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Abstract

The authors present an adaptive colour classification method as well as specialised low-level im-
age processing algorithms. With this approach the authors achieve high-quality 3D reconstructions
with a single-shot structured light system without the need of dark laboratory environments. The
main focus of the presented work lies in the enhancement of the robustness with respect to envi-
ronment illumination, colour cross-talk, reflectance characteristics of the scanned face etc. For this
purpose the colour classification is made adaptive to the characteristics of the captured image to com-
pensate for such distortions. Further improvements are concerned with enhancing the quality of the
resulting 3D models. Therefore the authors replace the typical general-purpose image preprocessing
with specialised low-level algorithms performing on raw photo sensor data. The presented system
is suitable for generating high-speed scans of moving objects because it relies only on one captured
image. Furthermore, due to the adaptive nature of the used colour classifier, it generates high-quality
3D models even under perturbing light conditions.

Figure 1 Input images and resulting 3D models as wire frame model, surface and textured surface

1 Introduction and related work
The reconstruction of 3D range data from 2D views is an longstanding goal in Computer Vision. Several
Stereo Vision techniques have emerged in the last decades, see [23] for a survey. A related technique to
tackle the 3D reconstruction challenge is the structured light method, also called Active Stereo Vision,
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where controlled illumination is used to actively generate geometric correspondence between projector
view(s) and camera view(s) as basic step for 3D reconstruction [24].

Among the earliest work in the field of one-shot 3D scanning using coloured structured light is [6].
The authors present a complete framework to measure the depth of arbitrary scenes. Matching of de-
tected to projected stripes is performed with a ”crystal growing” analogy algorithm. Starting with single
matches, sequences of successive matches are computed until all consistent matches are generated fol-
lowed by a heuristic selection of the most probable sequence. In [18], coloured stripes are projected
onto faces. The input image is simply segmented by thresholding in HSV colour space. A graph-based
matching is performed analogous to string matching followed by triangulation to reconstruct the 3D
coordinates. Though pioneering work, both methods use moderate resolutions and explicitly exclude
any robustness issues with respect to textured objects and ambient illumination.

Today, various structured light systems for 3D reconstruction have been developed with quite differ-
ent characteristics: in [32] a real-time system is proposed which runs on specialised hardware; in [24]
a method is presented for generating high-resolution depth maps of complex scenes by using multi-
ple projectors, cameras and several snapshots per camera; in [31] the authors present an approach to
capture high-resolution 3D models of faces utilising several synchronised video cameras; in [19] the
formulae for scattering media (like milky water) is modelled as well as the algorithm for estimating
its parameters and the way how to compensate these scattering effects are shown; in [29] a method
is shown which uses just one projector and one camera running on a typical PC. This last mentioned
work has motivated us to develop a structured light 3D scanner specialised for faces, which poses the
foundation of the presented system [10, 9].

In recent research, significant effort has been made to enhance the performance of such systems
with respect to the resulting 3D models. Improvements of structured light systems can be grouped
broadly into:

• extending the method, for example adding stereo analyse techniques by using several cam-
eras [24], adding video analysis techniques (spacetime analysis) [30], adding photometric tech-
niques [27];

• using more refined and sophisticated algorithms to match the captured image with the projected
pattern, for example GraphCut [14]; and

• enhancing the core methods, as discussed below.

In order to use structured light 3D reconstruction for non-rigid objects, like human faces, the stan-
dard approach of projecting several successively refining patterns is not possible. All pattern informa-
tion has to be integrated into as few patterns as possible to minimise the influence of temporal changes.
A major challenge here is the search for correspondences between the projected pattern and the captured
image. The choice of patterns used to project obviously has a strong influences. Different approaches
for designing good patterns have been proposed [22]. For example, in [1, 2] the authors suggest a 2D
M-array pattern with a Hamming distance for fault tolerance. This means, a matrix filled up with sym-
bols is generated so that every sub-matrix is uniquely identifiable even in case of incorrectly recovered
symbols. Since the symbols used as primitives for 3D reconstruction consist of several pixels, the res-
olution of such an approach is limited. In the early work of [7] a method is presented to measure the
scenes albedo and influence of the environment illumination in order to (a) correct the measurements
accordingly and (b) generate optimised colour projection patterns. The parameters for a chromaticity
model of camera and projector are measured in a prerequisite calibration. Two reference pictures are
taken before the actual range imaging: one with only the environment illumination and one projected
with uniform white light. Out of the two reference pictures a pixel-wise reflectance map is set up and
noise thresholds are calculated. Based on the measurements a series of colour projection patterns is
generated which are optimised for unique identification. With this approach the constraint of colour

