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1. Introduction

Deformable objects and surfaces are ubiquitous in modern computer vision applications,
including medical imaging [Metaxas (1996)], object-based video compression [Ostermann
(1994)] and augmented reality [Hilsmann et al. (2010); Pilet et al. (2008)]. In this chapter, we
are particularly interested in tracking surfaces whose deformations are difficult to describe,
such as drapery of textiles, facial expressions or complex organ motion in medical image
sequences. Capturing non-rigid motion of such objects in 2D images is a challenging task
because the deformation field complexity is unknown a priori. Therefore, the assumed model
has to cope with various types of deformations.
Our framework makes use of image-based deformation models and formulates a robust cost
function that can be minimized with common optimization methods, like Gauss-Newton or
Levenberg-Marquardt. It is highly modular and can therefore be applied to a broad variety of
motion estimation problems, as the motion model can individually be formulated according
to the given problem. To avoid error accumulation over the image sequence, we use an
analysis-by-synthesis approach, where the error minimization is always carried out between
a synthesized reference image built from previous parameter estimates and the actual camera
frame. However, in real scenes, tracking is often influenced by varying lighting. If intensity
changes due to changes in the lighting conditions in the scene are not considered, the intensity
difference between the synthesized reference image and the current frame increases and
causes errors in the motion estimation. To avoid these errors, it is essential to also model
intensity changes between the images and warp the reference image not only spatially but also
photometrically. We will present results from different fields of applications, such as real-time
augmented reality (Figure 1), facial expression analysis (Figure 11), and medical applications
(Figure 10).
This chapter is structured as follows. Section 2 will briefly review existing literature in
the field of deformable tracking and discuss the contribution of our work. Section 3 will
give an overview of the mathematical notation used in this chapter. Following, we present
different types of deformable motion models in section 4 before we explain our approach to
image-based optimization of the model parameters in section 5. Section 6 will present results
achieved with our approach for different types of surfaces, such as cloth, faces, and medical
images.
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Fig. 1. One application we are targeting: Tracking and retexturing a piece of paper in a video
sequence (original frame with overlaid deformation mesh and retextured frames).

2. Related work

Motion between two frames is commonly described by a dense displacement vector field
which links the location of each pixel in a given frame to its location in the next frame.
Registering a model to an image and tracking of deformable objects is a large field of research
and there exists a multitude of methods. Basically, the literature on deformable surface
tracking from monocular image sequences distinguishes between marker-based [Scholz &
Magnor (2006); White & Forsyth (2006)], feature-based [Pilet et al. (2008)], and image-based
[Bartoli & Zisserman (2004); Lim & Yang (2005); Torresani et al. (2001)] methods. As markers
are not always available in real scenes, the assumption of such a-priori knowledge limits
the applicability of these methods to very special cases. Feature-based methods minimize
a distance between a few corresponding feature points, whereas direct methods minimize an
error measure that is based on image information of all pixels in the image.
Feature-based methods determine correspondences between distinct feature points and use
them to estimate the best transformation between these correspondences. Various features
have been described in the literature. Image-based feature points are e.g. local curvature
extrema or saddle points, edges or corners [Harris & Stephens (1988); Thirion (1996)] or SIFT
[Lowe (2003)] and SURF [Bay et al. (2006)]features. Popular choices of shape-features are
the shape context [Belongie et al. (2002)] or statistical moments of the shape [Chen (1993)].
Feature- based methods are mostly used to find rigid or affine transformation. If the set of
points is large enough, also more complex transformations can be determined using e.g. radial
basis functions [Bookstein (1989)]. The type of the RBF determines overall characteristics of
the transformation such as the smoothness or the locality. [Pilet et al. (2008)] proposed a
feature-based real-time method for deformable object detection and tracking that uses a wide
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baseline matching algorithm and deformable meshes. They estimate the irradiance of the
surface separately by warping the reference image to the current frame and estimating the
luminance ratio between both images.
Generally, image-based methods yield more accurate results in non-rigid deformation
estimation than feature-based methods because they exploit the entire image instead of
distinct points. [Bartoli & Zisserman (2004)] presented an optical flow based approach
that uses radial basis functions to regularize the flow field. They iteratively insert new
center-points for the radial basis functions based on examination of the error image after each
iteration. The number of centers grows until the algorithm converges. Recently, [Gay Bellile
et al. (2007)] proposed a direct method to estimate deformable motion under self-occlusions
by establishing occlusion maps and penalizing a variation in the spatial warp derivative along
some direction to prevent mesh-foldings and cope with self-occlusions. [Hilsmann & Eisert
(2008)] utilized the idea of mesh-shrinking in an optical flow-based approach by exploiting
topological relationships of a mesh-based warp to force the mesh to shrink instead of fold at
the occlusion boundary.
While, in general, marker- or feature-based methods are more robust against illumination
changes – assuming markers or features are illumination invariant – direct methods usually
minimize an error function based on the intensity differences between the aligned images.
Therefore, these methods are sensitive to illumination variations. [Gennert & Negahdaripour
(1987)] were among the first to propose a direct method robust to illumination variations.
They assume that the brightness at time t + δt is related to the brightness at time t through a
set of parameters that can be estimated from the image sequence. Several other researchers
[Bartoli (2008); Haussecker & Fleet (2001); Nastar et al. (1996); Silveira & Malis (2007)]
have exploited their ideas to make tracking more robust against lighting changes. [Bartoli
(2008)] proposed a dual inverse compositional algorithm to estimate a homography and an
affine photometric registration. The registration results are improved by the photometric
registration but only global changes are modeled and thus specular reflections or local
shadows are not taken into consideration. [Silveira & Malis (2007)] model local illumination
changes to make a homography estimation more robust against generic illumination changes.
[Pizarro & Bartoli (2007)] proposed to transform images into a 1D shadow invariant space
to achieve direct image registration in the presence of even sharp shadows. [Hilsmann &
Eisert (2009)] used an extended optical flow constraint and mesh-based models not only
as a correction factor for spatial registration but also to actually retrieve local photometric
parameters for convincing retexturing purposes in augmented reality applications.
Besides the optimization scheme, state-of-the-art methods differ in the type of the assumed
motion model. Tracking arbitrary deformable surfaces without any knowledge about the
type of deformation in monocular video sequences is an ill-posed problem as the deformation
yields too many ambiguities. Therefore, if no 3D information is required, one approach is
to track deformations in the image plane. Some researchers use 2-dimensional mesh-based
models [Pilet et al. (2008), Gay Bellile et al. (2007), Hilsmann & Eisert (2009)], others radial
basis functions [Bartoli & Zisserman (2004), Bookstein (1989)] to model deformations in
2D. If the type of deformation or a 3D shape model is known a priori, also more specific
deformation models can be used in the 3D space. Often, deformation is modeled by
weighted superposition of basis functions like superquadrics [Terzopoulos & Metaxas (1991)]
or PCA-based models [Salzmann et al. (2007)]. An important application for deformable
surface analysis is face tracking [Metaxas (1996), Eisert & Girod (1998)], where specific face
models are used to constrain the parameters to model facial deformations.
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In this chapter we will present a general framework to deformable surface tracking. In
our formulation we separate the motion model from the optimization framework and the
regularization term. This makes the framework highly modular and thus adaptive to the
given problem.

