
GAMES@LARGE GRAPHICS STREAMING ARCHITECTURE

 Itay Nave, Haggai David, Alex Shani Arto Laikari Peter Eisert, Philipp Fechteler
 Exent Technologies Ltd. VTT Fraunhofer HHI

ABSTRACT

In coming years we will see low cost networked
consumer electronics (CE) devices dominating the living
room. Various applications will be offered, including IPTV,
VoIP, VoD, PVR and others. With regards to gaming, the
need to compete with PlayStation and Xbox will require a
radical change in system architecture. While traditional CE
equipment suffers from having to meet low BOM (bill of
materials) targets, dictated by highly competitive market
and cable companies targeted costs, consoles enjoy superior
hardware and software capabilities, being able to offset
hardware and BOM costs with software royalties. Exent
Technologies is leading the European FP6 Integrated
Project Games@Large , whose mission is to research,
develop and implement a new platform aimed at providing
users with a richer variety of entertainment experience in
familiar environments, such as their house, hotel room, and
Internet Café. This will support low-cost, ubiquitous game-
play throughout such environments, while taking advantage
of existing hardware and providing multiple members of the
family and community the ability to play simultaneously
and to share experiences.

This paper focuses on one of the innovative aspects of
the Games@Large project idea – the interactive streaming
of graphical output to client devices. This is achieved by
capturing the graphical commands at the DirectX API on
the server and rendering them locally, resulting in high
visual quality and enabling multiple game execution. In
order to support also small handheld devices which lack
hardware graphics support, an enhanced video method is
additionally provided.

INTRODUCTION

Computer games constitute nowadays one of the most
dynamic and fastest changing technological areas, both in
terms of market evolution and growth and technology
development [1]. Market interest is now revolving around
capitalizing on the rapid increase of always-on broadband
connectivity. Broadband connection drives to a new, digital,
“Future Home” as part of a communications revolution,
which will affect every aspect of consumers’ lives and
change the way consumers enjoy entertainment. Taking into
account that movies and music provided by outside sources
were at home long before the Internet and Broadband, the

challenge is to invent new content consumption patterns of
existing and new types of content and services.

Games offer a leisure time activity for every member of
the household – from avid gamers to kids, as well as
allowing whole families to play together.
Running an interactive content rich multimedia application
(such as video games) requires high performance hardware
available on a PC or on a dedicated gaming device. Other
devices such as Set Top Boxes (STB) or Handheld Devices
(HD) lack the necessary hardware and adding such
capabilities to these devices will cause their prices to
become prohibitive.
The Games@Large project intends to develop a system that
is not available yet in the market that enables rendering of
PC games on the next generation STB devices without
causing a significant increase in their price.

In general, the system will execute games on a server
PC, located at a central site or at home, capture the graphic
commands, stream them to the STB and render the
commands on the STB allowing the full game experience.
For end devices that do not offer hardware accelerated
graphics rendering, the game output is locally rendered at
the server and streamed as video to the client [7]. Since
computer games are highly interactive, extremely low delay
has to be achieved for both techniques. This interactivity
also requires the controller’s commands to be captured on
the STB and streamed to the server in order to inject them
into the game process.

The Games@Large platform implements all the
technologies required for that process focusing on:

- Graphic commands capturing on the server,
streaming and rendering on the STB.

- Low delay video streaming
- Audio streaming
- Running multiple games on the server and

managing computer and games resources.
- Controller commands capturing on the end device,

streaming to the server and injection into the game
process

- Performance optimizations in order to achieve a
great gaming experience.

PC games are typically executed on Windows platforms
(XP, Vista) with DirectX API and require a high
performance CPU and graphics hardware.

The Games@Large supported end device requirements are:

- Graphics hardware: According to research
performed to date, and as described in the
Games@Large architecture, we believe that a
relatively low bill-of-material graphics hardware
component can be added to such consumer
electronics devices.

