

1Marpe et al.: Video Compression Using Context-Based Adaptive Arithmetic Coding, to be published in ICIP’01, Thessaloniki, Greece.

VIDEO COMPRESSION USING CONTEXT-BASED ADAPTIVE ARITHMETIC CODING

Detlev Marpe, Gabi Blättermann, Guido Heising, and Thomas Wiegand

Image Processing Department
Heinrich-Hertz-Institute

Einsteinufer 37, D-10587 Berlin, Germany
[marpe,blaetter,heising,wiegand]@hhi.de

ABSTRACT
A new entropy coding scheme for video compression is
presented. Context models are utilized for efficient
prediction of the coding symbols. A novel binary adaptive
arithmetic coding technique is employed to match the
conditional entropy of the coding symbols given the
context model estimates. The adaptation is also employed
to keep track of non-stationary symbol statistics. Our new
approach has been integrated into the current ITU-T
H.26L test model (TML) to demonstrate the performance
gain. By using our new entropy coding scheme instead of
the current one variable length code approach of the
current TML, large bit-rate savings up to 32% can be
achieved. As a remarkable outcome of our experiments,
we observed that high gains are reached not only at high
bit-rates, but also at very low rates.

1. INTRODUCTION

In this paper a new adaptive entropy coding scheme for
video compression is presented which employs a context-
based adaptive binary arithmetic coding scheme. This
concept is known to be a highly efficient entropy coding
means. Therefore, it became part of the emerging still
image compression standard JPEG-2000 [1], but up to
now, it has rarely been used for video compression. The
advantages of such an approach are threefold compared to
entropy coding using a fixed table of variable length codes
(VLC).
1. Context modeling provides estimates of conditional

probabilities of the coding symbols. Utilizing suitable
context models, given inter-symbol redundancy can be
exploited by switching between different probability
models according to already coded symbols in the
neighborhood of the current symbol to encode.

2. Arithmetic codes permit non-integer number of bits to
be assigned to each symbol of the alphabet. Thus the
symbols can be coded almost at their entropy rate [9].
This is extremely beneficial for symbol probabilities
much greater than 0.5, which often occur with efficient
context modeling. In this case, a variable length code

has to spend at least one bit in contrast to arithmetic
codes, which may use a fraction of one bit.

3. Adaptive arithmetic codes permit the entropy coder to
adapt itself to non-stationary symbol statistics.
Normally, the statistics of motion vector magnitudes
vary over space and time as well as for different
sequences and bit-rates. Hence, an adaptive model
taking into account the cumulative probabilities of
already coded motion vectors leads to a better fit of the
arithmetic codes to the current symbol statistics.

In our prior work this technique was used to improve the
coding efficiency of a hybrid video coding scheme, which
is based on warping prediction and wavelet-based residual
coding [10]. In this paper, we demonstrate that the
context-based adaptive arithmetic coding approach along
with new techniques for fast adaptation is also well suited
for the current ITU-T H.26L video codec [7] and that
large bit-rate reductions are achievable.

The paper is organized as follows. In the next section
a short introduction of the major features of the current
test model of H.26L is given. Special emphasis will be
given to the entropy coding part. In Section 3, context-
based adaptive entropy coding for H.26L is described.
Simulation results in section 4 validate the efficiency of
the new technique.

2. THE ITU-T H.26L PROJECT

In 1998, the Video Coding Experts Group of ITU-T Study
Group 16, Q.6 (earlier known as Q.15) started to develop
a new video compression algorithm in a standardization
project named H.26L. The promotion of the first version
(H.26L baseline) is scheduled for late 2002. The two main
targets of this project are: a) coding efficiency, i.e. to
reduce the bit-rate for a given subjective quality compared
to H.263+ (TMN10) by about 50%, and b) network
friendliness. With the current version (TML4 [7])
considerable improvements in coding efficiency of 20-
40% are already achievable. The main features of TML4
are as follows:

2Marpe et al.: Video Compression Using Context-Based Adaptive Arithmetic Coding, to be published in ICIP’01, Thessaloniki, Greece.

