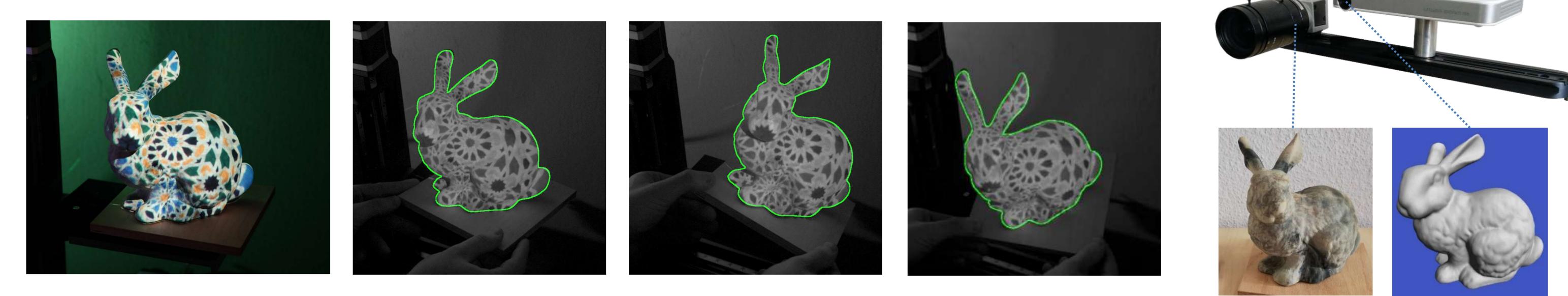


Heinrich Hertz Institute

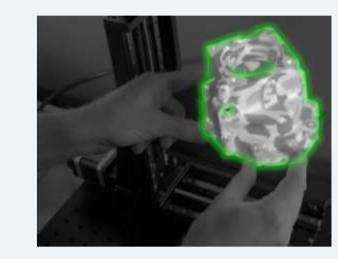

Computer Vision & Graphics Vision & Imaging Technologies Department

Visual Computing Department of Computer Science

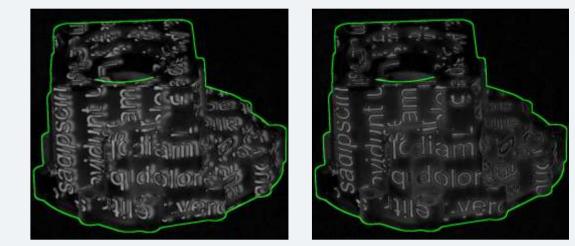
PROJECTION DISTORTION-BASED OBJECT TRACKING IN SHADER LAMP SCENARIOS

Niklas Gard, Anna Hilsmann, Peter Eisert

(1) **Problem Definition**


- Projector-camera systems augment environment by projecting new textures \bullet on known target geometries.
- Shader lamps \rightarrow stereo system: projector as inverted camera. \bullet
- Moving object *under* projection destroys illusion and distracts image-based \bullet trackers using contour or texture information.
- **Target:** Use local texture distortion of projection on surface in camera image for pose offset determination.

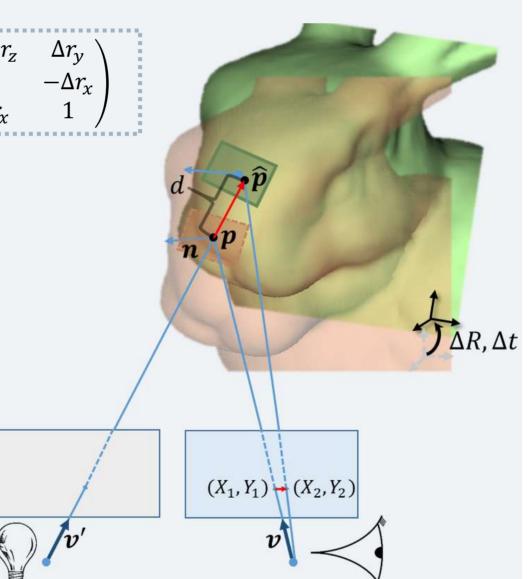
(4) Extensions


Combined approach: Use silhouette-based terms [2] near object border to prevent ambiguous configurations.

