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ABSTRACT 
 
Coding of video sequences using hierarchical B pictures in 
the Joint Scalable Video Model (JSVM) for the scalability 
amendment of H.264/AVC has the benefit of improved rate 
distortion efficiency relative to other known temporal 
decomposition structures, besides providing temporal 
scalability.  In the operational encoder control of the JSVM, 
the inter-picture dependencies within a hierarchical B 
picture structure are considered using a heuristic, where 
pictures that are more frequently used for motion 
compensation are coded with higher fidelity compared to 
pictures that are less often used for motion compensation. In 
this paper, we describe an approach where the dependencies 
introduced by motion compensation are also considered 
when selecting transform coefficient values.  Our 
experimental results using an H.264/AVC conforming 
encoder show bit rate reductions of up to 10 % compared to 
the quantization method used by JSVM. 
 
Index Terms— Video coding, Rate Distortion optimization 
 

1. INTRODUCTION 
 
H.264/AVC offers increased flexibility compared to any 
prior video coding standard including coding using 
hierarchical B pictures as described in [1].  For the 
operational encoder control, the temporal dependencies 
within such a structure introduced by motion-compensated 
prediction (MCP) have to be considered to achieve good 
rate distortion efficiency.  In this paper, we describe, based 
on the idea in [2], an approach to solve the problem of 
jointly estimating transform coefficient values for a 
complete hierarchical B picture prediction structure. 

The next section gives a brief overview of hierarchical 
B pictures. Sec. 3 introduces the problem statement, and 
Sec. 4 shows how the problem size can be reduced by 
application of a sliding window approach.  A complete 
description of our optimization algorithm is given in Sec. 5 
and in Sec. 6, finally experimental results are presented. 

 
2. HIERARCHICAL B PICTURES 

 
A typical hierarchical prediction structure with 4 dyadic 
temporal stages is shown in Fig. 1.  The pictures denoted as 
I0 and P0 are called key pictures.  The key pictures build a 
self-contained subset of the sequence in the sense that for 
coding of a key picture only other (preceding) key pictures 
may be used as reference for MCP.  A key picture and all 
pictures that are temporally located between this and the 
preceding key picture build a group of pictures (GOP).  The 
non-key pictures of a GOP are coded as B pictures and use a 
hierarchical prediction structure as illustrated in Fig. 1.  
More precisely, for coding of a picture denoted as Bn only 
other pictures Bm of the same GOP (with n > m) or the two 
enclosing key pictures of the GOP may be used as 
reference.  Thus, the decisions made when coding a picture 
Bm can only have impact on pictures Bn of the same GOP 
(with n > m).  Since the lower the value of m, the more 
pictures are potentially influenced by this picture Bm, 
typically a cascading of quantization parameters (QP) is 
used such that for pictures at the top of the hierarchical 
prediction structure (I0, P0) a smaller quantization step size 
is used than for those at the bottom (B3).  
 

I0 B1B2B3 I0/P0 I0/P0B3 B3 B3B3 B3 B3 B3B2 B2 B2B1

0 1221 8 167 9 153 5 11 136 10 144
display order

group of pictures (GOP) group of pictures (GOP)

0 1035 1 98 13 166 7 14 154 11 122
coding order

I0 B1B2B3 I0/P0 I0/P0B3 B3 B3B3 B3 B3 B3B2 B2 B2B1

0 1221 8 167 9 153 5 11 136 10 144
display order

group of pictures (GOP) group of pictures (GOP)

0 1035 1 98 13 166 7 14 154 11 122
coding order  
Fig. 1: Hierarchical B picture prediction structure 
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3. PROBLEM STATEMENT 
 
We use the linear signal model from [2] where the 
reconstructed sample values are obtained as a linear 
combination of previously reconstructed samples, the 
residual samples, and a static predictor.  Note, that the 
sample value clipping and picture deblocking operations of 
H.264/AVC are neglected in this simplified model.  
Considering a group of K pictures, each of width W and 
height H, this can be written as 
 

pTcMss  
 
with N = K × W × H, the vectors s, c, and p are N × 1 
column vectors with s being the reconstructed sample 
values, c being the transform coefficient values and p being 
a static predictor.  M and T are N × N square matrices such 
that the product M s gives the MCP signal and the product 
T c gives the residual sample values.  The actual values of 
M depend on the selected macroblock types, reference 
indices and motion vectors (in the following subsumed as 
motion parameters), whereas the actual values of T depend 
on the chosen QP values.  Note, that both M and T are 
highly sparse matrices, since in H.264/AVC even using 
bidirectional prediction each sample of the MCP signal may 
depend only on up to 72 samples of the reference pictures, 
resulting from applying the separable 6-tap filter in both 
directions in two reference pictures (6 × 6 × 2 = 72).  Thus, 
each row of M can only have 72 non-zero entries.  
Similarly, since each 4 × 4 block is inverse transformed 
independently, each row of T has exactly 16 non-zero 
entries.  The static predictor p gives the part of the 
prediction signal which is not contained in M s, namely the 
intra prediction signal and the MCP signal obtained from 
reference pictures outside the considered group of K 
pictures. 