• Spatial intra block prediction
• 4x4 block transform
• Motion compensation with multiple block sizes
• Multiple reference frame prediction
• Quarter-pel motion accuracy
• Rate-distortion optimized encoder decisions

Entropy coding in TML4 uses a single VLC for all syntax
elements. The VLC table is based on the universal variable
length code (UVLC) [2] which is constructed by inter-
leaving the unary code for  )1log(+= cγ with the binary

representation of γ21 −+c for a given symbol c, as shown
in Table 1. The relationship between syntax symbols and
UVLC codewords is established by means of a mapping
for each syntax element, which reflects the expected
statistics of the corresponding syntax symbols [7].

Table 1: Universal variable length code (UVLC) constructed by
interleaving unary (grey shaded) and binary codes.

In a number of contributions [3][4][5] it has been
shown, that the entropy coding method of the current
H.26L test model is not optimal with respect to coding
efficiency. The simple design of the UVLC implies that
the underlying probability distribution is assumed to be
static and that correlations between symbols have to be
ignored. In addition, the need to spend at least one bit per
symbol when using the UVLC calls for a blocking
mechanism of syntax symbols. In order to improve on the
restrictions given by a static distribution, proposals were
made either to modify the VLC design [4][5] or to adapt
the mapping between syntax elements and UVLC
codewords [3].

However, addressing the other deficiencies of the
current entropy coding method of TML4 as well, we
developed a more fundamental approach based on context-
based adaptive binary arithmetic coding which includes a
number of techniques for rapid adaptation to the varying
statistics of syntax elements as will be described in next
section.

3. CONTEXT-BASED ADAPTIVE ENTROPY
CODING

3.1. Overview
In the following, we give a short overview of the main
coding elements of our proposed entropy coding scheme
as depicted in Figure 1. Suppose a symbol related to an
arbitrary syntax element is given, then, in a first step, a
suitable model is chosen according to a set of past
observations. This process of constructing a model
conditioned on neighboring symbols is commonly referred
to as context modeling and is the first step in the entropy
coding scheme. The particular context models that are
designed for H.26L are described in detail in Section 3.3.

Figure 1: Generic block diagram of our proposed entropy
coding scheme

If a given symbol is non-binary valued, it will be mapped
onto a sequence of binary decisions, so-called bins, in a
second step. The actual binarization is done according to a
given binary tree, as specified in Section 3.2. Finally, each
binary decision is encoded with the adaptive binary
arithmetic coding (AC) engine using the probability
estimates, which have been provided either by the context
modeling stage or by the binarization process itself. The
provided models serve as a probability estimation of the
related bins, and, as will be shown in the next section,
there is a close relationship between the probability
distribution of a given code symbol and those of the
elements of its binary equivalent. After encoding of each
bin, the related model will be updated with the encoded
binary symbol. Hence, the model keeps track of the actual
statistics.

3.2. Binarization of Non-Binary Valued Symbols
All non-binary valued symbols are decomposed into a
sequence of binary elements. Except for the syntax
element of macroblock type, we use the binarization given
by the unary code tree, shown in Table 2. Those unary
codes are known to be optimal for sources with geometric
probability density functions (pdf) p(x) = 2–(x+1) [8].

In practice, however, a geometric pdf is only a good
first-order approximation for the most probable symbols
and even for those symbols deviations from a geometric
distribution are very likely. Hence, each element of the
“intermediate” codeword given by the binarization will be
encoded in the subsequent process of binary arithmetic
coding.

Code symbol Code words
0 1
1 0 0 1
2 0 1 1
3 0 0 0 0 1
4 0 0 0 1 1
5 0 1 0 0 1
6 0 1 0 1 1
7 0 0 0 0 0 0 1
8 0 0 0 0 0 1 1

.

3Marpe et al.: Video Compression Using Context-Based Adaptive Arithmetic Coding, to be published in ICIP’01, Thessaloniki, Greece.

(a) (b)

Figure 2: Illustration of the encoding process for a given residual motion vector component mvdk(C) of a block C: (a) Context selection
rule. (b) Separation of mvdk(C) into sign and magnitude, binarization of the magnitude and assignment of context models to bin_nos.

