
REMOTE RENDERING OF COMPUTER GAMES

Peter Eisert, Philipp Fechteler
Fraunhofer Institute for Telecommunications, Einsteinufer 37, D-10587 Berlin, Germany

eisert@hhi.fraunhofer.de, philipp.fechteler@hhi.fraunhofer.de

Keywords: remote gaming, graphics streaming, 3D coding, networking

Abstract: In this paper, we present two techniques for streaming the output of computer games to an end device
for remote gaming in a local area network. We exploit the streaming methods in the European project
Games@Large, which aims at creating a networked game platform for home and hotel environments. A
local PC based server executes a computer game and streams the graphical and audio output to local devices
in the rooms, such that the users can play everywhere in the network. Dependent on the target resolution of
the end device, different types of streaming are addressed. For small displays, the graphical output is captured
and encoded as a video stream. For high resolution devices, the graphics commands of the game are captured,
encoded, and streamed to the client. Since games require significant feedback from the user, special care has
to be taken to achieve these constraints for very low delays.

1 INTRODUCTION

Computer games are a dynamic and rapidly grow-
ing market. With the enormous technical develop-
ment of 3D computer graphics performance of nowa-
days home computers and gaming devices, computer
games provide a broad range of different scenarios
from highly realistic action games, strategic and ed-
ucational simulations to multiplayer games or virtual
environments like Second Life. Games are no longer
a particular domain of kids but are played by peo-
ple of all ages. Games offer also leisure time activity
at home, for guests in hotels, and visitors in Internet
Cafes.

Modern games, however, pose high demands on
graphics performance and CPU power which is usu-
ally only available for high end computers and game
consoles. Other devices such as set top boxes or hand-
held devices usually lack the power of executing a
game with high quality graphical output. For ubiqui-
tous gaming in a home environment, a hotel, or a cafe,
however, it would be beneficial to run games also on
devices of that kind. This would avoid placing a noisy
workstation in the living room, or costly computers in
each room of a hotel. This problem could be solved

by executing the game on a central server and stream-
ing the graphics output to a local end device like a low
cost set top box. Besides the ability to play games ev-
erywhere in the entire network such a scenario could
also benefit from load balancing when running multi-
ple games simultaneously.

In this paper, we present first investigations for
streaming games’ output over a local area network.
We consider two different approaches: video stream-
ing of an already rendered frame of the game and the
streaming of graphics commands and local rendering
on the end device. Both approaches are part of the
European project Games@Large (Tzruya et al., 2006)
that develops a system for remote gaming in home and
hotel environments. The paper is organized as fol-
lows. First, we present the architecture of the gaming
system. Then, we investigate the usage of video cod-
ing techniques for streaming graphical content and il-
lustrate the differences for game scenarios. In Section
4 we finally depict our system for the streaming of
graphics commands, which can be exploited for trans-
mission of high resolution content.



2 ARCHITECTURE OF THE
SYSTEM

Figure 1: System architecture.

The Games@Large system targets at providing a
platform for the remote gaming in home, hotel, and
other local environments. The architecture of the sys-
tem is depicted in Fig. 1. The core of the system is a
PC that executes the game. No special game adapta-
tions are necessary, but any commercial game can be
played. The user just selects the desired game from
a web site. In order to avoid a local installation of
the game, it runs in a virtual machine. An image of
the game environment is downloaded from a provider.
Since important parts of the data are transmitted first,
the game can be started before the download is com-
pleted.

Games usually require severe constraints on com-
putational power and graphics capabilities. Since
such high-end PCs are not available in each room
of a household or a hotel, video, audio, and graph-
ics streaming over local networks is used to enable
ubiquitous gaming. The output of the game, executed
on the server, is grabbed and sent to different end de-
vices. These can be smaller PCs or laptops, but also
much cheaper set top boxes or handheld devices. De-
pendent on the capabilities of the end device, differ-
ent streaming techniques are used. For devices with
small displays like handhelds or PDAs, which usually
do not have hardware graphics support, video stream-
ing is applied, whereas devices having a graphics card
are supplied directly with the graphics commands and
render the graphics of the game locally. The two ap-
proaches of streaming game content to the end de-
vices is described in more detail in the following two
sections.