3. Notation

In general, we denote scalar valued variables with lower case roman letters, e.g. x, vector
valued variables with bold lower case letters, e.g. x, and matrices with bold upper case letters,
e.g. X. We denote a function f of a pixel position x parameterized by the parameter vector θ
by f (x;θ). The following list briefly introduces the mathematical notation used in this chapter.

A Adjacency matrix of a mesh β Barycentric coordinates
D Displacement field δθ Parameter update
η Bilinear coordinates E Cost function
ED Data term of the cost function ES Smoothness term of the cost function
fx, fy scaled focal length g f 1 × n gradient vector
H f n × n Hessian matrix I(x) Image intensity at location x
Jf m × n Jacobian matrix K Number of vertices
L Laplacian matrix l Direction of light source
n Surface normal N Number of parameters
Nk Neighborhood of a vertex vk ψg Geometric warp function
ψp Photometric warp function ψ3

d Warp function for 3D deformation
p 3D object point θ Parameter vector
θ̂ Estimated parameter vector θg Geometric parameter vector
θp Photometric parameter vector θd Parameters for 3D deformation
R Region R rotation matrix
t 3d translation vector V Diagonal matrix of vertex valences
v vertex x Pixel coordinate

4. Deformable models

In our framework, the spatial deformation and motion of a deformable surface in an image
are described by a geometric warp function

ψg(x;θ) = x +D(x;θ) (1)

of the pixel coordinates. D(x;θ) is a dense 2-dimensional pixel displacement field defined
at each image pixel x and parameterized by a parameter vector θ. Usually, two successive
frames in a natural video sequence do not only differ geometrically, but also the intensity
of a scene point can vary due to changes in the scene lighting, shading properties etc. For
deformable surfaces, the intensity of a scene point varies when the surface normals change. If
not handled correctly, varying lighting influences the geometric tracking result, especially for
tracking approaches that are based on a brightness constancy assumptions (see section 5.2).
Hence, we model intensity changes in an additional photometric warp function

ψp(I(x);θ) = ψp(x;θ) · I(x) (2)
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which is applied multiplicatively to the image intensities. Hence, the parameter vector θ
consists of a geometric part θg and a photometric part θp such that the resulting parameter
vector in our framework is given by

θ =
[
θT

g θ
T
p

]T
.

Based on the given tracking problem (type of motion, required accuracy of the deformation
field, real-time constraints etc.), different types of parameterization can be chosen. In the
following, we will present different motion models used for different types of application.

4.1 2D models
The simplest 2-dimensional model is a dense displacement field, i.e. one displacement vector
for each pixel. This dense model holds two parameters per pixel. To reduce the number of
parameters for e.g. real-time applications or to introduce prior knowledge on the deformation
field, we can also model the warp using a 2-dimensional mesh-based model with K vertices
vk. Each vertex is associated with two parameters, i.e. its displacements in x- and y-direction
dk = [dkx dky]

T . The warpsψg(x;θ) and ψp(x;θ) can then be parameterized by arbitrary basis
functions defining the deformation field. Different parameterizations will be presented below.
In each case, the geometric parameter vector is given in the following form by concatenating
the x- and y-coordinates of the displacements:

θg =
[
d1x ... dKx d1y ... dKy

]T . (3)

The photometric warp is parameterized similarly to the geometric warp by K photometric
parameters

