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Abstract

This paper addresses the synthesis of near-regular textures, i.e. textures that consist of a regular global structure
plus subtle yet very characteristic stochastic irregularities. Such textures are difficult to synthesize due to the
complementary characteristics of these structures. In this paper, we propose a method which we call Random
Sampling and Gap Filling (RSGF) to synthesize near-regular textures. The synthesis approach is guided by a lattice
of the global structure estimated from a generalized normalized autocorrelation of the sample image. This lattice
constrains a random sampling process to maintain the global regular structure yet ensuring the characteristic
randomness of the irregular structures. Results presented in this paper show that our method does not only produce
convincing results for regular or near-regular textures but also for irregular textures.

Categories and Subject Descriptors (according to ACM CCS): 1.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—Texture 1.3.3 [Computer Graphics]: Picture, Image Generation—

1. Introduction

The objective of texture synthesis is to generate an arbi-
trarily sized image that reproduces the texture of a rela-
tively small sample image. During the last years, many re-
searchers in computer vision and computer graphics have
proposed methods for texture synthesis and achieved im-
pressive results for many kinds of textures. Sample-based
methods compose the output only from extracted pieces of
the input sample in contrast to methods that infer a statis-
tical model for the input texture. Near-regular textures, i.e.
textures that contain global regular structures and additional
irregular stochastic structures (e.g. due to the yarn structure
in cloth etc.) are still difficult to synthesize. This kind of tex-
ture is ubiquitous in the real world, such as cloth, bricks, tiles
etc. A faithful reproduction of these textures should preserve
both the regular pattern of the texture as well as the stochas-
tic nature of the irregular structure. The latter might be subtle
yet very important for the natural appearance of the result.
Simple tiling would fail to reproduce the stochastic nature
of the irregular structures and statistical methods would fail
to reproduce the regular structure.

In this paper, we propose a method to synthesize near-
regular textures in a constrained random sampling approach.
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In a first analysis step, we treat the texture as regular and
analyze the global regular structure of the input sample tex-
ture to estimate two translation vectors defining the size and
shape of a texture tile. In a subsequent synthesis step, this
structure is exploited to guide or constrain a random sam-
pling process so that random samples of the input are intro-
duced into the output preserving the regular structure pre-
viously detected. This ensures the stochastic nature of the
irregularities in the output yet preserving the regular pattern
of the input texture. Although our method was developed for
near-regular textures we observed that it produces also very
good results for irregular textures.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of related work. Section 3 describes
the analysis step to estimate the regular structure (or lattice)
of the texture sample. Section 4 explains the synthesis step
of our approach. We present results in section 5 and con-
clude with a discussion and thoughts about future work in
section 6.

2. Related Work

Sample-based texture synthesis techniques [EL99, WLOO,
EF01,WZ01,YLCO02] generally reproduce a synthesized tex-
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ture by copying pixels or patches from the input image into
the output image in an intelligent manner.

Pixel-based methods [EL99, WLO0O0] use the simple strat-
egy of copying a single pixel at a time. However, re-
sulting textures sometimes show visual artifacts, reported
as garbage accumulation. Furthermore, sampling single
pixel values from the input sample is time-consuming
[LLX*01]. Patch-based methods [LLX*01, EF01, KSE*03]
copy patches of pixels at a time to show real-time perfor-
mances. Efros and Freeman [EF01] proposed an image quilt-
ing technique (IQ) where patches of a fixed size from the
input image are stitched together along optimal seams. This
work was extended by Kwatra et al. [KSE*03] who used
a graph-cut approach to determine the optimal patch from
the input. In general, patch-based methods avoid visual ar-
tifacts such as garbage accumulation as they copy spatially
coherent patches from the input sample but often show other
artifacts such as texture discontinuity and repetition. Both ar-
tifacts may be due to the lack of randomness in the copying
strategy [SNS06]. Cohen et al. [CSHDO3] generate Wang
Tile sets to produce probably non-periodic tilings of non-
repetitive texture. Wang Tiles are composed by assembling
(similarly to IQ) the necessary 4-permutations of randomly
selected diamond-shaped portions of input texture (one for
each Wang Tile edge color). These techniques do not analyze
the regular pattern of near-regular textures and are generally
unable to ensure its faithful reproduction [LTLOS].