Fast refinement of calibration: 2.

Modify model to optimize extrinsic pose between projector and camera given the object pose in camera frame.

Silhouette-based terms are used near contour.


Improved matching between synthetic overlay and observation after calibration refinement.

(2) Projection Distortion-based Pose Estimation

- Estimate optical-flow between camera image I and synthetically rendered image $\hat{I} \rightarrow$ analysis-by-synthesis approach [1].
- p moves along viewing ray v' of projector to intersection with local plane moved with offset $\Delta \mathbf{R}$, $\Delta \mathbf{t}$.

$$\widehat{\boldsymbol{p}} = \boldsymbol{p} + \boldsymbol{v}' d \quad d = \frac{(\Delta \boldsymbol{R}(\boldsymbol{p}-\boldsymbol{t}) + \Delta \boldsymbol{t} - (\boldsymbol{p}-\boldsymbol{t}))^T \Delta \boldsymbol{R} \boldsymbol{n}}{\boldsymbol{v}'^T \Delta \boldsymbol{R} \boldsymbol{n}} \quad \Delta \boldsymbol{R} = \begin{pmatrix} 1 & -\Delta r_z & \Delta r_y \\ \Delta r_z & 1 & -\Delta r_x \\ -\Delta r_y & \Delta r_x & 1 \end{pmatrix}$$

Pixel-based equation system is solved for pose offset. Linearization of movement in image space.

How to adapt ΔR , Δt to synthesize observation?

(5) Results

Synthetic Data

- **Test 1:** continuous movement, small offsets per frame.
- **Test 2:** large abrupt offsets,

Text projection*				Colored pattern projection*			
t _{offset}	r _{offset}	t _{err}	r _{err}	valid**	t _{err}	r _{err}	valid**
1	1	0.08	0.2	100%	0.27	0.54	97%
2	2	0.1	0.25	100%	0.31	0.66	94%
4	4	0.14	0.38	98%	0.55	1.06	75%
10	10	0.04	0.13	100%	0.19	0.34	96%
20	20	0.06	0.17	94%	0.07	0.20	81%

multiple frames compensation. *) offsets and errors given in mm and deg **) t_{err} <= 5 mm, r_{err} <= 5 deg (RMSE)

- Repeated movements with randomized initial and target pose.

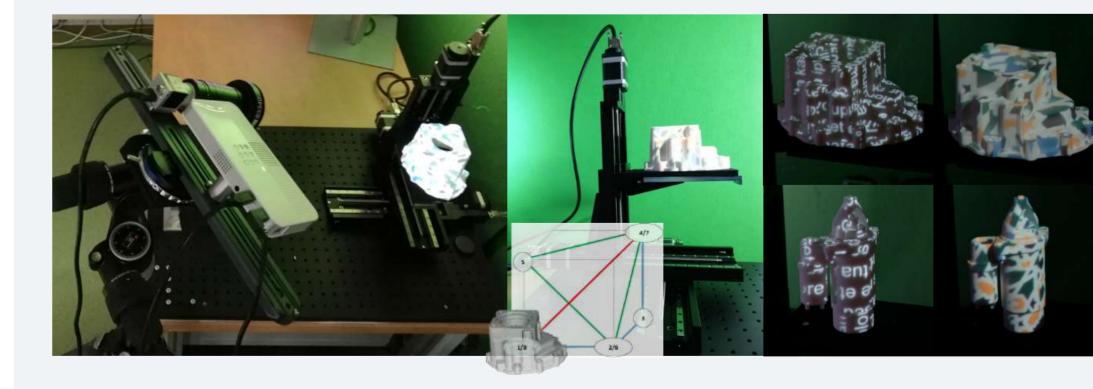
 $\frac{\partial \hat{I}}{\partial X}u_m + \frac{\partial \hat{I}}{\partial Y}v_m \approx a \begin{pmatrix} \Delta r \\ \Lambda t \end{pmatrix} \approx \hat{I} - I$