- 2 / 15 -



This paper is a postprint of a paper submitted to and accepted for publication in
IET Computer Vision and is subject to Institution of Engineering and Technology Copyright.
The copy of record is available at IET Digital Library.

neutral scenes is greatly relaxed, but at the expense of performing a calibration process and the need to
capture several images. In [15] a profilometry based method is proposed for online adaptation of the
projected pattern to overcome over- and under-exposure as well as aliasing effects. The authors have
come up with a model for the complete signal path from projected RGB pattern to captured RGB image,
considering several characteristics of camera, projector, scene albedo as well as environment illumina-
tion. With this approach high-quality 3D range data are captured; however at the expense of needing to
gauge the camera and projector. Additionally, as reported, up to 16 measurements have to be taken in
order to adapt the pattern and reconstruct the scene depth. So performance will degrade with non-rigid
objects performing complex movements even though simple motion compensation takes place. As re-
ported in [5] the constraint of physical rigidity during acquisition is often not easy to achieve - even
for rigid objects - because of environment characteristics. Therefore, capturing a sequence of photos is
often not possible or leads to disturbed results.

A different way to enhance the detection of the projected pattern is to improve directly the classi-
fication method used therefore. In [26] a simple method is presented to distinguish between projected,
not-projected and uncertain pixels in a binary monochromatic structured light system. As their work
relies on the separation of direct and indirect illumination as it is presented in [20], several images have
to be captured in order to achieve high-quality results.

Here we present a method to enhance the search for correspondences by adapting the classification
of detected pattern colours to the captured statistical characteristics. With this we achieve an improved
single-shot structured light 3D scanner with respect to robustness to ambient light and reflectance char-
acteristics of the object to be scanned. Additionally, we present low-level image processing algorithms
suited for the generation of high-accuracy 3D models.

2 Framework and Architecture
A 3D model of a face is computed by first projecting a simple coloured stripe pattern onto the face. The
depth information is calculated by taking into account the distortion of the stripes in the face caused
by its shape. To measure the degree of distortion, correspondences between projected and detected
stripes are established. The depth is evaluated for all correspondences with respect to the intrinsic and
extrinsic parameters of camera and projector. The resulting cloud of 3D points is converted into a
triangle mesh. This mesh constitutes the surface of the 3D model. Optionally, the mesh can be textured
with an additional picture taken under regular white light.

The hardware used by our framework consists of off the shelf devices: a digital camera and a
projector (see Fig. 2). Both devices are controlled by a PC running the framework. The devices are

Figure 2 Devices and setting used in this framework
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mounted so that their image centres are one upon the other.
In order to generate a 3D model of a face the following steps are performed:

1. Take image Iinput of the face illuminated with a colour stripe pattern Ipattern and optionally
capture an image Iregular with regular white light.

2. Extract the prospective stripes in Iinput.

3. Estimate the colours corresponding to the prospective stripes.

4. Match the prospective stripes with the projected ones.

5. Calculate 3D coordinates of correspondences.

6. Create a triangle mesh from the 3D point cloud.

7. Optionally project Iregular onto the surface as texture.

To create a 3D model of a face, the goal is to find the most probable correspondences between
Ipattern and Iinput among all possibilities. This is achieved by performing a global optimisation after
having extracted hypothetical stripes in Iinput as well as their colours.