The synthesis of near-regular textures is especially diffi-
cult as a global regular structure coexists with irregular and
often stochastic variations that are subtle yet very charac-
teristic of the texture and necessary for a natural appear-
ance of the synthetic result. Many existing methods rely
on the user to model the irregular structures of the tex-
ture [LLHO4, LHW*04, LHW*06]. Nicoll et al. [NMMKO5]
use fractional Fourier analysis to separate the global regu-
lar from the irregular structures in the frequency domain and
generate Fractional Fourier Texture Masks to guide the syn-
thesis. However, the method suffers from degeneration prob-
lems if the frequencies are extracted inaccurately. Moreover,
the frequencies are extracted with an intensity threshold that
is dependent on each particular case and needs specific tun-
ning. Liu et al. [LTLOS] estimate the underlying regular lat-
tice of the texture using the method in [LCT04]. Following,
they proceed in the lattice direction to fill the image with
rectangles containing a complete tile. They split the input
in disjoint continuous tiles and select the alignment of the
division manually. In this paper, we propose a patch-based
synthesis method for near-regular textures which follows a
similar strategy. We first estimate the global regular struc-
ture of the input image and exploit the result to finally guide
a random sampling process which preserves both the global
structure and the stochastic irregular structures of the input.
We improve the lattice detection of [LCT04] by using a nor-
malized crosscorrelation on all three RGB channels of the
sample. Moreover, in the synthesis step the size of our sam-

pling unit is not related to the tile of the texture. This allows
the creation of new tiles not present in the input composed
of pieces of different tiles if the synthesis blocks are smaller
than the tile. This results in a richer output with more random
(and thus more natural-looking) irregularities.

3. Regular Lattice Detection

A regular texture is akin to a 2D-periodic discrete signal.
Similarly to the period of a 1D-periodic signal, the transla-
tion symmetry of a 2D-periodic signal f can be described by
two independent translation vectors vi,v, so that:

f(x) = f(x+avi+bvy) D
with a,b integers and x = [x,y]”. To complete the analogy
with the 1-dimensional space, we call the smallest parallelo-
gram that has two independent translation vectors as its non-
parallel sides a tile of a 2D-periodic signal, i.e. a tile is the
2D counterpart of a 1D period. To estimate the translation
vectors of a given texture, we make use of the normalized
crosscorrelation (NCC). NCC is known to be a good tool for
template matching [BHO1] especially in non-ideal lighting
conditions as it is invariant to image brightness and contrast.

In the following sections, we describe how we calculate
the autocorrelation of an RGB input texture sample (sec-
tions 3.1 and 3.2) and estimate the translation vectors de-
scribing the texture tile and periodicity from its local max-
ima distribution (section 3.3).

3.1. Generalized Normalized Crosscorrelation

The common formula of the normalized crosscorrelation
NCC of a template ¢t with an image f is [BHO1]:

L(f(®) = o) (t(x—x') 1)
X)) = —= = =
\/Z(f(X) —fx/)z\/Z(l(X—X’) —1)?
X X
where 7 and f denote the mean of the template and the cov-
ered image region. Both the mean of the image fy and the

sums are over all pixels x under the window containing the
template positioned at x’.

(@)

This categorization in image and template implies that it
is assumed that the template is small compared to the image
and thus the correlation is usually invalid or undefined where
the template is not entirely contained in the image. Not al-
lowing partial matches (or giving them invalid values) is es-
pecially inconvenient if we are to perform an autocorrelation
or a crosscorrelation of two images of the same size, where
every point but the origin is a partial match. We slightly mod-
ify the original definition to also consider partial matchings.
The normalized crosscorrelation between an Ny X My image
f and an Ng x M image g now yields:

;(f(x) _fx’)(g(x _X/) —&x)
\/g.(f(x) —fX,)Z\/g,(g(x— x') —gx)?

Y(x') = ?3)
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where the sums and the mean of both images fy/, gy are
over all pixels x in the overlapping region between the im-
ages with g positioned at x'. Note that the new formulation is
equal to the original NCC for g =, Ng < N¢,Mg < My and
0<x <Ny—Ng, 0<y <My—M,.