- $a = (a_1, a_2, a_3, a_4, a_5, a_6)$ depends on
 - camera intrinsics and extrinsics,
 - normal map and depth map,
 - image derivative in x and y direction.
- Bridge domain gap with edge images and illumination simulation. \bullet
- **Stabilization** with Iterative Reweighted Least Squares. \bullet
- Image pyramid to allow larger pose offsets. \bullet

Initialization

- Pose initialization with silhouette-based tracker.
- Initial approximation of ambient illumination (Lambert, 5 DoF) and projector brightness (linear attenuation, 1 DoF).

Synthetic rendering vs. camera image for ambient illumination, white and texture projection (from left to right).

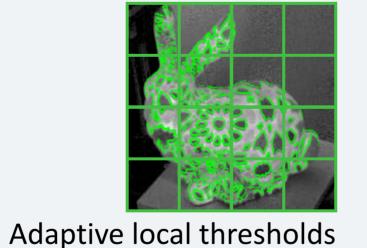

Projection-distortion on moving Stanford Bunny model is simulated. Pose offset is calculated from distortion in simulated camera image.

Real Data

- Measure deviation from ground truth path of linear translation unit.
- Two test objects and textures, four test cases:
 - 1. Projection-based tracking
 - 2. Projection-based tracking + ambient illumination
 - Combined model + ambient illumination 3.
 - Ignore projection: contour + ambient illumination

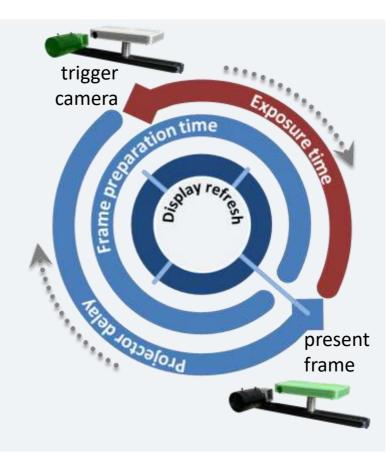
	Obj. 1, Te	ex. 1*	Obj. 1, Tex. 2*				
Test	t _{err}	r _{err}	r _{err}	r _{err}			
1	0.78	0.45	0.99	0.51			
2	0.84	0.97	1.16	0.95			
3	0.85	0.79	fails after Pos. 7				
4	fails after	r Pos. 4	fails after Pos. 4				
*) offsets and errors given in mm and deg							

Freehand movements tested without ground truth comparison.



Reduction of aperture problem: Object 2 benefits from combined model.

(6) Conclusions


Pose estimation of 3D objects by aligning simulated AR-projection with camera image.

for edge detection.

(3) Synchronization and Timing

- Synchronize exposure time to color wheel rotation. \bullet
- Parallelize on GPU for short frame preparation time. \bullet
- Optional: Synchronize projection with V-Blank for fastest \bullet performance.

- No need for additional hardware and radiometric calibration.
- Extension for extrinsic projector-camera calibration.

[1] N. Gard, P. Eisert, Markerless closed-loop projection plane tracking for mobile projector-camera systems, In Proc. ICIP, pp. 3363-3367. IEEE Computer Society, Washington DC, USA, 2018. [2] E. G. Steinbach, P. Eisert, and B. Girod. Model-based 3-d shape and motion estimation using sliding textures. In Proc. VMV, pp. 375–382. AKA GmbH, Berlin, Germany, 2001.

niklas.gard@hhi.fraunhofer.de

www.hhi.fraunhofer.de