- Rendering capabilities: OpenGL or DirectX.
- Limited CPU power

GAMES@LARGE STREAMING ARCHITECTURE

The Games@Large streaming architecture includes the

following main components.
1. Storage Server: The storage server holds all the

game files as well as user specific files.
2. Processing Server (LPS): The Processing Server is

responsible to launch the game process, manage its
performance, allocate computing resources, file
system and I/O activities and capture the game
graphic commands (or, alternatively, the rendered
outpur) as well as managing execution of multiple
games. The processing server is further responsible
for receiving the game controller commands from
the end device and injecting them into the game
process. The processing server is also responsible to
stream game audio to the client.

3. Graphic Streaming Protocol Stack: The Graphics
Streaming Protocol is intended to become a standard
protocol used in order to stream 3D commands to an
end device allowing lower performance devices such
as STB to present high performance 3D applications
such as games without the need to actually execute
the games on this device. The protocol is focused on
the performance optimizations required.

4. Client: The client module is responsible for receiving
the 3D commands and rendering them on the end
device using local rendering capabilities. For the
video streaming approach, H.264 decoding must be
supported instead. The client is also responsible for
capturing the controller commands and transmitting
them to the processing server.

GRAPHICS STREAMING

The Graphics Streaming is the core of the

Games@Large innovation. The protocol allows the
decoupling of the rendering environment of 3D applications
from its original execution environment on a Windows PC
to the next generation end devices such as STB and mobile
devices.
The graphics streaming provides:

- Full graphics: Unlike video streaming, graphics
streaming maintains the original hi-def image quality.

- Low bit rate: Proof of concept implementations of the
graphics streaming protocol demonstrate low bit rate
and good user experience. The product will implement
various types of compression and prediction
algorithms that will allow full gaming experience with
low bit rates and reduced latency.

- Reduced latency: Since DirectX API is a synchronous
API, the protocol stack on the server side translate it
into an asynchronous API allowing reduced latency
and streaming of commands.

- Real time translation from the captured DirectX
commands on the server to OpenGL commands that
can be rendered on a variety of end devices (such as
Linux based systems).

- Protocol Definition: One of the outcomes of the
Games@Large project is a definition of a standard
protocol that can be implemented on a variety of end
devices in order to support the graphics streaming
protocol.

Streaming and remote rendering are achieved by

multiple encoding and transmission layers, first of which is
the interception and the very last one is the rendering on the
client machine. All layers in between these two are
independent of any specific graphics API. The latter implies
that the 3D data streamed post-interception till the client
rendering process is not specific to either DirectX or
OpenGL, but rather utilizes higher-level concepts common
to all 3D graphics.

Since efficient direct translation from DirectX API
commands to OpenGL commands is difficult due to the
significant differences between these APIs, a set of common
generic concepts may be of assistance. In general, a 3D
scene consists of multiple objects that are rendered
separately. Before rendering an object, several parameters
(states) must be set, and these include lighting, textures,
materials, the set of 3D vertices that make a scene (built out
of multiple objects), and further various standard 3D
transforms (e.g., translate, scale, rotate).

The game running on the LPS is provided with a
pseudo-rendering environment that intercepts the DirectX

calls. Instead of executing them on the server, the
commands are passed to the next layer – the graphics states
book-keeper. That layer keeps track of the object currently
being rendered and of its states. When the game/application
has provided all necessary data for drawing an object/scene,
the states tracking layer passes it further to the brute-force
(e.g., ZIP or LZO) compression and from there to the
network.

On the client side, after the data has been received and
decompressed, it is passed to the rendering component.
This component is the last in the 3D streaming pipeline. It
receives the states data of a 3D object and renders that
object using the desired graphics API of the client. There is
a certain overhead in OpenGL rendering because some data
(especially color and vertex data) must be reorganized or
rearranged in the processing stack before it can be given to
OpenGL for rendering. This may result in increased demand
of CPU processing and memory transfer between system
memory and the GPU.

Modern computers allow huge (relatively to network)
data transfer rates between the game running locally and the
video card. In our case, instead of the video card, all that
data is sent over a network to the client machine with
limited bandwidth and latency; hence, some optimizations
are necessary in order to decrease the network load.