This generalization makes the computation potentially
much costlier, but its computation in the frequency domain
allows us to keep it acceptably efficient. A reformulation of
equation (3) makes clear what operations need to be done:

Yx) = \/Ns?/f]:;_j/c SS‘; v “
with
Spe(x') = L Fx)s(x— x)
Sp(x') = ;f(x)
Sex') = ;g(X—X/)
SfZ(X/):;f(X)Z )

Sp(x) =Y g(x—x)?

z Sf(X/)
S = N(X/)
o SelX)
= VW)

and N/ (x') is the number of pixels in the overlapping region
between the images when g is at position x'. Equation (4)
is equivalent to equation (3) and shows that the computation
can be obtained from a few integrations and the (unnormal-
ized) crosscorrelation between the two images.

The unnormalized crosscorrelation Sy, is the most ex-
pensive operation and is equivalent to the convolution
f(x) *g(—x) and can be computed as F~'{F(f)F*(g)}.
where F, F ~! Stand for the Direct and Inverse Fourier
Transforms respectively. Precomputed integrations (integral
images) make the other computations Sy, Sg, Sp2, S,2 and
N computable in linear time [Lew95].

3.2. Multi-Channel NCC

The normalized crosscorrelation is only applicable to a pair
of single-channel images (e.g. grayscale images) and not di-
rectly to RGB images. A simple multiplication of correlation
coefficients or a blind mean would not pay attention to the
actual amount of information contained in each channel and
might considerably distort the combined result. We propose
here a weighted sum of the correlation coefficient of each
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separate channel as a robust way to get a unified measure for
RGB images.

The denominator of equation (3) is the product of the stan-
dard deviations of both images in the overlapping and can
be thought of as a measure of the magnitude of structure
information they carry. This measure specially emphasizes
sharp edge-like changes, as they are more energetic than
smooth transitions. This makes it appropriate for weighting
in our combined measure, considering that human percep-
tion is specially sensitive to edges when recognizing objects
and patterns. Let y’ be the generalized normalized crosscor-
relation of the RGB channels fi7 gi,i =R, G, B of two multi-
channel images f,g. Then, the combined correlation coeffi-
cient yis:

Y Y(X’)Gf-i(igi

, i=R,G,B
Vx)=—%v—-— (6)
i:RZA’GA’B G fiCgi
where
op = [ fix)? ™

oy = \/Z[gi(x—x’) —gi )2 ®)

3.3. Translation Vectors Estimation

The NCC of a 2D regular texture sample image with itself
has absolute maxima at linear combinations of the trans-
lation vectors X' = avy + bv, with a,b integers. Although
we want to analyze near-regular texture samples, we expect
their normalized autocorrelation to still have high local max-
ima at multiples of the translation vectors. Detecting which
peaks are related to the regular structure of the input tex-
ture is not a trivial task. Deviations from regularity present
at the texture sample can cause the ideally absolute maxima
to decrease and become only local maxima that may be cor-
rupted with other spurious local maxima. Figure 1 shows that
simple thresholding may be inconvenient in some cases. No
simple thresholding method can get correct smallest trans-
lation vectors in both cases without user intervention. Our
fully automatic method for the tile estimation is based on
the following observations:

i. The autocorrelation has the symmetry y(x) = y(—x).

ii. If two vectors are translation vectors for the near-regular
texture under analysis, the normalized autocorrelation
of the input sample has high local maxima not only at
those displacements but also at every of their integer
multiples.

iii. A translation vector v is equivalent to its opposite —v as
they have the same multiples.

iv. A pair of translation vectors {v{,v,} is equivalent to
{v2,v1}, {vi +kpva,v } and to {v{, v, + kv, } for any
k1,ky € Z as they all have the same set of multiples and
thus define the same periodicity.
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Figure 1: The rows show the sample image, the normalized
autocorrelation matrix and its center row respectively. On
the left, only peak D is related to the regular structure of the
input texture (peaks A, B and C are spurious local maxima).
On the right, all peaks A, B and C are due to the regular
structure of the input texture.

v. Some spurious maxima are likely to appear at the bor-
ders of the autocorrelation matrix, where the values are
obtained from the comparison of a smaller pixel region.

vi. Other spurious maxima not at the borders of the auto-
correlation are generally lower than the peaks caused
by the periodicity of the texture.

