Fig. 9), gradually warping between the silhouettes during
animation. We do this instead of warping onto the silhou-
ette of the image with the highest blending weight to avoid
jumps during animation, if the image with the highest weight
changes and the silhouettes of the images in the database dif-
fer a lot (e.g. for sparse datasets with very different example
poses or for loose clothing). The registration scheme of the
silhouettes is very simple and fast. We sample the silhouettes
and perform a non-rigid Iterative Closest Point (ICP) algo-
rithm. As the images are already very close to each other, the
ICP converges in less than 4 iterations in most cases.

4.4. Definition of Sub Pose Spaces

With the method described above, we can synthesize im-
ages of poses that lie in the convex hull of the captured body
poses and can be expressed as a linear combination of sam-
ple poses connected by warps according to Eq. (15). Hence,
the variety of possible pose images depends on the number
of example images and warps per example as well as their
position in pose space. Due to the high dimensionality of
the pose space it is therefore difficult to synthesize arbitrary
pose images with a limited set of images and warps. Un-
der the assumption that wrinkling is mostly affected by the
nearest joints (e.g. the left elbow does not influence defor-
mations at the right arm), we can split up the pose space

(© 2013 The Author(s)
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into subspaces, related to body parts, and proceed as above
for each subspace and finally blend and merge the images
locally. This allows for a larger variety of possible poses,
without the need of more example images.

To split up the pose space into subspaces related to body
parts, we define influence fields, indicating how much a ver-
tex is influenced by that body part. In our experiments, we
split up the upper body (torso, sternum, shoulder and elbow
joints), as well as the lower body (torso, hip and knee joints),
into two parts each, related to the left/right side of the body.
The influence fields are smooth and overlapping (Fig. 8) and
used for local warping as well as local blending. Each im-
age is now positioned in two pose spaces and in each pose
space, we search for the nearest n images. Local blending
weights are determined based on the distance in each pose
space. For all selected images (regardless in which subspace
they were selected), we interpolate a warp as explained in
Sec. 4.1 where Eq. (10) is extended to

KVQZ;HW:Z Z sz(‘lpa)'w%'AVﬂsfiﬁpn

S pa€ENG,
' 19)
~ fine _ s 5 fine
Pm,pi—ps = Z Z Wi (Ap,) * O P, pi— py
5 pu€EN,

where ) ¢ describes the summation over the different sub-
spaces and ®}, is the influence weight of vertex m for sub-
space 5.V, denotes the neighborhood of pose p; in the pose
graph of subspace s (note, that the pose graphs of the differ-
ent body parts can be different). After all images have been
warped to the new pose, the images are blended locally based
on the influence fields and blending weights per subspace.
Fig. 8 shows an example with local warping and blending.
The right body part is composed of two images with blend-
ing weights 0.9 and 0.1, while the left body part is composed
of two different images with blending weights 0.58 and 0.42.
Another example is shown in Fig. 10.

5. Results, Discussions and Applications

We have created different databases of upper and lower body
clothing. The number of example images varies between 40
and 240 (viewpoints and poses). In all our experiments, we
used two pose spaces as explained in Sec. 4.4 and n = 3 im-
ages per pose space. Results of our method are best evaluated
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Figure 10: Synthesis of a completely new pose (right) from
four database images (left).

visually in the accompanying video showing different pose
animations and view interpolations of synthesized poses (ex-
ample frames are shown in Fig. 1 and 14). The use of real
images and warp interpolation yields realistic movements of
wrinkles (e.g. wrinkling at the elbows in the jacket sequ. or
at the knee in the jeans sequ.), very fine details (such as an
epaulette in the shirt sequ.) as well as shading during ani-
mation (e.g. shadow casting of the arm on the body in the
jacket sequ.). Even for loose clothing (such as the blouse)
strong wrinkling at the torso induced by arm movements can
be modeled.

Fig. 10 shows an example of a completely new synthetic
pose generated from four database images, depicted on the
left. No similar pose has been captured in the database and
without splitting the pose space into subspaces, more exam-
ple poses would have been necessary to synthesize this pose
due to the high dimensionality of the pose space.