θp =
[
ρ1 ... ρK

]T . (4)

Having defined the parameter vector, we introduce a matrix notation of the warps:

ψg(xi;θ) = xi + Mxi
g · θ

ψp (xi;θ) = mxi
p · θ (5)

where Mxi
g and mxi

p are 2 × N and 1 × N matrices defining the parameterization. The
superscript xi denotes that these matrices differ for each pixel. They depend on the type of
parameterization as well as pixel position and will be defined below. We can now easily
determine the warp Jacobians, which are required for optimization:

Jψg (xi;θ) = Mxi
g

Jψp (xi;θ) = mxi
p

(6)

4.1.1 Dense model
The dense model holds one displacement vector per pixel, such that the number of parameters
is N = 2p for a region of interest with p pixels. The matrices Mxi

g and mxi
p are zero matrices
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with only one entry in the ith, the(i + p)th and the (i + 2p)th column:

Mxi
g =

[
0... 1... 0...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 1... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]
︸ ︷︷ ︸

(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

0... 1... 0...
]︸ ︷︷ ︸

(1×K)

(7)

This model is equivalent to the classic optical flow. Due to the aperture problem, the
normal equations that arise from the matrices Mxi

g during optimization are rank deficient and
regularization is a necessity. The Laplacian smoothness term addressed in section 4.3 is one
possible choice for regularization.

4.1.2 Affine mesh-based model
In case of a mesh-based model, the number of parameters is determined by the number of
vertices in the mesh, such that N = 2K where K is the number of vertices. If a pixel xi is
surrounded by a triangle consisting of the three mesh vertices va, vb, vc with indices a, b, c and
βa, βb, βc are the three corresponding Barycentric coordinates, it can be represented by the
weighted sum of its enclosing vertices:

xi = ∑
j∈{a,b,c}

β jvj βa + βb + βc = 1, 0 ≤ βa,b,c ≤ 1 (8)

A warp with piecewise affine interpolation between the respective three surrounding vertex
positions keeps the Barycentric coordinates constant, such that the warps ψg(x;θ) and
ψp(x;θ) can then be parameterized similarly by

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c}

β jdj

ψp (xi;θ) = ∑
j∈{a,b,c}

β jρj
(9)

This can be formulated in matrix notation as in equation (5) with the following matrices

Mxi
g =

[
βa... βb... βc...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
βa... βb... βc...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]
︸ ︷︷ ︸

(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

βa... βb... βc...
]︸ ︷︷ ︸

(1×K)

(10)
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4.1.3 Bilinear mesh-based model
Similar to the affine parameterization, we can use a bilinear parameterization between the
respective four surrounding vertex positions

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c,d}

ηjdj

ψp (xi;θ) = ∑
j∈{a,b,c,d}

ηjρj

ηa = (1 − s)(1 − t), ηb = s(1 − t), ηc = t(1 − s), ηd = st

(11)

Mxi
g and mxi

p are matrices composed similarly as for the affine parameterization above except
that each row now has four entries (ηa, ηb, ηc, ηd) in the corresponding columns.

4.2 3D models
Rather than modelling the motion directly in the 2D image plane, the displacement field
(1) can be regarded as the projection of an object’s 3D motion and deformation into the 2D
domain. Similar to the 2D case, we can specify the deformation of a 3D object, given by its 3D
surface points pi, as a function of deformation parameters θd

ψ3
d(p;θd) = p +D3(p;θd). (12)

For linear deformation fields, the geometrical warp can then be expressed by a deformation
matrix Dpi

d
ψ3

d(pi;θd) = pi + Dpi
d · θd. (13)

This deformation matrix can contain any basis functions that define the deviations of object
points from a neutral shape pi. The amount of deformation performed in the local object
coordinate system is controlled by the deformation parameter vector θd. Similarly, 3D
deformation can be modelled by PCA analysis, with pi being a mean shape and Dpi

d holding
the Eigenvectors of the covariance matrix formed by several sample shapes.
A rigid body transform, specified by rotation matrix R0 and translation vector t0, can be used
to position and orient the 3D object in a world coordinate system. In addition to deformation,
the object is allowed to move which can be described by an update of rotation R with Euler
angles Rx, Ry, Rz and translation t = [tx, ty, tz]T . The entire geometrical warp in the world
coordinate system is then given as

ψ3
g(pi;θd) = R · R0(pi + Dpi

d · θd) + t + t0. (14)

For small changes of the parameter vector θd this can be approximated linearly by
approximating small rotations by a deformation along the object points’ tangents, resulting
in

ψ3
g(pi;θg) ≈ pi + Dpi

g · θg (15)

with the extended parameter vector θg.