Given these observations, we proceed as follows to get the
translation vectors:

1. Mark every local maximum of the right half of the au-
tocorrelation matrix (the left half is redundant given the
symmetry of 7).

2. Form a candidate set c; of displacement vectors from the
origin (i.e. the center of the matrix) to each marked local
maximum.

3. Sort the vectors in ¢; in ascending length.

4. For each vector vy in ¢ form ¢, with the vectors that are
sorted after vy in c; (these have at least the same length as
Vl).

5. Reduce every v, in ¢; to vp = vy — [T@M vy (and take
vy = —V, if it lies on the left semi-plane) and eliminate
duplicates and vectors shorter than v;. The operator [.] is
the round-to-nearest-integer operation and the dot is the
scalar dot product.

Figure 2: Texture samples with their detected lattice and
examples of goodness evaluation. Black crosses mark the
values of the autocorrelation that compose the sum for the
goodness evaluation.

6. Evaluate the goodness:

< Y Y(avy +sz)>

a,b€Z

g({vi,v2}) =

7. The pair of vectors with the highest goodness is the final
estimation of the translation vectors.

C)]

n

The sum in equation (9) is over the multiples of {v|,v,}
that are on the right half of the autocorrelation excluding the
origin and overlappings of less than an 85% of the candi-
date tile. The goodness is zero if either v or v, has no valid
multiple. The basic idea is to rate a pair of candidate vec-
tors with the mean 7y at their integer multiples. o is chosen
slightly greater than 1 to give priority to smaller tiles in case
of similar mean 7 (a tile composed of two tiles is still a valid
tile but we seek to find the smallest valid tile). All our results
were achieved with oo = 1.12.

4. Constrained Random Sampling and Gap Filling

In this section, we present a near-regular texture synthesis
technique that we call random sampling and gap filling. The
intention is to synthesize a near-regular texture of an arbi-
trary size from a previously analyzed (as explained in sec-
tion 3) sample image. The previous analysis step is exploited
to preserve the repetition pattern of the near-regular texture
sample. At the same time the output should maintain the
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characteristic random irregularities of the input texture for
a natural appearance of the result. This is ensured by our
random sampling method guided by the translation vectors
from the previous section.

Our synthesis approach splits the output space in square-
shaped blocks of a constant size. Note the difference be-
tween a file which defines the regular structure, i.e. the peri-
odicity of the texture and a patch used for synthesis. While
a tile defines the regular structure of the sample texture, rep-
resented by the estimated translation vectors, a patch is here
a square-shaped block of an arbitrary size (usually smaller
than a tile) in the input and output images. It is the unit we
use for filling the output. In a regular texture, the tile defines
the periodicity of patches in the input. Each of the blocks in
the output image is filled with a texture patch from the input
sample in two substeps. We usually call patch any piece of
texture extracted from the input sample during the synthesis
process.

The random sampling step ensures that stochastic devia-
tions from regularity are introduced in the output by filling
half the output blocks with randomly selected patches from
the input. This random selection process is constrained by
the estimated regular structure represented by the translation
vectors. The gap filling step fills the remaining blocks with
patches that make transitions between already synthesized
blocks smooth, thus reducing visible seams that might have
appeared if the procedure was completely random. Both sub-
steps are fully described in sections 4.1 and 4.2 respectively.

4.1. Random Sampling

The first step in our synthesis process fills every second
block of the output (in a chess-like fashion) with a randomly
selected patch from the input. To preserve the regular struc-
ture of the input texture, the random selection of the patch to
fill each block is constrained or guided by the regular struc-
ture, described by two independent translation vectors vy, vy
estimated in the analysis step. In near-regular textures, this
regular structure appears diffused with stochastic deviations
from regularity, but still the estimated translation vectors tell
us where to find similar texture patches. Texture patches that
appear at integer multiples of the translation vectors in the
input image are similar, i.e. the regular texture part is equal
but the slight yet characteristic irregularities of the texture
may differentiate them. We say that a texture patch has sim-
ilar counterparts at every integer multiple of the translation
vectors. Therefore, for each second block in the output, the
similar patches at integer multiples of the translation vectors
from the current block are preselected from the input. Next,
one of the candidate patches is chosen randomly to fill the
current block. We proceed sequentially until every second
block has been filled with a source patch. See figure 3.