By using the possibility to discriminate between different
bins by their position (bin _no.) in the binary sequence, we
can relate different models to different code symbols. For
example, the probability of the binary event “1” in the
second column of Table 2, which is related to bin_no.=2
(darkgrey shaded), corresponds to the probability of the
code symbol=1 provided that different probability models
for different bin_nos. are used. Thus, binary AC reveals
the statistics of the original code symbols by means of
selecting different models at different bin_nos., i.e. it
behaves as an m-ary AC initialized with a geometric
distribution.

Code symbol Binarization

0 1
1 0 1
2 0 0 1
3 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 0 1

.
Bin_no. 1 2 3 4 5 6 7 . .

Table 2: Binarization by means of the unary code tree

However, binary AC offers some advantages compared to
m-ary AC: first of all, it allows for a fast adaptation by a
simple mechanism. Secondly, the zero frequency problem
[9], that is the assignment of a minimum probability to
each possible symbol is avoided in the binary case, where,
for instance, a distinct model can be used for all “large”,
i.e. less probable symbols. A third advantage is given by
using context models, since binarization allows us to re-
strict the context models to a small subset of bin_nos. By
doing so, the problem of “context dilution” is alleviated,
which often appears in the case of overfitting by context
models such that the learning phase of each model may
exceed its actual usage in an adaptive AC. Finally, since
the probability of large code symbols is typically very low,
the overhead of coding each bin of a given code symbol in
a binary AC instead of using only one pass in a m-ary AC

is very low and can be easily compensated by using a fast
multiplication-free binary AC like e.g. the MQ-coder [1].

3.3. Context Modeling
Context models have been designed for coding of syntax
elements related to motion, mode and texture information.
In the following, we only give a detailed description of the
context models used for encoding of the motion vector
data; further details can be found in [6].

Motion vector data consists of residual vectors obtained
by applying motion vector prediction. Thus, it is a
reasonable approach to build a model conditioned on the
local motion vector prediction error. A simple measure of
the local motion vector prediction error at a given block C
is given by evaluating the L1-norm ek(C) of two
neighboring motion vector prediction residues mvdk(A)
and mvdk(b) for each component of a motion vector
residue mvdk(C) of a given block, where A and B are
neighboring blocks of block C, as shown in Figure 2a. If
one of the neighboring blocks belongs to an adjacent
macroblock, we take the residual vector component of the
leftmost neighboring block in the case of the upper block
B, and in the case of the left neighboring block A we use
the topmost neighboring block. If one of the neighboring
blocks is not available, because, for instance, the current
block is at the picture boundary, we discard the corre-
sponding part of ek(C). By using ek, we now define a
context model ctx_mvd(C,k) for the residual motion vector
component mvdk(C) consisting of three different context
models as defined in Figure 2a.

For the actual encoding process illustrated in Figure 2b
we separate mvdk(C) into sign and modulus, where only
the first bin of the binarization of the modulus |mvdk(C)| is
coded using the context models ctx_mvd(C,k). For the
remaining bins, we have three additional models: two for
the second and the third bin and a third model for all
remaining bins. Additionally, the sign coding routine is
provided with a separate model. This results in a total sum
of 7 different models for each vector component.

ctx _ mvd (C,k) =
0, for e k (C) < 3,
1, for e k (C) > 15,
2, else

ctx _ mvd (C,k) =
0, for e k (C) < 3,
1, for e k (C) > 15,
2, else

ctx _ mvd (C,k) =
0, for e k (C) < 3,
1, for e k (C) > 15,
2, else

e k (C) = | mvd k(A)| + | mvdk (B)| e k (C) = | mvd k(A)| + | mvdk (B)| C

B
A

C

B
A

Separation of mvdk (C)

sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

Separation of mvdk (C)

| mvdk (C)| | mvdk (C)| sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6
Bin_no. 1 2 3 4 5 ...

Context _no. {0,1,2} 3 4 5 6

 mvdk (C) mvdk mvdk (B) mvdk mvdk (A) mvdk

ctx_mvd(C,k)

4Marpe et al.: Video Compression Using Context-Based Adaptive Arithmetic Coding, to be published in ICIP’01, Thessaloniki, Greece.