θg = [θT
d , Rx, Ry, Rz, tx, ty, tz]

T (16)
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holding both deformation and pose parameters. The new matrix Dpi
g now covers information

from both deformation and rigid body transform

Dpi
g =

⎡
⎣R0 · Dpi

d ,

⎡
⎣ 1

0
0

⎤
⎦× (R0pi),

⎡
⎣ 0

1
0

⎤
⎦× (R0pi),

⎡
⎣ 0

0
1

⎤
⎦× (R0pi), I3

⎤
⎦ . (17)

The geometrical warp in 3D space given by (14) or (15) can be related with the 2D geometric
warp ψg via the camera projection. For perspective projection

xi = − fx · px,i
pz,i

yi = − fy ·
py,i

pz,i

(18)

with scaled focal lengths fx and fy as camera parameters, the linearized displacement field is
given by [Eisert & Girod (1998)]

ψg(xi,θ) ≈ xi +

[− 1
z(xi)

( fxDpi
g,x + xiD

pi
g,z)

− 1
z(xi)

( fyDpi
g,y + yiD

pi
g,z)

]
︸ ︷︷ ︸

Jψg

·θg (19)

with Dpi
g,x,y,z being the x−, y−, and z− component of the deformation matrix Dpi

g and z(xi)
the distance of the object point to the camera at pixel xi.
The geometric warp in the 3D case is attached in the local object coordinate system allowing a
semantically meaningful modelling of surface deformation. Similarly, the photometric scaling
can be described by compact illumination and reflection models, since geometry and surface
normal information can be derived. For a simple shading model consisting of ambient and
diffuse light with Lambertian reflection, the photometric warp ψp in (2) is given as

ψp(xi;θ) = camb + cdi f f max{n(xi) · l(xi), 0}. (20)

Here, n is the normalized surface normal of the object at a certain pixel position, while l is a
normalized direction vector pointing from the surface point to the light source. The maximum
function ensures that surface points facing away from the light source are not illuminated.
For analysis of shading parameters, the setup of equations can be limited to surface points
being known as illuminated or in shadow, thus making the non-linear maximum function
unnecessary. The resulting photometric parameters are then given as

θp = [camb, cdi f f nxlx, cdi f f nyly, cdi f f nzlz]T (21)

and the individual components of cdi f f nxlx can be derived exploiting that both n and l have
unit length. In the same way, higher order reflection models can be considered or even PCA
spaces modelling pre-computed variations of a lightmap attached to the object surface as
described in [Eisert (2003)].
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4.3 Model smoothness
It is a reasonable a priori assumption for tracking deformable objects like cloth or tissue
that the shape and its motion and deformation is smooth and continuous rather than rough
and erratic. This assumption can be expressed by a smoothness term, i.e. a function that
will associate a cost with undesired, non-smooth model states. Including this function
in the optimization later on will lead to a preference of smooth results over rough ones.
Algebraically, a smoothness term can also be interpreted as a regularization, especially in the
case of the dense model where the data term leads to rank deficiency in the normal equations
due to the aperture problem.
Often, smoothness is associated with a vanishing second derivative of a function. Hence, to
force a model to be smooth, one can penalize the discrete second derivative of the motion
parameters by applying a discrete Laplace operator [Wardetzky et al. (2007)]. The Laplace
Matrix of a 2-dimensional grid is often defined as

L = V − A, (22)

where V is a diagonal matrix of the vertex valences and A is the adjacency matrix of the grid.
Hence, the Laplace Matrix is based on the neighborhood definition in a grid and for a mesh
with K vertices it is a K × K matrix with one row and one column per vertex. Lij = −1
if vertices vi and vj are connected and Lii = |Ni|, where the first subscript denotes the
row and the second the column, respectively. |Ni| denotes the number of vertices in the
neighborhood Ni of vertex vi. There exist several versions of a scaled Laplace matrix with
entries Lij = wij if vertices vk and vl are connected and Lii = −1 with different weighting
schemes and different definitions of the neighborhood which influence the smoothing behavior
of the Laplacian [Taubin (1995)]. The simplest one is a uniform scaling with

wij =
1

|Ni| (23)

where |Ni| denotes the number of vertices in the neighborhood Ni. In order to give closer
neighbors a higher influence on vertex vi than neighbors with a larger distance, we can also
weight each neighbor according to its distance to vertex vi. In this case the weight is

wij =
1/DEuc

ij

∑n∈Ni
1/DEuc

in
(24)

where DEuc
ij denotes the Euclidian distance between the two vertex positions vi and vj.

The Laplacian can be applied to any parameter θ associated with the mesh vertices. The
distribution of these parameters over the mesh is perfectly smooth in the aforementioned
sense if

∇θ = L · θ = 0

where θ denotes the set of parameters θ1...θK .

4.3.1 Laplacians and mesh boundaries
The Laplacian matrix explained above does not treat the mesh borders differently from
the vertices inside the mesh. For example, the product of the Laplacian and the mesh
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vertex coordinates of an undeformed 2-dimensional mesh is not zero at the borders,
‖L · vx‖ > 0,

∥∥L · vy
∥∥ > 0. This is due to the asymmetric vertex neighborhood at the mesh

boundaries.

One solution is to build Directional Laplacian matrices Ld of the mesh which penalize the second
derivatives in different directions, i.e. vertical and horizontal, separately. For each direction of
vertex connections one Laplacian is built, with one row for each vertex that has two neighbors
in the same direction. For example Ld

ii = 2 and Ld
ij = −1 if vertices vk and vl are connected

in the direction d. Each row in Ld corresponds to one vertical vertex triple. The complete
Laplacian is build by concatenating the Directional Laplacian matrices L =

[
Ld1 ... Ldn]T . This

type of Laplacians has several advantages. First, the product of this Laplacian with the mesh
vertices of an undeformed mesh is zero as only symmetric neighborhoods, i.e. neighbors
which have a directional counterpart, are taken into account. Second, by building separate
Laplacians for each direction, we provide more constraints at the border vertices than one
Laplacian for the full neighborhood.

