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ABSTRACT 

Recent advances in volumetric capture technology have started to enable the 
creation of high-quality 3D video content for free-viewpoint rendering on VR and AR 
glasses. This allows highly immersive viewing experiences, which are currently 
limited to experiencing pre-recorded content. However, for an immersive experience, 
interaction with virtual humans plays an important role. In this paper, we address 
interactive applications of free-viewpoint volumetric video and present a new 
framework for the creation of interactive volumetric video content of humans as well 
as real-time rendering and streaming. Re-animation and alteration of an actor’s 
performance captured in a volumetric studio becomes possible through semantic 
enrichment of the captured data and new hybrid geometry- and video-based 
animation methods that allow a direct animation of the high-quality data itself instead 
of creating an animatable model that resembles the captured data. As interactive 
content presents new challenges to real-time rendering, we have developed a cloud-
based rendering system that reduces the high processing requirements on the client 
side. 

1 INTRODUCTION 

Volumetric videos capture 3D spaces with a high degree of accuracy and enable services 
with six degrees of freedom (6DoF) that give the viewers the freedom to change both their 
position and orientation in virtual space. Volumetric video is expected to enable novel use 
cases in the entertainment domain (e.g. gaming, sports replay) as well as in cultural heritage, 
education, health and e-commerce [Schre19a]. While Volumetric Video enables highly 
photorealistic free viewpoint video, it is usually limited to playback of recorded scenes. 
Alteration and animation of the content per se is not possible. If interactive and animatable 
content is envisioned, the classical approach is to build upon traditional hand crafted 
Computer Graphics models, which lack photorealism. Recent works have proposed to  
combine the photorealism of Volumetric Video data with the flexibility of Computer Graphics 
models in order to make Volumetric Video animatable or create new animations from 



   
Volumetric Video data [Hils20]. In this approach, re-animation and alteration of an actor’s 
performance captured in a volumetric studio becomes possible through semantic 
enrichment of the captured data and new hybrid geometry- and video-based animation 
methods that allow a direct animation of the high-quality data itself instead of creating an 
animatable CG model that resembles the captured data.  
 

Despite the significant increase in computing power of mobile devices, rendering rich 
volumetric videos on such devices is still a very demanding task. The processing load is 
further increased by the presence of multiple volumetric objects in the scene and the new 
challenges presented by the interactivity. Particularly, interactivity requires changing the 
volumetric object according to the user input or position, which is especially challenging on 
mobile devices with low processing power. Another challenge is the lack of efficient 
hardware implementations for decoding of volumetric data (e.g. point clouds or meshes). 
Software decoding may drain the battery of mobile devices quickly and fail to meet the real-
time rendering requirements.  
 
One way to reduce the processing load on the client is to send a 2D view of the volumetric 
object rendered according to the viewer’s position instead of sending the entire volumetric 
content. This technique is typically known as remote or interactive rendering [Shi15]. This is 
achieved by offloading the expensive rendering process to a powerful server and 
transmitting the rendered views over a network to a less powerful client device. Another 
advantage of this approach is a significant reduction of network bandwidth requirements 
because only a single 2D video is transmitted instead of the full 3D volumetric content. 
Additionally, the rendering server can be deployed within a cloud computing platform to 
provide flexible allocation of computational resources and scalability depending on potential 
changes in processing load. 
 
Despite these advantages, one major drawback of cloud-based rendering is an increase in 
the end-to-end latency of the system, also known as the motion-to-photon (M2P) latency. 
Particularly, the added network latency and additional server-side processing (e.g. video 
encoding) cause an increase in M2P latency, which may significantly degrade the user 
experience and cause motion sickness [Alli01]. 
 
It is possible to compensate for the increased M2P latency through various optimizations. 
One promising technique is to move the volumetric content to an edge server geographically 
closer to the user to reduce the network latency. Edge computing has been gaining 
importance with the deployment of 5G networks and is considered to be one of the key 
technologies for interactive use cases that will be enabled by the 5G technology [Sat17]. 
Secondly, usage of real-time communication protocols such as WebRTC are also 
considered to be vital for ultra-low latency video streaming applications [Hol15]. The 
processing latency at the rendering server is another significant latency component. 
Therefore, using fast hardware-based video encoders is critical for reducing the encoding 
latency. Another way is to predict the future user pose at the remote server and send the 
corresponding rendered view to the client. Thereby, it is possible to drastically reduce the 
M2P latency, if the user pose is predicted for a prediction window equal to or larger than the 
M2P latency of the system. However, accuracy of the prediction algorithms is critical for 
achieving good results and mispredictions can potentially lead to degradations of user 
experience. 
 