With fixed, pre-determined motion parameters and 
therefore fixed M, as well as fixed QP values and therefore 
fixed T, the problem of selecting optimal transform 
coefficients can now be stated as in [2]: 

 
 )()(minarg cRcDc copt , 

subject to pTcMss  

(1) 

 
Here, D(c) gives the distortion between original x und 

reconstruction s in terms of the sum of squared differences, 
R(c) gives the bit rate needed for coding the transform 
coefficients c, and  is the Langrangian multiplier which 
determines the trade-off between required bit rate and 
distortion. Note, that this Langrangian multiplier  should 
not to be confused with the one used in the operational rate 
distortion optimization of the reference encoder software (as 
described in [3]) since we do not use the real bit rate but a 
piece-wise linear approximation.  Since R(c) is a very 

intricate function of c, we use, as in [2], the sum of absolute 
values as an approximation, leading to: 

 

1

2

2
)(,)( ccRsxcD  

 
Now, the optimization problem can be stated as a 

(convex) quadratic program with inequality constraints, 
which enables us to use iterative numerical optimization 
algorithms to get a real-valued solution vector copt.  For our 
application of video coding, however, an integer-valued 
solution is required.  Generally, solving the given quadratic 
program under an integer-constraint on the variables is a 
hard combinatorial optimization problem.  A simple, yet 
effective heuristic to obtain an integer-valued solution 
vector copt by iteratively solving a series of quadratic 
programs without integer-constraint is given in [2].  Here, in 
each iteration cycle, a number of variables are fixed to their 
nearest integer value and in the next iteration the problem 
with the remaining variables is solved.  Since the number of 
free variables is decreasing with each iteration cycle, the 
computation time needed to solve the program decreases, 
too. 
 
3.1. Application to hierarchical B pictures 
 
The described optimization approach is very well suited to 
hierarchical B picture coding structures, as will be explained 
below.  As shown in Sec. 2, hierarchical B picture structures 
have very straightforward “tree-like” dependency structures 
introduced by MCP, since the impact of any B picture is 
limited to other B pictures in higher temporal stages (“sub-
trees”) of the same GOP.  Thus, considering only non-key 
pictures and having already determined motion parameters 
and QP values (e. g., using the method specified in the 
JSVM reference encoder software), the optimization 
problem stated in the previous section can now be applied to 
the whole set of B pictures at once, resulting in optimal 
transform coefficient values for all the hierarchical 
B pictures under the given simplifications, without having 
to neglect the impact on subsequent pictures, as in IPPP… 
structures, where the impact of a reference picture is 
potentially unlimited within a sequence of pictures. 
 

4. PROBLEM SIZE REDUCTION USING A 
SLIDING WINDOW APPROACH 

 
The optimization problem as stated above has the major 
drawback of leading to a very large number of variables.  
For the case of a GOP size of 16 pictures in QCIF 
resolution, the problem will consist of N = 15 × 176 × 144 = 
380160 variables. This may be impracticable to solve, 
especially for even larger resolutions.  We therefore apply 
the described transform coefficient optimization approach 
using a spatial sliding window.  In other words, instead of 
solving the huge optimization problem covering all the 
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transform coefficients in the complete hierarchical B picture 
structure, we iteratively solve a series of smaller sized 
optimization problems, where each only covers a certain 
area (“optimization window”) of the pictures to be 
optimized.  Note, that in our approach this area is the same 
in all the pictures, and that the areas of subsequent iterations 
overlap in order to take into account the dependencies 
across two optimization windows in space and time.  The 
operation of the sliding window is illustrated in Fig. 2, 
where each square represents one macroblock.  The current 
optimization window is shown in yellow, the macroblocks 
whose optimized transform coefficients have already been 
determined are shown in orange, and those macroblocks 
which are shown in grey will be optimized in a later 
iteration. 
 