The most obvious optimization is based on the fact that
video games often set the same state more than once for the
same object and only the last change before the rasterization
is the one that affects the image. So, only the last change in
such case is sent over the network.

Further, measurements on games have shown that large
part of the network traffic is caused by the data needed to
update the object’s list of vertices when it changes shape
(human or animal motion, explosions etc.). In order to
reduce the amounts of this data, various methods have been
investigated. The most promising is reducing the resolution
of vertex or texture coordinates, prediction and caching of
the vertex data on the client and sending only the vertices
that have changed since the last rendering of the object.

The tests performed include multiple runs of games
from various genres: First Person Shooter, Business
Strategy, Car Racing and some Casual games. The selection
of the games made it possible to monitor how different
types of games influence bandwidth used and frame rate
(FPS) on the client side.

Further, different clients have been investigated: a PC
(Pentium-4 3.6GHz, 2GB RAM, NVIDIA GeForce 6600GT
video card) running Microsoft Windows XP, same PC
running Debian Linux and a Handheld PC (Samsung
Q1Ultra portable PC, 800MHz CPU, 1GB RAM, Intel
945gm video chipset with 128MB shared memory) running
Linux Ubuntu. The server and client were connected using a
100Mbps LAN.

We measured FPS as a measurable value for gaming
experience on the client side. The network usage and

utilization was measured also to benchmark network
parameters required for 3D streaming.

Typical results of test runs of different games on
different client machines are shown below. The tables show
average session values for the frame-rate (FPS) and for data
sent through the network. The values in parenthesis are the
minimum and maximum peaks.

Sprill

(casual game)
FPS Data Sent

(Kbytes/sec)
Linux PC 90-120 (60) 2200-2600 (3000)
WinXP PC 170-200 (100) 4300-5500 6000)
Handheld PC 12-18(8) 240-450(620)

Zoo Tycoon

(business strategy)
FPS Data Sent

(Kbytes/sec)
Linux PC 35-70(20) 500-1500 (2500)
WinXP PC 60-80(15) 1500-3500(3900)
Handheld PC 7-11(7) 240-450(620)

Total Overdose

(shooter)
FPS Data Sent

(Kbytes/sec)
Linux PC 7-20(4) 1300-2500(3700)
WinXP PC 9-27(6) 1000-3000(3700)
Handheld PC *

* The tablet PC lacks the hardware acceleration
features needed to run this game.

The measurements apply to in-game stages, as during

loading, lower FPS and higher net loads are observed,
lasting a few seconds till the game finish loading. It can also
be observed that in general higher FPS increase net load and
that the OpenGL conversion lowers FPS by approximately
25-35%.

During game-play, reduction in FPS is observed when
there are more viewable objects in the scene or when the
scene is changed dramatically (such as explosions). FPS
peaks are observed when the scene is relatively simple or
when the menus are being displayed.

VIDEO STREAMING

Although the graphic streaming approach is the

preferable solution since it offers lower latency and enables
execution of multiple games on one server, it cannot be used
for some small handheld devices like PDAs or smart
phones. These end-devices typically lack the capability of
hardware accelerated rendering and cannot create the
images locally for displaying them. Therefore, we also

provide a fallback solution using video streaming
techniques [3,5,6]. Here, the server renders the computer
graphics scene, the frame buffer is captured, eventually
down-sampled to match the target resolution, and the
current image is encoded using a video codec. For video
encoding we use H.264 [2], which poses the current state of
the art in this domain. Decoding video is usually
computationally less demanding and can be performed even
on small devices. Furthermore, hardware acceleration for
H.264 decoding can be found on an increasing amount of
end devices. Also, the bit-rate for streaming the graphics
output is rather predictable and not fully influenced by the
complexity of the graphics scene.

