Overview
• Dynamic texture overlay for real-time visualization of garments
• Tracking of complex garment deformations from monocular images exploiting optical flow constraints
• Illumination and shading recovery from original image

Optical Flow Based Garment Tracking
• We exploit the optical flow constraint along with a predefined motion model. Finding the best transformation amounts to minimizing a quadratic error that can be solved in a least squares sense:

\[E = \sum_{i,j} \left(\nabla I(x_i,y_j) \cdot d(x_i,y_j) + \frac{\partial I}{\partial t}(x_i,y_j) \right)^2 \]

• We use a mesh-based motion parameterization:

\[d(x_i,y_j) = \sum_{j=1}^{3} B_j(x_i,y_j) \cdot \delta \bf{v}_j \]

• Incorporating additional smoothing constraints yields:

\[E = \sum_{i,j} \left(\nabla I(x_i,y_j) \cdot d(x_i,y_j) + \frac{\partial I}{\partial t}(x_i,y_j) \right)^2 \]

\[+ \lambda \sum_{k=1}^{N} w_k E_s(\delta \bf{v}_k) \]

with

\[E_s(\delta \bf{v}_k) = \left(\delta \bf{v}_k - \frac{1}{|N_k|} \sum_{n \in N_k} \delta \bf{v}_n \right)^2 \]

Self-Occlusion Handling
• Foldings of the 2D mesh at self-occlusion boundaries cause inaccuracies during tracking. Self-occlusions are handled by weighting the smoothing constraints locally according to the self-occlusion of a region [1].

Illumination and Shading Recovery
• Tracking and retexturing from monocular images without 3D reconstruction requires an estimation of illumination and shading.

• The input images already exhibit the illumination and shadows to be rendered onto the virtual texture.

• We use textures that consist of points, lines or curves and a shading map is established by removing the structure and interpolating the intensity of the texture pixels.

• The result is a smooth shading map that preserves shadows at main wrinkles and fold overs.

Results
• Robust deformable surface tracking method from monocular images sequences that can cope with strong deformations and partial self-occlusions.

• The exploitation of real lighting for retexturing increases the realistic perception of the virtual texture.

• The method is integrated into a real-time Virtual Mirror setup for virtual garment fitting.

Acknowledgements
The work presented in this paper has been developed with the support of the European Network of Excellence ViSNET II (Contract IST-1-038398).

References

Cloth tracking and retexturing. Original images and augmented results (left to right)