2.1 Pattern Characteristics
The pattern projected onto faces should allow an easy assignment of imaged parts to parts of the pattern.
Since it is a design goal to facilitate single-shot 3D reconstruction, time-varying patterns like sinusoidal
or hierarchical binary patterns are out of scope. As it was analysed in [13], for projected patterns
the detectability is increased and the ambiguity is reduced when using certain high-contrast colours.
Therefore a stripe pattern has been chosen with horizontal lines of fully saturated colours with empty
(black) spaces in between. This reduces the search for correspondences to a 1D search along the
corresponding scan columns. In order to achieve high-quality 3D reconstructions the pattern is designed
in this way to allow a peak-based matching. An alternative would be to design the pattern for an edge-
based 3D reconstruction where the colour transitions are matched, which generally provides a denser
reconstruction result, see [29] for example. A further increase in 3D model resolution is achievable
by combining both approaches to a hybrid pattern as it is presented in [21]. However, the increased
resolution of edge-based as well as hybrid-based 3D reconstructions is always measurable in reduced
accuracy, for example the appearance of fringe artefacts.

Figure 3 A cut-out of the used pattern rotated by 90◦

Note in Fig. 2 that the camera and projector centres are mounted on top of each other to provide the
Epipolar constraint without any image rectification. The colours in the resulting pattern image Ipattern

are (see Fig. 3): red, green, blue, white, cyan, magenta and yellow. Inspired by de Bruijn sequences [11]
and to ease the unique assignment of detected stripes to projected ones we have chosen a series of stripe
colours with a large period. Besides that, we introduced the constraint that two consecutive stripes have
to differ in at least two colour channels. With this latter constraint we achieve an enhanced delimitation
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of successive stripes, and the unique identification is simplified. The smaller periodicity because of the
additional constraint in our case is no problem, as long as the period of the pattern is smaller than the
largest jump in depth. Taking this into account the pattern Ipattern can be determined with a simple
depth-first search.

2.2 Image Preprocessing for Simplified Stripe Detection
After capturing an image Iinput of a face illuminated with the pattern Ipattern the image is reduced to
the manually selected interesting region of the face. All pixels outside are set to black, so that they will
be ignored by subsequent steps. In order to reduce the noise level and to enhance the visibility of the
stripes the input image is preprocessed with two consecutive filters:

• with a directional 2D hourglass shaped low-pass filter [16] a smoothing as well as enhancement
of horizontal stripes is achieved,

• with a 1D band-pass filter the colour of the stripe’s vertical neighbourhood is removed to increase
the visibility.

Figure 4 Demonstration of filter

The performance of the filter is illustrated in Fig. 4. The resulting preprocessed image Ipreproc of
the face will be searched for the projected stripes.

3 Detection of Stripes
After preprocessing, the stripes corresponding to the projected pattern are located in Ipreproc.

3.1 Sub-Pixel Stripe Localisation
To achieve a highly accurate 3D model the stripes are detected with sub-pixel resolution.

Therefore all the ”general-purpose” image preprocessing (Bayer interpolation, gamma correction,
white balancing etc.) in the camera is skipped, which is generally used to generate perceptually ap-
pealing images. Instead, the presented framework uses the plain photo sensor values with full 12-bit
resolution instead of the typical 8 bits. Owing to the Bayer pattern we treat the pixel values differently
depending on which sensor type they were measured on, red, green or blue. As a result, we have to
deal with columns of single-channel pixels with alternating colour sensitivity: RGRGRG. . . and GBG-
BGB. . .

Extracting the prospective stripes is done separately for all three colour channels as well as for
every scan column. A pixel is taken as a stripe candidate if the values of the preceding and succeeding
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pixels are not bigger. This results in three sets of stripe candidates, one for each sensor colour type.
As we are interested in sub-pixel stripe localisations, we determine the centres of the stripe candidates
by fitting parabolas through their intensities: p(x) = ax2 + bx + c, with a, b, c being the parameters
of the parabola p(·) and x the pixel location along the scan column, again for all three colour channels
separately. The centre of the stripes is assumed to be at the maximum point of the parabola. Fitting
the parabolas is performed via squared distance minimisation: minp(X · p − y)2, with the parameter
vector p = (a, b, c)T , the matrix X holding the different powers of the pixels locations along the scan
column, and y containing the actual pixel values.

In the regular case with one pixel value bigger than its two vertical neighbours, the parabola is fitted
through these three points. In cases where two adjoining pixels hold the same value bigger than the two
surrounding ones, these four pixels are used for this. If there are more than two equal valued pixels, the
inner most pixels are ignored. In this case the parabola is fitted with respect to the two starting and the
two closing pixels of that interval. The latter case occurs when the sensor is saturated.