Streaming games’ output, however, is somewhat
different than streaming real video. First, the synthetic
content is usually free of noise, shows also high spatial
frequencies and has different statistics compared to real
video. The following plot shows the RD performance
measured in PSNR [dB] over bit-rate [Mbit/s] for different
games (first person shooter: Just Cause and car racing: Race
Driver 3) in 4CIF resolution and 30 FPS. Different scenes
with different amount of motion and scene changes
(explosions vs. menus) result in large differences in bit-rate.

The requirements on low delay are also much higher in

contrast to video broadcast in order to enable interactive
gaming. Typically, users require round trip delays of below
100ms for first person shooter while other games (e.g.
strategy, casual, etc.) have less restrictive constraints. For
enhaced gaming experience, we investigate new methods to
reduce the end-to-end delay by carefully selecting data
dependencies and intelligent error concealment. In order to
allow encoding in parallel to the execution of a computer
game, computational complexity is another important issue,
especially in case of several games running on one game
server. However, additional information about the scene is
available from the render context, like camera data or
motion and depth information. We exploit that information
to reduce the complexity of the H.264 encoding in order to
combine high coding efficiency with lower encoding
complexity.

In order to deliver the sound of the game, audio samples
are captured at the server and encoded with High Efficiency
Advanced Audio Coding Version 2 (HE-AAC v2) [4].
Both, video and audio are streamed from the server to the

client by utilizing the Real-Time Transport Protocol (RTP,
RFC 3550, 3640, 3984). For synchronized playback of
audio and video, the Real Time Control Protocol (RTCP,
RFC 3550) is used.

CONCLUSIONS

In this paper, we have presented a new architecture for
remote game-play. One core component is the streaming of
3D graphics commands over local area networks. Real-time
encoding and intelligent caching allows for interactive
frame rates at high visual quality. A generalized protocol
supports end devices with both OpenGL and DirectX API’s.
Clients which lack hardware accelerated rendering can also
be used with the video streaming approach. The H.264-
video and HE-AAC-v2-audio streams are fully standard
compliant and enable high efficiency. Enhancements at the
encoder address low delay and low encoding complexity.

REFERENCES

[1] Yoav Tzruya, Alex Shani, Francesco Bellotti, Audrius
Jurgelionis. Games@Large - a new platform for ubiquitous
gaming and multimedia, Proc. BBEurope, Geneva, Switzerland.

[2] MPEG-4 AVC (2003). Advanced video coding for generic
audiovisual services, ITU-T Rec. H.264 and ISO/IEC 14496-10
AVC.

[3] S. Stegmaier, M. Magallon, T. Ertl, A generic solution for
hardware-accelerated remote visualization. Proc. of the Symp.
on Data Visualisation, 2002.

[4] MPEG-4 HE-AAC, ISO/IEC 14496-3:2005/Amd.2

[5] S. Stegmaier, M. Magallon, T. Ertl, Widening the Remote
Visualization Bottleneck. Proc. of the 3rd Symp. on Image and
Signal Processing and Analysis (ISPA), 2003.

[6] L. Cheng, A. Bhushan, R. Pajarola and M. Zarki, Real-Time
3D Graphics Streaming using MPEG-4, Proc. IEEE/ACM
Workshop on Broadband Wireless Services and Applications,.
ICS-UCI, 2004.

[7] P. Eisert and P. Fechteler, Remote Rendering of Computer
Games, Proc. Intern. Conf. on Signal Processing and Multimedia
Applications (SIGMAP), Barcelona, Spain, July 2007

[8] I. Buck, G. Humphreys, P. Hanrahan, Tracking graphics state
for networked rendering. In Proc. SIGGRAPH /
EUROGRAPHICS Workshop On Graphics Hardware, 2000.

[9] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.D.
Kirchner, J. T. Klosowski, Chromium: a stream-processing
framework for interactive rendering on clusters. In Proc.
Intern. Conf. on Computer Graphics and Interactive Techniques,
2002.

[10] U.S. Patent Application No. 11/204,363, entitled "System and
Method for Providing a Remote User Interface for an Application
Executing on a Computing Device" and filed August 16, 2005.