3 VIDEO STREAMING OF
SYNTHETIC CONTENT

One solution to stream the visual output of the
game to the end device is the use of video streaming
techniques as shown in Fig. 2. Here, the server ren-
ders the computer graphics scene, the framebuffer is
captured, eventually downsampled to match the tar-
get resolution, and the current image is encoded us-
ing a standard video codec (Stegmaier et al., 2002).
This solution has the advantage, that also end de-
vices with no hardware graphics capabilities can be
supported. Decoding video is usually computation-
ally not very demanding and can be performed even
on small devices like PDAs or mobile phones. Also,
the bit-rate for streaming the graphics output is rather
predictable and not fully influenced by the complex-
ity of the graphics scene. On the other hand, encod-
ing a video leads to high computational load at the
server which has to be shared with the execution of
the game. Especially if multiple games run in parallel
on the server, video encoding might be less applica-
ble and graphics streaming could be the better choice.
Therefore, we intent to exploit video streaming tech-
nologies only to support devices with small displays,
where video encoding is less demanding. Other de-
vices like PCs or set top boxes are connected using
graphics streaming as described in Section 4.

3.1 Video Coding Performance

Figure 3: Games used for analyzing the different codecs for
streaming synthetic games content.

For the analysis of video coding techniques for
the use of streaming game output to end devices,
we have performed some experiments using MPEG-
4 (MPEG-4, 1999) and H.264 (MPEG-4 AVC, 2003)
codecs. The output of different games as shown in
Fig. 3 was grabbed and encoded. Fig. 4 depicts the
rate-distortion plot for different games using H.264
at 4CIF resolution and 30 fps. It can be seen that
bit-rates vary between the scenes dependent on the
amount of motion and explosions of the game.

The computational complexity, however, for en-
coding 4CIF with H.264 is rather demanding. For



Figure 2: Video streaming from the gaming server.

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12  14

   rd3 menu 
   just cause drive 

   just cause menu 
   just cause shoot 
   just cause swim 

   rd3 accident 
   rd3 drive 

Figure 4: Rate-distortion plot for encoding different game
output with H.264 in 4CIF resolution, 30 fps. The curves
show a large variability of bit-rates between different
scenes.

our implementation, frame rates of only 9 fps could
be achieved on a 2 GHz Pentium 4. The complexity
and performance of different codecs is illustrated in
Fig. 5. The upper curves with the best coding perfor-
mance refer all to different settings of H.264, the two
lower ones to MPEG-4. However, the lower quality
results also in a lower complexity, and frame rates of
80 fps and 110 fps, respectively, can be achieved for
our MPEG-4 implementations.

Streaming games’ output, however, is somewhat
different than streaming real video. First, the syn-
thetic content is usually free of noise and has different
statistics compared to real video. Also the require-
ment on extremely low delay are much higher in order
to enable interactive gaming. On the other hand, ad-
ditional information about the scene is available from
the render context, like camera data or motion and
depth information. We exploit that information to re-
duce the complexity of the H.264 encoding in order to
combine high coding efficiency with lower encoding
complexity.

 30

 32

 34

 36

 38

 40

 42

 44

 0  2  4  6  8  10

h264
mpeg4
mpeg4

h264
h264
h264

Figure 5: Rate-distortion plot for encoding a game sequence
at 4CIF resolution, 30fps with different profiles of MPEG-4
and H.264.

4 GRAPHICS STREAMING

The second approach exploited for streaming the
game’s output is to directly transmit the graphics
commands to the end device and render the image
there (Buck et al., 2000; Humphreys et al., 2002; Ig-
nasiak et al., 2005). For that purpose, all calls of the
OpenGL or DirectX library are intercepted, encoded
and streamed. In this framework, encoding is much
less demanding and independent from the image res-
olution. Therefore, high resolution output can be cre-
ated and parallel game execution on the server is en-
abled. Also, the graphics card of the server has not
to be shared among the games, since rendering is per-
formed at the remote client. On the other hand, bit-
rates are less predictable and high peaks of data-rate
are expected, especially for scene changes, where a
lot of textures and geometries have to be loaded to the
graphics card. Also, hardware support for rendering
is required at the end device and an adaptation of the
game’s output to the capabilities of the end device is
necessary, which means that not all games can be sup-
ported in this mode. In the next section, some statis-
tical analysis on issues related to graphics streaming
is presented as well as some description of the current
graphics streaming implementation.



Figure 6: Graphics streaming from the gaming server.

5 STREAMING OF OPENGL
GAMES

In this paper, we concentrate on OpenGL games in
a Linux environment. Examples of supported games
are shown in Fig. 7. Besides direct usage of OpenGL
commands, we also support the SDL (Simple Direct-
Media Layer) library, which is often used for game
programming. All calls to the OpenGL and SDL li-
brary are intercepted as well as the glXSwapBuffers
and SDL GL SwapBuffers command in order to de-
termine if the frame is ready for display. In order to
support the dynamic loading of graphics commands
and OpenGL extensions, also the functions glXGet-
ProcAddressARB and SDL GL GetProccAddress are
replaced by new versions.