5. Image-based optimization of the model parameters

Independent of the individual parameterization, the parameters θ of the underlying model
are estimated by minimizing a cost function:

θ̂ = arg min
θ

(ED(θ) + λ2ES(θ)) (25)

where ED(θ) is the data term and ES(θ) represents prior assumptions and is often called
the smoothness term. We formulate both terms in a robust non-linear least-squares sense.
This allows to minimize the cost function with common optimization algorithms such as
Gauss-Newton (GN) or Levenberg-Marquardt (LM), i.e. by iteratively solving for a parameter
update δθ̂ and updating the parameter vector θ̂ ← θ̂ + δθ̂. The optimization is performed
hierarchically on an image pyramid where each level yields a more accurate parameter
estimate. This hierarchical framework has several advantages. It speeds up the iteration time
on lower and coarser levels and also allows us to cope with large displacements.
This section will concentrate on the formulation of the data and smoothness terms for
different scenarios. For the data term, we exploit a relaxed version of a brightness constancy
assumption accounting not only for geometric but also intensity differences between two
images. The smoothness term in our framework makes use of a discrete formulation of the
Laplacian defined on a 2-dimensional grid as formulated in section 4.3. We will describe
the characteristics of different formulations of the Laplacian. Furthermore, we will cover
numerical aspects for the estimation of the dense model.

5.1 Optimization framework
Both data term and smoothness term of equation (25) can be expressed in the following form:

E(θ) =
m

∑
i=1

ρ(ri(θ)) (26)

ρ(ri(θ)) is a norm-like function [McCullagh & Nelder (1998); Wedderburn (1974)], i.e. a
symmetric, positive-definite function with a unique minimum at zero, which is chosen to be
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less increasing than square. The ri are the residuals of the particular term. The minimization
is computed by an iteratively reweighted least-squares (IRLS) method which is known to be
a Gauss-Newton type method for minimizing a sum of norm-like functions of the residuals
[Huber (1981)]. In this scheme, the gradient and the (approximated) Hessian of the error
function are given by

gE = rTWJr

HE ≈ Jr
TWJr

(27)

where r = r(θ), Jr = Jr(θ) and W = diag(w(ri(θ))) is a weight matrix computed in each
iteration with

w(ri) =
1
ri

∂ρ(ri)

∂ri
(28)

An efficient and well known norm-like function is the Huber estimator [Huber (1981)]

ρ(ri) =

{ 1
2 r2

i i f |ri| ≤ υ

υH |ri| − 1
2 υ otherwise

(29)

which is a parabola in the vicinity of zero, and increases linearly at a given level |ri| > υ. The
weight function for the Huber kernel is given by

w(ri) =

{
1 i f |ri| ≤ υH
υH
|ri | otherwise (30)

For ρ(ri) = 1
2 r2

i , the weight matrix is the identity and the method is equivalent to the
(non-robust) Gauss Newton algorithm for non-linear least squares problems. In each iteration
a parameter update is estimated by solving the normal equations

δθ̂ = −
(

Jr
TWJr

)−1
rTWJr (31)

The parameter is then updated by θ̂ ← θ̂+ δθ̂.
For deformable surface tracking, we use the Huber kernel as a robust estimator for the data
term and the two norm for the smoothness term. The matrices and vectors of our normal
equations therefore are

J =
[

Jr(θ̂)
λJs(θ̂)

]T

b =

[
r(θ̂)
s(θ̂)

]T

W̃ =

[
W 0
0 1

]
. (32)

where r and s are the vectors of the residuals of the data and the smoothness term, respectively,
which will be explained in detail in the following sections.

5.2 Data Term
The data term is based on a relaxed brightness constancy assumption. Methods exploiting
the brightness constancy constraint assume that an image pixel x representing an object point
does not change its brightness value between two successive frames In−1 and In:

In−1
(
ψg(x;θn)

)
= In (x) (33)
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However, this assumption is almost never valid for natural scenes. For this reason, we relax
the optical flow constraint equation allowing for multiplicative deviations from brightness
constancy:

ψp(x;θn) · In−1
(
ψg(x;θn)

)
= In (x) (34)

with a photometric warp ψp(x;θn) and a geometric warp ψg(x;θn) as given in equation (5).
Hence, the data term is formulated via the differences between the original frame In and the
spatially and photometrically warped previous frame In−1:

ED(θ) = ∑
xi∈R

ρ(ψp(xi;θn−1) · In−1
(
ψg(xi;θn−1)

)− In(xi)︸ ︷︷ ︸
ri

) (35)

where ρ(ri) is a norm-like function. Both warp functions are parameterized by the parameter
vector θ which comprises a geometric part θg and a photometric part θp as in equation (4).
The Jacobian Jr of the residuals ri is a p × N matrix (with p being the number of pixels in the
region of interest) with the following ith row:

∂ri(θ)

∂θ
= ψp(xi;θ) · ∇In−1(ψg(xi;θ)) · Jψg (xi;θ) + In−1(ψg(xi; θ̂)) · Jψp (xi;θ) (36)

with ∇I =
[

∂I
∂x

∂I
∂y

]
. The Jacobians of the warps Jψg (xi;θ) and Jψg (xi;θ) depend on the warp

parameterization. In general, it is a 2 × N matrix where N is the number of parameters in the
parameters vector θ as given in equation (6) or (19).