   
In this context, we have developed a cloud-based rendering system for interactive streaming 
of volumetric videos, which includes several of the described optimizations. Our system 
reduces the high processing requirements on the client side and significantly decreases the 
network bandwidth requirements. In this paper, we present the algorithms employed for the 
animation of volumetric video (Section 2) and describe the components of our low-latency 
streaming framework (Section 3). 

2 ANIMATABLE VOLUMETRIC VIDEO 

This section gives an overview of our animatable volumetric video technology. Going beyond 
the application of free-viewpoint volumetric video, we allow re-animation and alteration of an 
actor’s performance through (i) the enrichment of the captured data with semantics and 
animation properties and (ii) applying hybrid geometry- and video-based animation methods. 
The idea is to allow direct animation of the high-quality volumetric video data itself instead 
of creating an animatable model that resembles the captured data. Thereby, we bring 
volumetric video to life and combine interactivity with photo-realism. Details of our approach 
can be found in [Hils20]. 

 

Figure 1 - Overview of our animatable volumetric video technology. 

2.1 Making Volumetric Video Data Animatable 

The creation of high-quality animatable volumetric video starts with the creation of high-
quality free viewpoint video by capturing an actor’s performance in a volumetric studio and 
computing a temporal sequence of 3D meshes. For the capturing and data processing steps, 
either high-quality professional capturing with sophisticated setups, e.g. [Schre19a, Coll15, 
Vol, Mic] as well as lighter and cheaper systems [Rob16, All19] can be applied, depending 
on the use case requirements. The reconstructed temporally inconsistent meshes are 
converted into spatio-temporally coherent mesh (sub-) sequences using template-based 
approaches in order to facilitate texturing and compression. In order to allow for topological 
changes during the sequence, we use a key-frame-based method to decompose the 
captured sequence into subsequences and register a number of key-frames to the captured 
data [Morg19]. The final volumetric video data can be inserted as volumetric video assets in 
virtual environments and viewed from arbitrary directions. In order to make the volumetric 
data animatable, we fit a parametric rigged human model [Angu05, Fech19a] to the captured 
data [Fech19b]. Thereby, we enrich the captured data with semantic pose and animation 
data taken from the parametric model, used to drive the animation of the captured volumetric 



   
video data itself.  
 
2.2 Hybrid Animation of Volumetric Video Data 

The captured content contains real deformations and poses and we want to exploit this data 
for the generation of new performances as much as possible. For this purpose, we propose 
a hybrid example-based animation approach that exploits the captured data as much as 
possible and only minimally animates the captured data in order to fit the desired poses and 
actions. We treat the temporally consistent subsequences of the volumetric video data as 
essential basis sequences, containing motion and appearance examples. Given a desired 
target pose sequence, we retrieve close subsequences or frames based on the semantic 
enrichment of the volumetric video data. The retrieved subsequences or frames can then be 
concatenated and interpolated in order to form new animations, similar to surface motion 
graphs [Huang15]. The generated sequences are restricted to poses and movements 
already present in the captured data and might not perfectly fit the desired poses. Hence, 
after we have created a synthetic sequence from the original data that resembles the target 
sequence as closely as possible, we now animate and kinematically adapt the recomposed 
frames in order to fit the desired poses. The kinematic animation of the individual frames is 
facilitated through the body model fitted to each frame. For each mesh vertex, the location 
relative to the closest triangle of the template model is calculated, virtually glueing the mesh 
vertex to the template triangle with constant distance and orientation. This parameterization 
between each mesh frame and the model allows a direct animation of the volumetric video 
frame. 

One application is interaction with virtual humans in AR or VR where the virtual human 
follows the user with his head when the user moves in the virtual scene in order to enhance 
the feeling of a true conversation with the virtual character (see Fig. 2). 

Figure 2 - Animated virtual human moving his head to follow the user. 

3 CLOUD-BASED VOLUMETRIC VIDEO STREAMING 

This section presents the system architecture of our cloud-based volumetric video 
streaming system and describes its different components. A simplified version of this 
architecture is shown in Fig. 3.  
 



   

 

Figure 3 - Overview of cloud-based volumetric streaming framework. 
 

3.1 Volumetric asset storage format 

Different components of our volumetric assets are stored in a single MP4 file to facilitate 
integration as a dedicated plugin into the game engines such as Unity. Particularly, we 
encode the texture atlas using video compression (H.264/AVC), and compress the mesh 
data using Google Draco [Goo] which implements the well-established mesh compression 
algorithm Edgebreaker [Ross99]. The compressed mesh and texture data are multiplexed 
into different tracks of an MP4 file ready for storage and transmission [Schre19b]. 