All the graphics commands are streamed to the
client and rendered there. Fig. 8 shows the bit-rate
(measured in bits per frame) for the raw commands
for different game scenarios. It can be seen that there
is a high variability of bit-rates. Especially at scene
changes, new textures and display lists have to be
streamed, leading to extreme peaks of bit-rate. In
order to equalize them, intelligent caching and pre-
fetching of textures are required by analyzing the
game structure in advance and using side information
of the games’ provider. Also encoding of textures, ge-
ometries (Müller et al., 2006) and graphics commands
is added.

5.1 Commands with Feedback

Another issue of streaming graphics, which is rather
problematic, are commands that require a feedback
from the graphics card. These can be requests for ca-
pabilities of the graphics card, but also current state
information like the actual projection or modelview
matrix. Fig. 9 depicts the temporal change of the
number of graphics commands that require some re-
turn values from the graphics card. The curves show,
that for some frames more that 1000 commands ask
for feedback (especially at scene changes), but also
during normal game play, several commands request-
ing feedback are issued. Average and maximum val-

ues of bit-rate and commands are also illustrate in Ta-
ble 1. Since we do not know, what the game does
with the return values, we have to wait in our stream-
ing environment until the answer has been returned.
This could introduce enormous round trip delays in
the client-server structure and makes interactive gam-
ing impossible.

game gltron penguin scorched

avg. bit-rate 51 kbit 261 kbit 227 kbit
max bit-rate 2.1 Mbit 26.6 Mbit 3.6 Mbit
avg. no cmds 3300 14700 13000
max no cmds 37000 41000 106000
avg. no return 4.1 1.5 23.2
max no return 47 1410 1380

Table 1: Command statistics and bit-rate for the three games
gltron, penguin racer, and scorched3d. All numbers are
measured per frame.

5.2 Local Simulation of OpenGL State

In order to avoid waiting for the client returning re-
sults from the graphics card, we simulate the current
state of the graphics card at the server and can there-
fore reply directly without sending the command to
the client. We distinguish between different types of
commands:

• Static values

• Return values that can be predicted

• Values simulated locally at server.

All static properties, which usually refer to the capa-
bilities of the graphics card, are initially tested at the
client and sent to the gaming server. This includes
information about maximum texture size, number of
display lists, etc. Also, the support of OpenGL ex-
tensions can be initially tested once. After the static
information has been received at the server, all re-
quests for this data can then be answered locally with-
out sending the command to the client.

Other commands like glGetError can be predicted
and dummy return values can be provided. Assuming,



Figure 7: Three different OpenGL games used for the statistical analysis and experiments.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

frame

bi
ts

 / 
fr

am
e

0 200 400 600 800 1000 1200
10

5

10
6

10
7

10
8

10
9

frame

bi
ts

 / 
fr

am
e

0 50 100 150 200 250
10

2

10
3

10
4

10
5

10
6

10
7

10
8

frame

bi
ts

 / 
fr

am
e

Figure 8: Bit-rate in bits per frame of the uncompressed graphics stream.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

50

frame

# 
O

pe
nG

L 
co

m
m

an
ds

 w
ith

 fe
ed

ba
ck

gltron

0 200 400 600 800 1000 1200
0

500

1000

1500

frame

# 
O

pe
nG

L 
co

m
m

an
ds

 w
ith

 fe
ed

ba
ck

Penguin Racer

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

frame

# 
O

pe
nG

L 
co

m
m

an
ds

 w
ith

 fe
ed

ba
ck

Scorched 3D

Figure 9: Number of graphics commands that require a feedback from the graphics card.

e.g., that no error has occurred, can avoid the round
trip time for such commands. This might not work for
all games, but did not lead to problems for the games
analyzed here.

However, most of the graphics states change reg-
ularly and require a special treatment. In our imple-
mentation, we simulate this state in software in par-
allel to the graphics card. All commands that affect
and change the state in the graphics card, initiate the
corresponding changes also at the state simulated at
the server. One example is the request for the cur-
rent ModelView or Projection matrix. These matrices
are updated locally each time a command like glRo-
tate, glTranslate, glScale, glLoadMatrix, glPushMa-
trix, etc. is called. Since these operations do not
occur that often, the overhead for doing that in soft-

ware is rather moderate. However, the round trip de-
lay caused by the game asking for the current matrix
can be avoided. Similarly, the other graphics states
are simulated such that no single command requiring
feedback is executed during normal play of the ana-
lyzed games.