5.3 Smoothness term
The smoothness term is defined to regularize all parameters, geometric and photometric ones,
using some suitably chosen Tikhonov regularizer

ES(θ) = ‖Γ · θ‖2 . (37)

In the simplest case (zeroth-order Tikhonov regularization) Γ is the identity matrix Γ =
I, giving preference to solutions with smaller norms. Other possible regularizations
include first-order or second-order Tikhonov regularizations, where Γ approximates first- or
second-order derivatives of the parameter, favoring flat or smooth results.
For the 2-dimensional models, the Laplacian matrix for 2-dimensional grids explained in
section 4.3 define such an approximation of the second derivative of the mesh. As the
parameter vector consists of three parts which should be regularized independently, the
Tikhonov matrix is given by

Γ =

⎡
⎣L 0 0

0 L 0
0 0 λpL

⎤
⎦ (38)

A similar regularization matrix can be formulated for the 3-dimensional models. λp weights
the smoothing of the geometric parameters (vertex displacements in x− and y-direction)
against the smoothing of the photometric scale. This is necessary due to the different scaling
of the pixel displacement and the photometric parameter, the former being additive and the
latter multiplicative. The Jacobian of the smoothness term is Js(θ) = Γ.
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Fig. 2. Example structure of Hr ≈ Jr
TJr

and H ≈ JTJ for an affine mesh-based
model.
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Fig. 3. Eigenvalues of the matrix with and without
the smoothness term. Without the smoothness term
the matrix is ill-conditioned.

By using a regularizer as given in equation (38), ES(θ) penalizes the discrete second derivative
of the mesh and regularizes the flow field in addition to the motion model itself, especially in
case of insufficient information in the data due to e.g. homogeneous regions with low image
gradient. One important advantage of using direct image information instead of features is,
that a lack of image information, i.e. image gradients of small magnitude in regions of little
texture, automatically lead to a higher local weighting of the smoothness constraint in these
regions. Also, the function dominates for vertices detected as outliers when using e.g. the
Huber function for robust estimation.

5.4 Numerical issues
For all models presented in section 4 the approximation of the Hessian H = JTJ is a sparse
banded matrix (see Figure 2). The sparsity can be exploited to solve the resulting normal
equations in each iteration, especially for the dense model where the matrix becomes very
large but also very sparse: There are two unknowns per pixel, but there is no coupling of
unknowns in the data term. This is in contrast to the affine warp, where all pixels under
a certain mesh triangle simultaneously contribute to the six unknowns associated with the
triangle’s three vertices.
To solve the normal equations for the dense warp in an efficient way, multigrid algorithms
can be used. The multigrid scheme exploits the fact that certain iterative solvers, e.g. the
computationally inexpensive Gauss-Seidel method, reduce high frequency errors quickly
despite of overall slow convergence. Therefore, these algorithms can be used as smoothers.
After a few smoothing iterations the problem is subsampled to a lower resolution pixel grid
and the process is restarted. Only at the bottom stage, the problem, which is now significantly
reduced in size, is solved exactly. The exact solution is then propagated upwards to the higher
resolution levels. The whole process is called a V-cycle in the multigrid literature.

5.5 Analysis by synthesis
Generally, intensity-based differential techniques, which estimate the motion only between
two successive frames, often suffer from drift because they accumulate errors indefinitely.
This limits their effectiveness when dealing with long video sequences. To avoid
error accumulation we make use of an analysis-by-synthesis approach, where the error
minimization is always carried out between a synthesized reference image and the actual
camera frame. We use the previous parameter sets {θ̂1, ...θ̂n−1} to generate a synthetic version
of the previous frame In−1 from a model image I0. The new parameters θ̂n are then estimated
from this synthetic previous frame În−1 to the current camera frame In (see Figure 4). This
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Fig. 4. Analysis by Synthesis framework

way, the model frame serves as reference frame and we assure that no misalignment of the
model and the previous frame occurs. Thereby, we allow for recovery from small inaccuracies
during parameter estimation.

6. Experimental results

Our approach has been applied to several tracking problems, such as tracking cloth in
augmented reality applications, medical image analysis, and facial expression analysis. The
different applications will be explained in detail in section 6.3. Section 6.1 and 6.2 focus on
experiments on the registration accuracy achieved with our framework and a mesh-based
2-dimensional model as well as on choosing the regularization parameter in the optimization
framework.

6.1 Registration accuracy
We evaluated the registration results of real image sequences based on the Root Mean Squared
Error (RMSE) between the synthetic image În generated from the parameter estimates θ̂n and
the original current frame In computed over all image pixels in the mesh region R for several
video sequences and compared our approach with the classical optical flow approach. With
classical optical flow approach we refer to the original optical flow constraint that does not
account for illumination changes, the geometric deformation model and optimization method
are equal. Experiments with nine sequences showed that taking illumination parameters into
account significantly improves the spatial tracking results. The table in Figure 5 sums up the
mean RSME values over the entire sequence for these nine sequences. It shows that taking
illumination parameters into account significantly reduces the mean RMSE over the entire
sequence by up to 74%. The right image shows the RSME plot of one of the sequences and
compares the results achieved with our approach (black solid line) to the classical optical flow
method (dashed red line). Additionally, we manually labeled prominent feature points in
every 50th frame of two test sequences which serve as ground truth points. We then warped
the ground truth points of the reference frame with the geometric deformation parameters of
these frames. The mean difference between the estimated positions and the manually labeled
ground truth position describes the geometric registration error. This additional evaluation
approach is chosen to evaluate geometric registration accuracy separately from photometric
registration. We can reduce the mean distance between the estimated and the ground
truth position by approximately 40% when taking illumination into account. In all these
experiments we used a 2-dimensional mesh-based affine motion model and a regularization
parameter λ = 0.5.
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Sequence classical our %
OF approach