3.2 Server architecture 

The server-side implementation is composed of two main parts: a volumetric video player 
and a cross-platform cloud rendering library that can be integrated into different applications. 
We describe each block further in detail. 
 
The volumetric video player is implemented in Unity using several native plug-ins. The 
player is able to play volumetric sequences stored in a single MP4 file which consists of a 
video track containing the compressed texture data, and a mesh track containing the 
compressed mesh data. Before the start of the playback, all required game objects are 
registered by the player. These can include e.g. a volumetric object stored as an MP4 file or 
a virtual camera. The registered game objects can then be controlled by the cloud rendering 
library and/or the client application. After registration, the player can start playing the MP4 
file by demultiplexing it and feeding the elementary streams to the corresponding video, 
audio and mesh decoders. The volumetric mesh is altered based on user input, e.g. for the 
eye contact application described above, the head is turned based on the user position as 
described in Section 2.2. Then, each mesh is synchronized with the corresponding texture 
and rendered to the scene. Subsequently, the camera representing the client's viewport 
captures the rendered view of the volumetric object and passes the RenderTexture to the 
cloud rendering library for further processing. While rendering the scene, the player 



   
concurrently asks the library for the latest positions of the previously registered game objects 
and updates the rendered view accordingly. 
 
We created a cross-platform cloud rendering library written in C++ that can be integrated 
into a variety of applications. The library is implemented as a native Unity plugin for the 
present application and contains various processing and communications blocks and 
interfaces.  In the following, we describe the main modules implemented in the library, each 
running on a different thread to achieve high performance. 
 
Signaling and control data between the server and client is exchanged via a WebSocket 
Server. Signaling data includes Session Description Protocol (SDP) and Interactive 
Connectivity Establishment (ICE) messages necessary for establishing the WebRTC 
connection. The WebSocket connection is also used to transmit the scene description 
metadata as well as control data to modify the position of a registered game object or 
camera. 
 
Media processing is performed using the GStreamer media framework [Gst]. GStreamer is 
a very flexible framework that allows chaining various media elements together to create 
complex media pipelines. Our Gstreamer pipeline takes the rendered texture from Unity as 
input, compresses it as a video stream, and transmits the video stream to the client over a 
WebRTC connection. Since encoder latency is a significant contributor to the overall M2P 
latency, we evaluated the encoding performances of different video encoders for a careful 
selection.  
We experimented with different encoders such as the software-based encoders x264, x265, 
and Intel SVT-HEVC as well as the GPU-based encoder from Nvidia (NVENC) [Nve]. 
Consequently, we decided to use NVENC in our media pipeline due to its significantly higher 
encoding speed at a comparable picture quality with respect to other tested encoders. We 
use NVENC to compress the texture using H.264/AVC (high profile, level 3.1, IPPP.. GOP 
structure, no B frames). However, our system does not depend on a specific codec and 
allows using different H.264/AVC, H.265/HEVC, or in the future VVC encoders. After 
compression, the resulting compressed bitstream is packaged into RTP packets and sent to 
the client using WebRTC. WebRTC was chosen as the delivery method since it allows us to 
achieve an ultra-low latency while using the P2P connection between the client and server. 
In addition, WebRTC is already widely adopted by different web browsers allowing our 
system to support several different platforms. For our volumetric sequence “Josh”, the bitrate 
of the encoded bitstream (at a resolution of 1280x720) varies between 3-9 Mbps depending 
on the size of the volumetric object inside the viewport and user movement. Our system can 
also generate videos at 1080p and 4K resolution. Further details on our media pipeline and 
an evaluation of the encoder performance can be found in [Gül20a]. 

The Controller implements the application logic and manages the other modules depending 
on the application state. Particularly, it retrieves the object states from the ObjectPool (a 
logical structure that maintains the IDs and positions of all registered objects) and sends 
them to the client as a JSON file in order to inform the client about the object states. 
Depending on the predictions from the Prediction Engine, the Controller updates the 
positions of the virtual objects such that the rendering engine creates a scene corresponding 
to the predicted positions. The Controller is also responsible for initializing/closing the media 
pipeline when a new client joins/disconnects. 



   
The Prediction Engine attempts to predict the head movement of the user in 6DoF space 
for a given prediction interval. By predicting the user’s future pose and rendering the 
matching frames in advance, we aim to reduce the effective M2P-latency and thus 
compensate for the added network latency due to cloud-based rendering. Currently, we use 
an autoregression model for prediction; however, the module allows deployment of different 
kinds of algorithms that can bring higher prediction accuracy and/or run faster, e.g. efficient 
recursive algorithms like the Kalman filter. A latency analysis of our system and details of 
our initial prediction technique are described in [Gül20a]. 