(© The Eurographics Association 2011.

Figure 3: Example of random sampling in progress with the
input image superimposed. The distance between the candi-
date patches (i.e. similar to the current block) and the current
location is a multiple of the translation vectors vi,vy.

Figure 4: Example of gap filling. Left: location of the neigh-
bors of the current gap (up) and the finally selected patch
(down) within the input texture sample. Center: detail of full
neighboring border (up) and full border of the selected best-
matching patch (down). Right: output detail after random
sampling (up) and after gap filling (down).

4.2. Gap Filling

If the previous step had synthesized all the blocks of the out-
put with the described random selection of patches, the ir-
regularities of the texture might have created visible discon-
tinuities. This step reduces that risk. The remaining not-yet-
synthesized blocks (gaps) are surrounded by already synthe-
sized blocks. Each of them is to be filled with a patch from
the input sample that best agrees with its surrounding neigh-
bors.

To evaluate how good a patch agrees with the surround-
ing neighbors of the current block, a full neighboring bor-
der is composed from wedge-shaped borders of each of the
neighboring blocks (see figure 4). We prefer this to an al-
ternative blending between rectangular overlapping borders,
as the latter would cause blurring and detail loss. The full
neighboring border is matched to every possible patch in the
input. We propose here two ways of measuring the match be-
tween the neighboring border and the border around a patch.

The first alternative is to make use of the generalized NCC
with the neighboring border as the template to correlate with
the input texture image. In this case, the template has a zero-
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Figure 5: Differences between NCC border matching and
color differences matching. NCC matching (on the left) can
sometimes give slightly more blocky results, while color dif-
ferences matching (on the right) may adjust sharp edges
slightly worse.

padded hole in the middle, but we can compute the NCC by
subtracting the corresponding integration of the hole to Sy,
Sy, Sp2, 82 and N in equation 4. The patch with the highest
correlation is then chosen as the best matching patch.

The second alternative is to evaluate the squared color dif-
ferences for each position within the input:

)= Y (h®-gx-x)" 10
X i=R,G,B
where f is the input sample, g is the composed border and
the outer sum is over the overlapping region. Note that equa-
tion (10) can also be computed in the frequency domain (see
equation (4)). In this case, the best match is that with the
smallest .

Both alternatives yield similarly good results (see fig-
ure 5). In general, the normalized crosscorrelation may ad-
just sharp edges more accurately in some cases (e.g. lines
between bricks in a brick wall) while the color differences
also pays attention to the overall brightness and contrast.
This may sometimes make the NCC result look slightly more
blocky, especially if the input sample was taken with non-
uniform illumination. Moreover, the color differences ap-
proach has less computation complexity.

Although in most cases it is enough to look for the best
border matching piece of texture from the input without fur-
ther restrictions, in some cases this does not ensure that the
global structure of the texture is preserved. To avoid a struc-
ture misreproduction, we limit the search space as in the pre-
vious section, but with a looser restriction. In section 4.1, we
considered only those patches as candidates whose distance
from the current position is a multiple of the translation vec-
tors vi,v,. Now, we allow a certain tolerance around those
candidates, i.e. patches that are a certain configurable num-
ber of pixels apart from the former candidates are also taken
into account. A tolerance of 43 pixels has been enough in
all studied cases. This ensures structure preservation and al-
lows little adaptive adjustments that may be required in some
cases (e.g. when the translation vectors are not completely
accurate). Once all output blocks have been filled in, linear
alpha-blending is applied between adjacent blocks to make
transitions even smoother and generate the final result.