Picasso 0.0306 0.0204 33.33%
Flower1 0.1364 0.0415 69.57%
Flower2 0.1245 0.0376 69.80%
Art 0.1016 0.0258 74.61%
Flower3 0.1286 0.0385 70.06%
Shirt 0.0630 0.0405 35.71%
Pattern 0.0632 0.0213 66.30%
Cloth1 0.0877 0.0443 49.49%
Cloth2 0.0976 0.0513 47.44%
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Fig. 5. Left: Comparison of the average RMSE over the entire video sequence with our
approach and classical optical flow. Right: Plots of the RMSE between the synthetic frame În
and the original current frame In with classical optical flow (dashed red) and our method
(solid black) for an example sequence.

6.2 Choosing the regularization parameter
Choosing the regularization parameter λ in the optimization framework is not an easy task.
The choice of λ describes a trade-off between fitting to the data term –which may be corrupted
by noise– and the smoothness of the result. Hence, there is no correct λ as the trade-off depends
on the considered problem. We can only define a reasonable λ, i.e. a λ which represents the best
balance between both sides. The influence of the regularization parameter λ can be analyzed
using the L-curve [Hansen (1992)], which plots ED(θ̂) against ES(θ̂) for different values of λ.
The L-curve (see Figure 7) is basically made up of two parts which correspond to oversmoothed
and undersmoothed solutions. The more horizontal part corresponds to the solution where the
regularization parameter is very large and the solution is dominated by the regularization
errors. The more vertical part corresponds to solutions where the regularization parameter
is very small and the solution is dominated by the data error. Often, a reasonable λ, i.e. a
good trade-off between fitting to the data and smoothness term, is considered to be the point
of maximal curvature of the L-shaped curve or the point nearest to the origin. Figure 6
shows the influence of different choices for λ. It shows examples of difference images before
optimization (left) and for different values of λ. If λ is chosen too small, the result is dominated
by the (noise corrupted) data term and if λ is chosen too small, the result is too smooth to be
fitted to the data term. Figure 7 shows a typical L-Curve and associated values for the data
and smoothness terms for different values for λ.

6.3 Applications
We applied the proposed framework to different fields of applications, presented in the
following.
Augmented reality
The proposed method was used for augmented reality applications where a deformable
surface, like a piece of paper or cloth, is retextured in a monocular image sequence. The
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Fig. 6. Difference image between the model frame and an example current frame before
motion estimation (left). Difference images after optimization with very small λ
(undersmoothed), reasonable λ and very large λ (oversmoothed).
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x 10−4

6

8 x 10−5

Es

E d

λ ED/10−5 ES/10−5

0.01 4.7357 20.535
0.1 4.7449 1.1588
0.2 4.7494 0.5137
1 4.7957 0.0285
5 5.0331 0.0106
10 5.7310 0.0043
100 7.5944 0.0000
1000 7.6385 0.0000

Fig. 7. A typical L-curve and associated values for ED and ES for different values for λ

intention is to blend a virtual texture into a real video sequence such that its deformation as
well as lighting conditions and shading in the final image remain the same (see e.g. Figure
1). We recover geometric and photometric parameters that describe the 2-dimensional
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Fig. 8. Tracking and synthesizing different kinds of cloth. The left example shows thick cloth
with very smooth deformations while the right example shows cloth that produces small
crinkles and creases.

Fig. 9. Tracking and retexturing clothes in an augmented reality application (left: original
frame with mesh)

deformation and shading properties of the projected surface in the image plane with the
proposed method. The virtual texture is then deformed with the estimated deformation
parameters and blended into the original video sequence. A shading map estimated from
the photometric parameters is applied to the virtual texture increasing the realistic impression
of the augmented video sequence.