Besides interpolation, we also performed experiments on ex-
trapolation (Fig. 13 and accompanying video). The details
in Fig. 13 show that the kNN interpolation yields plausi-
ble results for moderate extrapolation, as it produces non-
negative weights which sum to one and warps are not ex-
aggerated. Hence, realistic wrinkling and shading can even
be modeled for extrapolation (note e.g. the realistic wrin-
kling at the upper legs in the jeans examples). However, the
farther the extrapolated pose lies outside the convex hull, the
more blurring artifacts can appear due to misalignment of the
images as no warp examples are known outside the convex
hull (see details in Fig 13). Coarsely, these misalignments
are adjusted by our silhouette clean-up such that they are
not very obvious during animation. Future work will con-
centrate on more sophisticated texture clean up for extrapo-
lation, e.g. using additional texture correspondences, similar
to Floating Textures [EDM*08]. Self-occlusions in the ex-
trapolated pose that have not been captured in other poses
can cause overlapping artifacts (see knee detail in Fig. 13).
Future work will include visibility maps to detect these cases
during synthesis.

For further evaluation, we followed a Leave-one-out proce-
dure. We took one of the pose images (with pose informa-

23
=

Figure 11: [f the source and the target poses differ too
much, differences between the images cannot be completely
aligned by image registration, especially in cases of self-
occlusions in the source image. Left to right: source image,
target image, warped source image onto target pose.

8 TE
i%

Figure 12: Comparison to ground truth. Left to right:
ground truth image, synthetic image produced with full data
set and synthetic image produced with half data set. Third
row: differences between the ground truth and the synthetic
images for the lower example. Although differences can be
seen in the difference images, the synthetic images are plau-
sible and visually correct for both datasets.

tion, geometry and warps from and to that pose) out of the
database and synthetically generated an image for that pose
with our method. Following, we reduced the dataset by half
and proceeded as before. Fig.12 shows two examples. The
differences between the ground truth and the synthetic image
increase if the datasets are reduced as i) images and warps
are interpolated from larger distances and ii) during the anal-
ysis procedure the warps need to be estimated between more
distant example images (compare Fig. 11). Nevertheless, the
synthetic images, especially the pose-dependent characteris-
tics, are still visually correct as long as plausible views can
be estimated between the example images (see also the video
for a comparison of visualization results with different num-
bers of example images). Recall, that our objective is the
realistic and plausible visualization of pose-dependent char-
acteristics and not accurate reconstruction.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 13: Examples of extrapolation: In each example, on the left depicted is the nearest interpolated pose (outlined) overlaid
with the two extrapolated images depicted on the right. Details are shown in the lower right, see also accompanying video.

BV s
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Figure 14: Example frames and details of synthetic animation sequences (see also accompanying video). Fine details, such as
wrinkling at the elbow, shading and the complex movements, e.g. of an epaulette, can be modeled with our approach.

Limitations. Like in any example-based or image-based
method, the variety of poses that can be synthesized by our
method depends on the number of images in the database
and their distribution/density in pose space. Generally, a
dense sampling of the pose space facilitates warp estima-
tion as well as image synthesis. If the images in the database
differ too much, differences between the images might not
be fully aligned by image registration and warp estimation
is more challenging, e.g. for loose clothing which performs
strong deformations, or self-occlusions, i.e. missing texture
information, in the source pose (e.g. Fig. 11). The larger
the distances between poses (for interpolation as well as ex-
trapolation), the stronger are the artifacts introduced by SSD
animation (e.g. candy wrap, Fig. 15), making correction by

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

fine scale warps more difficult. However, similar to PSD, our
method is not constrained to SSD as the underlying anima-
tion technique but can be combined with any other more so-
phisticated animation method.

Cost. The cost for visualization mainly depends on the num-
ber of pose subspaces and selected images per pose space
(number of image warps and silhouette clean-ups). In con-
trast to radial basis function interpolation used in many
PSD approaches, the kNN interpolation method is cheap and
the only time-consuming part is the warping of the images
which can be done in a few milliseconds. The size of the
database only influences the search for the nearest n images
per pose space.

Application. The main application we are targeting at is
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Figure 15: Candy-wrap artifact induced by SSD for strong
extrapolation.

the visualization of clothes in augmented reality applications
such as virtual try-on of clothes. In such an environment, a
user is tracked by one or more cameras and visualized on
a mirror-like display showing him/her augmented with new
clothes. Based on the estimated pose of the user, an image
of the selected clothes can be synthesized from the database
and mapped onto the image of the user.

6. Conclusions and Discussions

We presented a body pose dependent image-based rendering
technique which interpolates image warps and intensities in
pose space for the synthesis of images of clothes for new
body poses. To allow for a larger variety of poses, we split
up the body into different body parts and warp and blend lo-
cally based on influence fields per body part. The use of real
images results in a realistic visualization of the clothes espe-
cially at fine details. Generally, our method is not limited to
the visualization of clothes but can rather be applied to any
articulated objects where the assumptions of Sec. 1 hold.
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