5. Results

We tested our fully automatic regular structure detector with
several texture samples. The main advantage of our regu-
lar structure detector is that it does not need any user assis-
tance to estimate the tile and the regular structure of the tex-
ture. Other existing methods generally require user interven-
tion [LLHO4, LHW*04, LHW™*06]. The tile estimation was
correct in most of the tested cases (see figure 7), but the pro-
posed method has difficulties in some specific cases, mainly:

e The texture is a combination of non-aligned (near-)regular
textures of different lattices.

e The texture is highly geometrically distorted or the irreg-
ularities are similarly energetic to the regular structure.

Synthesis tests showed that a trade-off exists in the elec-
tion of an appropriate block size. Larger block sizes make
the synthesis faster and create less transitions thus produc-
ing nicer results. However, larger blocks also reduce the ran-
domness of the irregularities and may cause noticeable rep-
etition, something that may also be caused by a sample con-
taining too few tiles. All 256 x 256 results in figures 6 and 7
and the additional material were obtained from 128 x 128
input samples, with 40 x 40 blocks and 10px-width borders
(gap filling). The process successfully preserves the regu-
lar pattern of the input texture as long as the lattice was de-
tected correctly. Compared to direct tiling of a representative
tile, the ensured randomness of the output makes the result
look far more natural even if the irregularities create slightly
visible seams. We also observe that some discontinuities at
block junctions are created because the actual translation
vectors of the texture have non-integer coordinates (subpixel
level) but we estimate them as the pixelwise position of the
corresponding peaks in the autocorrelation making the loca-
tion of similar patches not completely accurate.

Our method does neither suffer from garbage accumula-
tion that pixel-based methods report [EL99, WLOO] nor from
any kind of accumulated misalignment that other patch-
based techniques [LLX*01, EFO1, KSE*03] may cause, as
each second block is filled with a "fresh" aligned patch in
the constrained random sampling substep. Furthermore, the
maximum disagreement between neighboring blocks is lim-
ited regardless of the output size in our technique.

We have also tested our synthesis approach with some far
from regular and some completely stochastic textures skip-
ping the analysis step and taking v; = (1,0)7, vo = (0,1)7,
thus unconstraining the selection of patches. The results are
as good or better than with existing patch-based methods in
most cases, but the sequential procedure may be more appro-
priate for some non-completely stochastic kind of textures.
Results are shown in figure 6. We also refer the reviewers to
the additional material for further results and a comparison
between our results and 1Q [EFO01].

(© The Eurographics Association 2011.
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Figure 6: Results achieved with our method for irregular textures.

6. Conclusions and Future Work

In this paper, a new approach for near-regular texture synthe-
sis has been proposed. There are two key observation behind
this method. First, a generalized version of the normalized
crosscorrelation paves the way to a simpler estimation of the
two independent vectors defining the translational symme-
try of the texture under analysis than in [LCT04]. Second,
once the two translation vectors have been estimated, we
know the 2-dimensional periodicity of the texture. Hence, it
is not necessary to take a whole tile as the unit of sampling.
We use the latter observation to form sets of similar tex-
ture patches from which we can randomly chose patches to
sparsely fill the output image, thus ensuring the randomness
of the characteristic irregularities of the texture. Finally, the
gaps left by the previous sparse synthesis are filled with suit-
able best agreeing patches from the input. Examples shown
in this paper demonstrate the high quality of the results that
our method can achieve.

Future work will concentrate on improvement of the lat-
tice estimation procedure as well as subpixel level estima-
tion of the translation vectors. Subpixel level estimation of
the translation vectors could be used to refine the location of
the similar patches when composing the output. Moreover,
simple tiling of a representative tile could be used to perform
a prior correction of geometric distortions in the input. Al-
ternatively, adaptive deformations could be applied to each
gap in the gap filling step to better agree with its neighbors
(e.g. make lines between bricks in a brick wall coincide).
Other ways to finally smooth transitions between neighbor-
ing blocks, as image quilting [EF01] or graph cuts [KSE* 03]
instead of linear blending, could as well be explored.
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Figure 7: Results of our texture synthesis approach. The small images depict the sample image with the detected lattice
structure. The center images show a result achieved by simple tiling with one texture tile and the right images show the results
achieved with our method. Note how the preservation of the small stochastic structures enhances the natural appearance of the
synthesized result.
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