Most projected stripes produce responses in more than one kind of colour sensor, for example
magenta light should excite the sensors for red and blue. And even if a sensor gets illuminated with
light it is not sensitive to, a certain response is measurable. This is known as colour-cross talk. That is
why one projected stripe often results in multiple detections which are found in the sets corresponding
to the different sensor types.

In order to get one common set containing all stripes found in the preprocessed input image Ipreproc

the three sets are fused to a single one. Thereby, detected stripes of different sets (emerging from dif-
ferent sensor types) which belong to one projected stripe are combined to one common representation.
The common centre ccommon is calculated as a weighted sum of the two original centres c1 and c2

ccommon =
c1 · p1,valid + c2 · p2,valid

p1,valid + p2,valid
, (1)

weighted with their likelihood of being correctly recovered (discussed in the next subsection). Here
again a scan column is processed one after another, but now under consideration of the two different
colour channels present. Every two parabolas in a single scan column from the two different sensor
types are fused together if their centres are not to far apart, see Fig. 5.

For establishing correspondences, the colours are compared between the projected stripes and the
detected ones. Therefore a colour is assigned to every prospective stripe using sub-pixel Bayer inter-
polation. This means, that stripe candidates get their red, green and blue values by assigning them as
a weighed mean of their neighbouring sensor values. The weights used here are proportional to the
inverse Euclidean distance between the stripes’ centres and the pixel locations.

3.2 Probability of Stripes
In the following global optimisation, detected stripes that deviate from the pattern sequence order too
much and which are not bold enough are cancelled out. For this purpose every detected prospective
stripe is assigned a likelihood of being a correctly recovered projected stripe. Since most correctly
recovered stripes are bright and crisp in their appearance this likelihood is derived from the luminance
as well as the ”sharpness” parameter a of the fitted parabola as mentioned above.

All the parabolas are opened to the lower side, so a < 0. Also, parabolas with a low absolute
value of a close to zero are flatter than the ones with more negative values of a. To normalise the
derived likelihoods pi,valid of a stripe candidate pi to be a valid stripe to a range of [0, 1] the sharpness
parameter ai is divided by the lowest negative value of all a’s among all parabolas of the same sensor
type. Together with the luminance li ∈ [0, 1] of stripe candidate pi we obtain

pi,valid =
ai

2amin
+
li
2

(2)
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Figure 5 Parabolas fitted through maximum intensity in green respective blue channel and its resulting
common location

This means, that indistinct stripes will correspond to flatter fitted parabolas which in turn results in
lower probability weights. Additionally, stripe candidates with low luminance values are treated as
well as less probable.

4 Colour Classification of Detected Stripes
The result of the previous steps is a set of all stripe candidates. Each stripe candidate is specified by
a scan column index, a position along that scan column and a RGB colour value. For every detected
stripe the likelihoods of being projected with the different colours of the pattern are derived. Hence
every stripes pixel has assigned one probability value for each projected colour, seven in our case.

4.1 Classifying the Detected Colours
Experiments have shown that projected colours, reflected by skin and recorded by cameras encounter
various distortions. Additionally, sensor noise as well as colour-cross talk is detected between the
projector spectra and the sensor filters. In Fig. 6 two RGB space representations of pixels corresponding
to prospective stripes are depicted: one captured under controlled lighting conditions and the other one
in a usual office environment. Colour clusters are roughly identifiable corresponding to the projected
colours, without a clear separation between them. The visible clusters are approximately shaped along
straight lines which seem to be slightly displaced versions of the black→red, black→cyan etc. axes.

- 7 / 15 -



This paper is a postprint of a paper submitted to and accepted for publication in
IET Computer Vision and is subject to Institution of Engineering and Technology Copyright.
The copy of record is available at IET Digital Library.

Figure 6 Pixel colours of prospected stripes in RGB space, left: picture captured with ideal conditions,
right: picture captured with strong environment illumination

The plots in Fig. 6 show how crucial the light conditions of the environment are. Without any disturbing
light sources in the environment, the clusters are identifiable quite clearly. But with increasing ambient
light the clusters become more and more fuzzy until there is only one big blob of data points in RGB
space.