3.3 Client architecture 

The client-side architecture is depicted on the left side of Fig. 3. It consists of various 
connection interfaces, a video decoder, our application logic, and a client application. 
 
Before the streaming session starts, the client establishes a WebSocket connection to the 
server and asks the server to send a description of the rendered scene. The server responds 
with a list of objects and parameters which can later be updated by the client.  After receiving 
the scene description, the client replicates the scene and initiates a peer-to-peer (P2P) 
WebRTC connection to the server. The server and client carry out the WebRTC negotiation 
process by sending SDP and ICE data over the established WebSocket connection. Finally, 
the P2P connection is established, and the client starts receiving a video stream 
corresponding to the current view of the volumetric video. At the same time, the client can 
use the WebSocket connection (or optionally the RTCPeerConnection) for sending control 
data to the server and modify the properties of the scene. For example, the client may 
change its position in the 6DoF space, or it may apply transformations (e.g. rotate, scale) to 
any volumetric object in the scene. 
 
We have implemented both a web player in JavaScript and a native application for the 
HoloLens, the untethered AR headset from Microsoft. While our web application targets VR, 
our HoloLens application is implemented for AR use cases. In the HoloLens application, we 
perform further processing to remove the background of the video texture before rendering 
the texture onto the AR display. In general, the client-side architecture remains the same for 
both VR and AR use cases, and the most complex client-side module is the video decoder, 
which is implemented for H.264/AVC in hardware in most devices. Thus, the complexity of 
our system is concentrated largely in our cloud-based rendering server. A demonstration of 
our system with the web browser and HoloLens client implementations is presented in 
[Gül20b]. 

3.4 Motion-to-photon latency measurement 

Characterizing the M2P latency is important for assessing the success of our optimizations 
towards creating a low-latency streaming framework. Therefore, we developed a framework 
to measure the latency of our system.  
 
Using our cloud rendering library described in the previous section, we implemented a 
server-side console application which sends predefined textures (known by the client) 
depending on the received control data from the client.  These textures consist of simple 
vertical bars with different colors. For example, if the client instructs the server application 
to move the main camera to the position P1, the server pushes the texture F1 into the media 
pipeline. Similarly, another camera position P2 results in the texture F2.  



   
 
On the client side, we implemented a web-based application that connects to the server 
application and renders the received video stream to a canvas. Since the client knows 
exactly how those textures look like, it can evaluate the incoming video stream and 
determine when the requested texture was rendered on the screen. As soon as the client 
application sends P1 to the server, it starts the timer and checks the canvas for F1 at every 
web browser window repaint event, which matches the refresh rate of the display according 
to the W3C recommendation [Rob15]. As soon as the texture F1 is detected, the client stops 
the timer and computes the M2P latency. 
 
Since we use the second smallest instance type of Amazon EC2 (t2.micro), we set the size 
of each video frame to 512x512 pixels. Once the connection is established, the user can 
start the session by defining the number of independent measurements. In our setup, we 
run the server application on an Amazon EC2 instance in Frankfurt, and the client application 
in a web browser in Berlin. The web browser is connected to the Internet over WiFi. 
 
We encode the stream using x264 configured with ultrafast preset and zerolatency tuning 
with an encoding speed of 80 fps. In order to get statistically accurate results, we set the 
client to perform 100 latency measurements and calculated the average, minimum and 
maximum M2P latency. Fig. 4 shows the measured values over 100 cycles. According to 
our results, the M2P latency of our system varies between 41 ms and 63 ms. The measured 
average latency is 58 ms. 
 
 

 

Figure 4 - Results of our motion-to-photon latency measurements.  
 

3.5 Deployment 

We deployed our server-side application on two different servers: a 5G edge server provided 
by Deutsche Telekom and an Amazon EC2 instance located in Frankfurt. For the Amazon 
EC2 instance in Frankfurt, we were able to measure an average M2P latency of 58 ms using 
our web browser client connected to WiFi in Berlin. 

4 SUMMARY 

We presented a new framework for the creation, animation, rendering and streaming of 
animatable volumetric content. Re-animation and alteration of an actor’s performance 
captured in a volumetric studio becomes possible through semantic enrichment of the 
captured data and new hybrid geometry- and video-based animation methods that allow a 
direct animation of the high-quality data.  
 
Furthermore, we presented a cloud-based streaming framework that offloads the volumetric 
video processing to a powerful cloud/edge server and thus alleviates the challenges brought 



   
by interactive volumetric video in terms of real-time processing. Our framework includes 
several optimizations for low-latency streaming and is able to offer a smooth interactive 
volumetric video experience. 
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