5.3 Streaming of Graphics Commands

All graphics commands which need to be send to the
client, are encoded, packetized and streamed to the
end device. Encoding is currently rather simple and
byte oriented. Colors, texture coordinates, and nor-
mals can for example be represented by short code-
words and need not be represented by multiple floats
or doubles. Also textures are encoded using some



transform coding based on the H.264 interger trans-
form. Currently, more efficient coding for textures,
geometries, and graphics commands are under inves-
tigation. The command itself is represented by a to-
ken of 1 or 2 bytes length. However, some groups of
commands like, e.g., glTexCoord, glNormal, glVer-
tex that occur often jointly are represented by a single
token in order to reduce the overhead.

The commands are then packetized for transmis-
sion. For that purpose, it is assured that a command
with all its arguments will reside in the same packet,
except for commands that contain pointers to large
memory areas. Once a packet is full, it is sent to
the client. Currently, we use a reliable TCP connec-
tion which is not optimal for minimizing delay. How-
ever, in contrast to the video streaming approach, that
can start with encoding of the video first if the frame
buffer has been rendered completely, we can start with
the transmission of packets bevor the current frame is
processed completely minimizing the delay by almost
one frame.

5.4 Experimental Results

The proposed streaming system has been tested with
different OpenGL games like scorched3d, gltron,
penguinracer, OpenArena, neverball and the Flight-
Gear simulator. When streaming all graphics com-
mands directly without any compression and graph-
ics state simulation, the games are not interactively
playable, since delay is much too high. With our
proposed system, for locally simulating the graphics
card’s state, the number of commands during normal
game play requiring a feedback could be reduced to
zero. This leads to a significant reduction in delay
and enables the ability to play the tested games in a
local area network. Graphics command compression
was enabled but in the current version rather moder-
ate. For the arguments of the commands, an average
compression of about 30 % was achieved. The size
of the target window can, however, be varied inter-
actively (by manipulating the glViewport command)
and need not be the same as the game’s resolution.
For the considered games, interactive frame rates of
up to 30 fps for the simpler games was achieved. For
more demanding games like OpenArena, delays are
relatively visible. Here, we work on reducing the bit-
rate by more efficient compression methods and thus
reducing the delay for enhanced gaming.

6 CONCLUSIONS

We have presented in our paper a system for the
remote gaming in local networks. The architecture
of the proposed system is targeted for an execution
of commercial games in a virtual environment and
ubiquitous gaming due to different streaming tech-
niques. Both, video streaming and transmission of
graphics commands are investigated. First analysis
shows the applicability of the approaches for different
end devices. In order to reduce delay for the graphics
streaming, a simple real-time compression of graph-
ics commands and a local simulation of the graphics
state has been implemented. This resulted in a sig-
nificant reduction of delay which is a prerequisite for
interactive gaming.

REFERENCES

Buck, I., Humphreys, G., and Hanrahan, P. (2000). Track-
ing graphics state for networked rendering. In Proc.
SIGGRAPH/EUROGRAPHICS Workshop On Graph-
ics Hardware.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ah-
ern, S., Kirchner, P. D., and Klosowski, J. T. (2002).
Chromium: a stream-processing framework for inter-
active rendering on clusters. In Proc. International
Conference on Computer Graphics and Interactive
Techniques.

Ignasiak, K., Morgos, M., and Skarbek, W. (2005).
Synthetic-natural camera for distributed immersive
environments. In Proc. Workshop on Image Analysis
for Multimedia Interactive Services (WIAMIS), Mon-
treux, Switzerland.

MPEG-4 (1999). ISO/IEC 14496-2: Coding of audio-visual
objects - Part 2: Visual, (MPEG-4 visual).

MPEG-4 AVC (2003). Advanced video coding for generic
audiovisual services, ITU-T Rec. H.264 and ISO/IEC
14496-10 AVC.

Müller, K., Smolic, A., Kautzner, M., Eisert, P., and Wie-
gand, T. (2006). Rate-distortion-optimized predictive
compression of dynamic 3D mesh sequences. Signal
Processing: Image Communication, 21(9):818–828.

Stegmaier, S., Magallón, M., and Ertl, T. (2002). A generic
solution for hardware-accelerated remote visualiza-
tion. In Proceedings of the Symposium on Data Vi-
sualisation 2002.

Tzruya, Y., Shani, A., Bellotti, F., and Jurgelionis, A.
(2006). Games@large - a new platform for ubiquitous
gaming and multimedia. In Proceedings of BBEurope,
Geneva, Switzerland.