4.2 Adaptation to Image Statistics
In order to determine the individual stripe colours, straight 3D lines gc : oc + xrc are fitted through
the clusters in RGB space to form prototypes of these clusters; one line for each pattern colour c ∈
{r, g, b, c, y,m,w}. The classification of data point pi (a stripes pixel’s colour) is then performed by
calculating the distances d(pi, gc) of that pixel pi to all the prototype lines gc, and assigning the colour
of the prototype with the smallest distance.

This fitting of straight 3D lines through clusters is a form of orthogonal distance regression (ODR),
and the classification of the projected colours is a form of model selection. The parameters for this
mixture model (the straight 3D lines gc) are determined out of the measured data. For this purpose the
KMeans algorithm [17] is adapted. The classical KMeans method works broadly in the following way:

1. initialise the parameters of the classifier, the mixture of straight 3D lines

2. repeat until no significant changes in labelling are observable

- label the data with current classifier parameters

- adapt classifier parameters

A more detailed discussion on KMeans and clustering in general (among others) can be found in the
text book [4].

There are efficient general-purpose initialisation methods for the standard KMeans method, for
example [3]. These methods are not applicable for our adapted KMeansLineFit method because the
cluster means are not in the same space as the data, but in parameter space of straight 3D lines. However,
by knowing the originally projected colours, our initial guess of classifier parameters are straight lines,
originating from black (0, 0, 0) and pointing to the fully saturated colours red (1, 0, 0), magenta (1, 0,
1) etc.

The labelling step means to assign every stripe pixel the colour label it was most probably projected
with according to the current classifier. This is the colour of the prototype line gc with the smallest
distance to the stripes colour pi.
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The adaptation step is slightly more complex: every prototype line gc is moved into the centre of
the data points which are currently labelled with the corresponding colour. At a first glance this can
be done for every cluster independently. However, experiments have shown that the resulting lines do
not lie in the cluster centres, because all the clusters are fused together at dark colours. The prototype
lines do not pass from dark colours near black to lighter colours near the fully saturated ones and they
do not cross the clusters in their centre. To overcome this, an artificial constraint has been introduced,
that all the prototype lines must contain one common point near black, which is also adapted by the
KMeansLineFit algorithm. This seems to be plausible as it is the pixels’ value achieved when dimming
any colour more and more.

The problem of finding all prototype lines passing through one common point poses a system of
coupled equations which are not solvable in closed form. Therefore it is solved approximately by first
calculating the direction vector rc for every colour c, and then determining the common offset point
o which fits best all the new prototypes gc to the corresponding data. The former calculation of rc

can be performed by using eigenvalue decomposition of the datas’ covariance matrix for each cluster
separately. The latter problem can be solved by minimising the sum of squared distances for each given
data point pi and its corresponding prototype line gc

minD =
C∑

c=1

Nc∑
i=1

d2(pci, gc) =
C∑

c=1

Nc∑
i=1

‖rc × (pci − o)‖2 (3)

with C = 7 the number of different colours in the projected pattern and Nc being the number of
currently labelled pixels belonging to colour c. The offset o minimising this squared distance D can be
calculated by deriving D with respect to o’s components and setting them to zero. The resulting three
equations, resolved for o’s components can be combined into an equation system of the form A ·o = b
which can be solved with stable matrix inversion.

4.3 Robust Clustering Sensitive to Shape and Scale
Since each pattern colour is projected in nearly equal proportions the desired clusters should all contain
an broadly equal number of stripes pixels. For enhanced robustness this is enforced by scaling the mea-
sured distances of stripes pixels to the prototype lines accordingly before the actual label assignment
happens. Therefore an in-advance-labelling takes place as mentioned above. In a second labelling it-
eration, each measured distance of a stripes pixel p is scaled by the proportion of desired size, which
is the mean m of all clusters, and the number of stripes assigned to the current prototype line gc in the
in-advance-labelling:

dscaled(p, gc) =
m

size(gc)
d(p, gc) (4)

This distance scaling, which reduces the variance of size of all the clusters, follows the label assign-
ments according to the scaled distances.