"akiyo", CIF, 15 Hz

0
5

10
15
20
25
30
35

1 4 7 10 13 16 19 22 25 28 31
QP

bi
tra

te
 re

du
ct

io
n

/ %

Intra/Inter
Intra

"flowergarden", CIF, 30 Hz

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31
QP

bi
tra

te
 re

du
ct

io
n

/ % Intra/Inter

Intra

"container", QCIF, 10 Hz

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31
QP

bi
tra

te
 re

du
ct

io
n

/ % Intra/Inter

Intra

 (a) (b) (c)

Figure 3: Bit-rate reduction (in percent) over quantization parameter (QP) for three test sequences: (a) “akiyo”, CIF, 15 Hz; (b)
“flowergarden”, CIF, 30 Hz; (c) “container”, QCIF, 10 Hz.

3.4. Adaptive Binary Arithmetic Coding
At the beginning of the overall encoding process for a
given frame the probability models associated with all 126
different contexts are initialized with a pre-computed start
distribution. For each symbol to encode the frequency
count of the related binary decision is updated, thus
providing a new probability estimate for the next coding
decision. However, when the total number of occurrences
of symbols related to a given model exceeds a pre-defined
threshold, the frequency counts will be scaled down. This
periodical rescaling exponentially weights down past
observations and helps to adapt to non-stationarities of a
source. The binary arithmetic coding engine used in our
presented approach is a straightforward implementation
similar to that given in [9].

4. EXPERIMENTAL RESULTS

Experimental results are obtained by using TML4 with the
default coding parameters specifying the first picture being
coded as an Intra picture and all successive pictures being
coded as Inter pictures. We compare the bit-rates for the
original TML4 to the version with our entropy coding. For
QCIF-sequences, the obtained bit-rate savings are in the
range of 4.5-15% for the overall bit-rate, when coding of
whole sequences and 3.5-17% for pure intra coding. For
CIF-sequences we achieve a bit-rate reduction of 5-32%
for coding a whole sequence and 4.5-28% for pure intra
coding. Figure 3 shows the graphs of some representative
results. Figure 4 shows a comparison of visual quality.

5. CONCLUSIONS
Context-based adaptive binary arithmetic coding is
proposed for H.26L. When comparing the new entropy
coding method with the UVLC of the current H.26L test
model, we obtain improvements of up to 32% in bit-rate
savings. Especially when coding with low and high
quantization parameters, significant bit-rate savings can be
reported. For QCIF-sequences, bit-rate savings are in the

range of 4.5-15% and for CIF-sequences we achieve 5-
32% when measuring the overall bit-rate.

Figure 4: Sample reconstruction for “akiyo”, CIF, 15 Hz, at a
bit-rate of 16 kbit/sec. Left: TML4 using proposed entropy
coding. Right: original TML4 using UVLC.

REFERENCES

[1] ISO/IEC CD 15444-1; JPEG-2000 Image Coding System,
Committee Draft, Version 1.0, Dec.1999.

[2] Y. Itoh, “Bi-directional Motion Vector Coding using Universal
VLC ”, Signal Proc.: Image Comm. 14 (1999), pp. 541-557.

[3] B. Jeon, “Entropy Coding for H.26L”, ITU-T SG16/Q.6 Q15-J-57,
May 2000.

[4] L. Kerofsky, “Entropy Coding of Transform Coefficients”, ITU-T
SG16/Q.6 Q15-K-45, August 2000.

[5] G.Bjontegaard, “Use of adaptive switching between two VLCs for
intra luma coefficients”, ITU-T SG16/Q.6 Q15-K-30, Aug. 2000.

[6] D. Marpe, G. Blaettermann, and T. Wiegand, “Adaptive Codes for
H.26L”, ITU-T SG16/Q.6 VCEG-L-13, January 2001.

[7] G.Bjontegaard, “H.26L Test Model Long Term Number 4 (TML4)
draft0”, ITU-T SG16/Q.6 Q15-J-72, June 2000.

[8] T.C. Bell et al., Text Compression, Prentice-Hall, Englewood
Cliffs, N.J., 1990, USA.

[9] I.H. Witten et al, “Arithmetic Coding for Data Compression“,
Comm. of the ACM, 30 (6), 1987, pp.520-541.

[10] G. Heising, D. Marpe, H.L. Cycon, and A.P. Petukhov ”Wavelet-
Based Very Low Bit-Rate Video Coding Using Image Warping and
Overlapped Motion Compensation”, to appear in IEE Proc. –
Vision, Image and Signal Processing.