4.1. Selection of the sliding window parameters 
 
The sliding window is characterized by two parameters: the 
size of the optimization window and the step size by which 
the window gets shifted after each iteration cycle.  Both 
values should be an integer multiple of the transform size, 
since the optimization is performed in the transform 
domain. Further, the window should be large enough, such 
that almost all the dependencies due to MCP within the 
hierarchical B picture structure are covered within the 
window.  Generally, the best choice of these parameters 
depends on the characteristics of the specific sequence.  For 
sequences with fast motion, a larger window size should be 
chosen than for rather static sequences with nearly no 
motion.  Empirically, we found a window size of 3 
macroblocks in each direction with a step size of 2 
macroblocks (as shown in Fig. 2) to be an acceptable 
compromise for QCIF resolution pictures. 
 

 
Fig. 2: Sliding window approach (yellow: optimization 
window, orange: already optimized macroblocks) 

 
5. DESCRIPTION OF THE ALGORITHM 

 
Having stated the basic principles of our approach, we will 
now describe in more detail how the algorithm proceeds 

when optimizing a GOP.  In the first step, the complete 
GOP is encoded using the method specified in the JSVM 
reference encoder software in order to obtain motion 
parameters and QP values for each macroblock.  In the next 
step, we use this information to generate the matrices M and 
T and solve the optimization problem for all the non-key 
pictures of the GOP. 

In order to incorporate the changes to a reference 
picture due to the optimization of the transform coefficient 
values into the motion parameters of the pictures 
referencing this picture, we re-estimate in the next step the 
motion parameters for all pictures but the first one in the 
GOP.  In the next step we again solve the optimization 
problem for the remaining pictures and repeat this process 
until reaching the last picture of the GOP. 

To summarize, we use the following steps to optimize 
the transform coefficient levels for the hierarchical 
B pictures within a GOP of size K.  Note that picture 1 is the 
key picture of the GOP. 

 
1. set k = 2 
2. Encode picture k and all its dependent pictures 

using the method specified in the JSVM reference 
software to obtain motion parameters (and QPs) 

3. Solve the optimization problem for the transform 
coefficient values of picture k and all its dependent 
pictures using the sliding window approach 

4. set k = k + 1 
5. if k <= K, go to step (2) 

 
6. EXPERIMENTAL RESULTS 

 
For our experiments, we used a modified version of the 
JSVM reference encoder software.  We used a GOP size of 
16, each key picture but the first one was coded as a 
P picture.  Note, that we did not allow usage of intra coding 
modes in P and B pictures.  The transform coefficients of 
the key pictures (which build an IPPP… sub-sequence) have 
been optimized independently from the hierarchical B 
picture prediction structure using the method described 
in [2].  Note further, that we introduced weighting factors in 
the objective function (1), in order to minimize not only the 
rate distortion (RD) costs of the highest temporal layer 
(which includes all the pictures) at the cost of a lower 
temporal layer (which includes only a sub-set of the 
pictures), but to minimize the average over all temporal 
layer.  More precisely, for our case of a GOP size of 16, the 
RD costs for pictures B1 (as in Fig. 1) have been weighted 
with a factor of 4, the costs for pictures B2 with a factor of 
3, for B3 with a factor of 2, and for B1 with a factor of 1.  In 
our experiments, this temporal stage dependent weighting 
resulted also in an overall improvement of the rate distortion 
efficiency at lower bit rates which is due to inaccuracies 
induced by simplifications in our linear signal model. 
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For numerically solving the sparse quadratic programs 
occurring in our approach, we used the MOSEK 
optimization software [5].  The resulting rate distortion plots 
are shown in Fig. 3.  It can be seen that a bit rate reduction 
of 10% can be achieved by the described optimization 
method, resulting in a gain of up to 0.7 dB in terms of luma 
PSNR.  Furthermore, it can be noticed that the fluctuation of 
the PSNR over the sequence is much smaller than using the 
method of the JSVM reference encoder (see Fig. 5).  
Comparing the results with and without the described 
picture weighting factors, it can be stated that without 
picture weights the fluctuation of the PSNR within the 
hierarchical B picture structure is the smallest, but this 
results in inferior rate distortion efficiency for lower 
temporal stages (see Fig. 4). 
 

7. CONCLUSION 
 
We have presented a new optimization framework for 
jointly selecting transform coefficient values in hierarchical 
B picture coding structures.  Experimental results have been 
shown indicating that significant gains can be obtained by 
this approach.  However, as a major issue of the described 
approach, there is large amount of computational 
complexity involved.  A reduction of this computational 
complexity is possible if we solve instead of the large 
optimization problem a series of smaller problems using a 
sliding window approach. 
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Fig. 3: Comparison of JSVM and described coding 
method (all pictures for the sequence) 

 
Flower Garden, QCIF, 65 frames, GOP size 16
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Fig. 4: Comparison of JSVM and described coding 
method (only for pictures I0/P0, B1, and B2) 

 
PSNR variation over the sequence
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Fig. 5: Comparison of PSNR fluctuations 
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