Further robustness is gained by using a weighted covariance matrix for the eigenvalue decomposi-
tion to fit the prototype lines. The sensitivity to outliers is reduced by weighting each data point with
the inverse distance for the covariance matrix calculation.

The accomplished accuracy is refined with adaptation to the shape of the clusters by means of
considering correlations among the red, green and blue values of the stripes pixels. This is achieved by
using the Mahalanobis distance measure instead of the Euclidean for the distance calculation of stripes
pixels to prototype lines. This implies that the vectors connecting the prototype lines with the stripes
pixels are considered. The means and covariance matrices needed to calculate the Mahalanobis distance
are calculated out of the connecting vectors of the previous iteration.

After having iterated over the labelling-adaptation loop until no significant changes in labelling are
noticed, the classifier is adapted to the statistical characteristics of the input image. For every stripe
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Figure 7 Prototype lines found by adapted KMeansLineFit in RGB space

the distance to the different prototype lines is defined. Fig. 7 shows the results of an example. In all
experiments only negligible changes occurred after the tenth iteration.

4.4 Probability of Colour Assignments
The distance measurements are transformed into likelihoods by utilising a softmax-like function. The
distance measurements are inverted and normalised to the range of [0..1] with the sum of the reciprocal
of all distances:

pi,colour =

[
d(pi, gcolour) + ε

]−1

∑C
c=1

[
d(pi, gc) + ε

]−1 (5)

The positive small value of ε has been introduced to overcome the division-by-zero problem for RGB
pixels lying on (or close to) the prototype line.

With the presented method we have a soft colour classifier which assigns probabilities in contrast
to absolute values. Additionally by utilising the proposed non-parametric KMeansLineFit method,
the soft colour classifier is adapted to the characteristics of the given input image Iinput in terms of
colour cross talk, albedo etc. without explicitly modelling these effects. As a result the adaptation to
the colour statistics implicitly implies a colour calibration (e.g. colour cross talk). Standard colour
calibration would account for the displacement of the prototype lines which are caused by just the
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systems inherent characteristics. An explicit colour calibration is unnecessary, since the difference
between the detected colours from the projected ones, which are caused significantly by the scenes
albedo, are directly handled by means of adaptation to the colour statistics.

5 Stripe Matching
During the previous steps a set has been computed containing all the detected stripe candidates. Each
one is specified by a location (scan column index and position along that one), a likelihood of being
correctly recovered and the likelihoods of being projected with the pattern colours. The current task
is to establish correspondences between projected and detected stripes and to skip all invalid stripe
candidates which have emerged due to non-optimal light, skin and sensor conditions. This constitutes
the probabilistic global optimisation.

This matching is a typical combinatorial optimisation problem (COP) finding a combination of
correspondences that fits best. We follow the common way to solve such tasks by modelling it as a
Markov random field and setting up an objective function that has to be maximised in order to find the
best combination. The objective function takes all the available information for all stripe candidates
into account, which is:

• the likelihood of being a valid stripe (pi,valid),

• the likelihood of being projected with the different pattern colours (pi,colour) and

• the deviation of the detected sequence from the projected pattern (pi,sequence).

This problem is solved for each vertical scan column separately. The objective function we have devel-
oped is the product over all the available probabilistic weights. We distinguish between the two cases
of stripe candidates being matched (p ∈M ) and skipped (p /∈M )

L =
∏
∀i∈M pi,colour · pi,valid · pi,sequence

·
∏
∀i/∈M 1− pi,valid (6)

The global likelihood L contains the probability of being invalid for every rejected stripe candidate. For
every successfully matched stripe it contains the product of the likelihood of being a valid stripe, the
likelihood that this stripe was projected with the corresponding pattern colour and the likelihood that
this colour occurs in this sequence in the projected pattern. The latter term is often called a jump weight
because it assigns good scores for stripes being in order with the pattern and bad scores for incoherent
sequences.

This COP is solved efficiently with the dynamic programming method [25] to find the global op-
timum. The typical dynamic programming approach is to set up a table containing scores for the
assignments and traversing through it. Afterwards, the best score achieved is traced back and all the
encountered correspondences are found and the prospective stripes marked as invalid are skipped.