Figure 1, 8, and 9 show augmentation results under different lighting conditions using the
estimated illumination parameters to establish a shading map. These examples demonstrate
how crucial illumination recovery is for convincing texture augmentation of deforming
surfaces. The addition of realistic lighting increases the perception of spatial relations between
the real and virtual objects. Note, that spatial deformation is purely 2D and the 3-dimensional
impression comes from shading. The results from Figure 9 are images from a real-time
augmented reality application which we built. In this Virtual Mirror a user is captured with
a camera and a rectangular pattern on his shirt is retextured with a user-defined logo or
image with correct deformation and illumination. The new logo follows the users movements
as if attached to his shirt. The system runs at 25 fps and the images have a resolution of
768 × 1024 pixels. To this end we use 4 levels of resolution and experiments with synthetic
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image sequences with this hierarchical scheme showed that it is able to estimate displacements
of up to 25 pixels between two frames with a mean error of 0.2 pixels. On a 2.4 GHz Pentium
4 based system the parameter estimation takes about 40 ms, leading to a frame rate of about
25 fps.
Medical imaging
Our framework is used to stabilize kymographic images. Kymographic imaging is a method
for visualizing and analyzing motion. In our use case, it is the vibration of the human vocal
folds that is to be visualized. The source material are endoscopic video recordings showing
the vocal folds while the patient tries to produce a sound at a certain frequency. Instead of
analyzing video images of the whole moving vocal folds, a single line of each frame in the
recorded image sequence is extracted. The lines are combined to create a kymogram which
is then analysed by the physician. A kymogram is a time slice of the vibratory behaviour of
the vocal folds, i.e. an X-t-image rather than an X-Y image. Camera movement and motion
of the patient as a whole disturb the creation of the kymographic images which relies on the
assumption that a certain scanline of the frames displays roughly the same part of the vocal
fold throughout the entire endoscopic video sequence. Therefore, kymographic imaging can
be greatly improved by compensating camera motion.
We use the methods described in the chapter to compute a deformation field between
successive frames in the endoscopic video sequence. The field is computed with the
mesh-based affine model. The stiffness, i.e. the weighting of the Laplacian smoothness term,
is chosen such that the deformation field adapts to global image motion due to camera
movement as well as to the parallax motion induced by different depth layers in the scene.
It is set too stiff, however, to compensate for the motion of the vocal folds, which must not be
altered by the image stabilization. From the deformation fields, the global motion of a region
of interest, which is annotated manually in the first frame, is tracked throughout the sequence.
A stabilizing transformation for each frame is found by estimating a rigid transformation that
maps the region of interest to its correspondence in the first frame. Figure 10 illustrates the
vast increase in kymogram quality achieved by the motion compensation.
Our dense, warp-based approach to image stabilization has several advantages over the
classic approach based on feature tracking. Our approach allows us to optimize for a dense
motion field using all available image information. This is particularly effective for images
of low quality. The endoscopic video we stabilize, for example, suffers from artifacts due
to interlacing, image noise, occasional color artifacts and motion blur. We found simple
feature detectors such as Harris corners virtually unusable on this material. Furthermore,
the optimization approach gives a complete and accurate estimate of nonrigid image motion
at a certain scale as the result of a single optimization process. Outliers in the data term are
handled during the optimization by the robust error metric (in this case, the Huber function)
and there is no need to perform RANSAC or other data selection schemes. Finally, the density
of the mesh and the weight of the stiffness term allows us to regulate precisely to which scale
of nonrigid motion the algorithm adapts.
Facial Expression Analysis
The human face is a well known example for a deformable object. Head pose can be described
by rigid body transforms whereas facial expressions lead to local surface deformations. These
deformations, however, are constrained and depend on face muscle and soft tissue properties.
Analyses have shown [Ekman & Friesen (1978)], that there are only about 50 groups of
muscles in the face, that can be controlled independently when performing facial expressions.
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Fig. 10. Kymography: uncompensated and compensated kymographic images.

Therefore, surface deformations as specified in (12) can compactly be described by a limited
number of facial expression parameters.
We have applied the framework described in this chapter to the estimation of facial expression
parameters [Eisert (2003); Eisert & Girod (1998)]. The geometry of a head is represented by
a parameterized generic triangle mesh model, which is individualized by applying surface
deformations represented by shape parameters to a standard face geometry. The model is fit
to the first frame of a video sequence, which is also projected onto the 3D model as texture.
For the description of facial expressions, we have adopted a subset of the MPEG-4 Facial
Animation Parameters (FAPs according to [MPG (1999)]), which describe facial expressions
by a superposition of simple local surface deformations related to movements of lips, chin,
cheeks, etc. In our experiments, we use 21 facial expression parameters θd together with 6 pose
parameters to specify surface deformation and orientation according to (14). The mapping
from FAPs to arbitrary surface points deformation given by Dd is modelled using triangular
B-splines.
Given the three-dimensional model description, the facial expression parameters are jointly
estimated with the global pose parameters in an analysis by synthesis frame work as described
in section 5.5. The per-pixel depth information required in (19) as well as the surface normal
data are rendered and read back from the graphics card. Smoothness terms penalize FAP
differences between the left and right side of the face, favoring symmetric facial expressions.
In addition to the geometric deformations, parameters related to illumination are estimated
to compensate for lighting changes between the model created for the first frame and the
current scene. A simple model with ambient and diffuse colored light is used to describe
the photometric changes. Figure 11 gives examples for the facial expression analysis of the
proposed framework. From the original frames in the leftmost column, surface deformations
are estimated. The deformed model is shown by means of a wireframe and textured
representation in the middle columns. The facial animation parameters can also be applied to
other face models, implementing expression cloning as illustrated in the rightmost columns
of figure 11.

7. Conclusion

We presented a complete framework for tracking of deformable surfaces using image-based
optimization methods. We use a relaxed brightness constancy assumption and model both
geometrical as well as photometrical changes in an image sequence. In our framework
formulation we separated the motion model from the optimization method which makes
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Fig. 11. 3D facial expression analysis. The left colum shows example frames of the original
sequence. Facial expression parameters of a deformable face model are estimated. The
second column shows the animated mesh, while the third column depicts the textured
model. The rightmost column refers to expression cloning where the deformation parameters
are mapped onto a different person’s model.

it highly adaptive to a broad variety of motion estimation problems, as the motion model
can be formulated individuallyfor the given problem. This is shown by a broad variety of
applications where we applied the proposed framework.
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