A more comprehensive discussion on dynamic programming and Markov random fields in general
(among others) can be found again in the text book [4]. Since we are dealing with faces that just contain
occlusions of the type that some projected stripes are missing in the captured image, the ordinary
dynamic programming method is sufficient. In the case, that in the captured image also the order of the
projected stripes can change, the multi-pass dynamic programming method [29] can be used.

To reduce the processing time the concept of Epipolar segments have been adopted [28]. This
means that certain combinations of input and output stripes are not considered for matching, because
the resulting vertices would lie outside the region where the face is expected to be. In the same way the
dynamic programming is restricted to check only for matches that result in surfaces without disconti-
nuities by limiting the considered pattern stripe candidates for each detected camera stripe.
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6 Experimental Results
The final depth of every correspondence is evaluated by triangulating the 3D point cloud. Therefore the
projection matrices of the camera and projector are needed, which we obtain by calibration [8]. The
depth calculation is performed by intersecting the two lines of sight through the focal points and the
image points of the camera respective projector [12].

In our experiments we use a DLP projector ”Projection Design F1+” with a SXGA+ resolution
(1400 x 1050) and a camera ”Canon EOS 20D” with a resolution of 8.2 mega pixels (3522 x 2348).
The pattern contains stripes with a width of two pixels and three pixels intersection.

The C++ running time for generating a 3D model of a face lies in the range of a minute on a 3 GHz
Pentium-4 computer without exploiting any potential for parallel execution on multi-core processors.
The running time depends on the number of detected vertices. In our experiments the KMeansLineFit
algorithm converged in less than ten iterations until being fully adapted to the light conditions respective
reflectance characteristics found in the captured image.

Many experiments have been performed with the 3D face scanner. Fig. 1 shows the results of a
typical scenario. Two pictures have been taken, one with regular white light and one with the structured
light pattern shown in Fig. 3. After selecting the region of interest, the system has set up a colour
classifier suitable for the given scene as shown in Fig. 7. After classifying the detected stripes and
establishing correspondences the 3D model of the face is calculated and optionally presented as wire
frame model, surface or textured 3D face. The 3D scan of the face presented in Fig. 8 illustrates the
richness in detail. It contains 126 544 triangles with 63 644 vertices.

Figure 8 Result of 3D scan

In Fig. 9, a region around the mouth is depicted to demonstrate the main stripe matching including
stripe detection and colour classification. Here, no post processing has been performed which is nor-
mally done to remove or align outliers. A simple colour classifier is used as reference method [10]. It is
a pixel-based method which considers the ratios between the colour channels: r

g , r
b , g

r , g
b , b

r , b
g . Despite

of low-quality and over- and under-exposured pixels in the input image the proposed system produces
good results.

In Fig. 10, we show a quantitative comparison of our results with the KMeansLineFit colour classi-
fier and the colour ratio-based method [10] mentioned above. It is clearly visible that the KMeansLin-
eFit colour classifier drastically improves the number of correctly labelled stripe pixels.
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Figure 9 Results of stripe detection: most left: detected stripes input, middle left: ratio based colour
classification, middle right: KMeansLineFit colour classification, most right: ground truth

7 Conclusion and Future Work
We have presented a system for high-resolution 3D face scanning based on single captured images. The
system generates high-accuracy 3D models by exploiting specialised low-level algorithms performing
on raw photo sensor data. Additionally, the 3D face scanner has been made robust in terms of lighting
conditions, skin, colour-cross talk. This is achieved by adapting the colour classification to the charac-
teristics of the captured image utilising the proposed non-parametric KMeansLineFit algorithm without
the need to explicitly model any of these perturbing effects. Experiments with scanned faces under non-
ideal light conditions are presented to demonstrate the systems performance. The simple setup and its
easy usage make the presented system ideal suited for various 3D model creation scenarios, for example
virtual environments like 3D games or human machine interfaces.

An interesting enhancement could be to explicitly adapt the colour classifier to local regions in-
stead of the entire image. Additionally, enhanced accuracy may be achieved by calculating the corre-
spondences with consideration of the whole input image instead of executing it for each scan column
separately.

Figure 10 Quantitative comparison of KMeansLineFit colour classifier
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