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ABSTRACT 

For compression of 3-D dynamic meshes, the novel framework of 
so-called frame-based animated mesh compression (FAMC) has 
been introduced recently. In this context, we propose an efficient 
scheme for representation and statistical coding which is conceptu-
ally based on our previous work on context-based adaptive binary 
arithmetic coding (CABAC). After reviewing the basic principles 
of both CABAC and FAMC, we present suitable modifications and 
adaptations of both concepts in order to build an integrated solu-
tion with a high degree of coding efficiency. To this end, particular 
focus of our study has been put on the design of appropriate bi-
narization and context modeling schemes. In our experiments, we 
obtained average bit-rate savings of more than 30% for a typical 
test set of dynamic meshes, when comparing the final design of our 
CABAC enriched FAMC scheme to the original version of FAMC 
using a conventional N-ary arithmetic coder. Our integrated ap-
proach has been adopted recently as part of the MPEG-4 Animated 
Framework eXtension (AFX). 

Index Terms— entropy coding, 3-D dynamic mesh compres-
sion, CABAC, FAMC, MPEG-4 AFX 

1. INTRODUCTION 

Multimedia applications aiming at enhancing consumer's sensation 
towards 3-D, interactivity and virtual reality are increasingly at-
tracting interest, both from a scientific and commercial point of 
view. Examples for such applications are given by 3-D television, 
immersive videoconferencing or interactive gaming. In the context 
of such applications, one important problem to be solved is how to 
efficiently represent and encode time-varying 3-D content for the 
purpose of transmission or storage [1]. 

In the following, we consider an application scenario where 
dynamic 3-D scenes are recorded by multiple cameras. From this 
recording, typically a scene representation with 3-D video objects 
(3DVOs) is reconstructed, using synthetic geometry and real video 
texture sequences obtained from each of the given cameras. Syn-
thetic geometry of such 3DVOs is often approximated by planar 3-
D meshes for every time instance. The 3-D meshes are further 
transformed into time-consistent animated mesh sequences. These 
mesh sequences consist of an initial intra or I mesh as well as a 
number of predictive or P meshes. The I mesh contains the initial 
3-D vertex positions as well as the connectivity to define the mesh 
faces. Each P mesh only contains the new vertex positions and uses 
the connectivity from the I mesh. For the I mesh, typically a static 

mesh coding approach is applied, whereas a so-called dynamic 
mesh coding scheme is more appropriate for the collection of P 
meshes (with non-changing connectivity) in order to exploit tem-
poral redundancies in geometric data or attributes like color and 
normal vectors [1]. 

Recently, a novel technique for efficient lossy compression of 
dynamic 3-D mesh sequences, so-called frame-based animated 
mesh compression (FAMC), has been introduced [2][3]. It com-
bines a skinning-based motion compensation strategy with a tem-
poral DCT-based compression scheme. Statistical coding of the 
individual information parts in FAMC is performed by using an N-
ary or multialphabet arithmetic coder with an a priori unknown 
maximum alphabet size N. Multialphabet arithmetic coding, how-
ever, is known to be costly, both in terms of computational and 
modeling costs, in particular in cases where the actual number of 
different symbols to encode may be considerably smaller than N. 

Context-based adaptive binary arithmetic coding (CABAC), 
on the other hand, has proven to be an efficient technique of statis-
tical coding in the area of video coding [4][5]. It handles multiple 
sources with different alphabet sizes and different statistical prop-
erties by application of a three-step process consisting in binariza-
tion, context modeling, and binary arithmetic coding. By using a 
computationally efficient, multiplication-free binary arithmetic 
coding engine and by tuning the binarization and context modeling 
schemes to the individual characteristics of the given subsources, a 
high degree of coding efficiency can be achieved with rather mod-
erate computational costs [4]. 

In this paper, we describe a novel approach of integrating 
CABAC into FAMC. The next section contains an overview of the 
FAMC framework. Sec. 3 provides a brief review of CABAC and 
Sec. 4 describes a first step of combining CABAC with FAMC. In 
Sec. 5, we present some further refinements to our initial combined 
solution. An enhanced encoder control mechanism for FAMC is 
given in Sec. 6.  Sec. 7 finally, contains our experimental results. 

2. OVERVIEW OF FRAME-BASED ANIMATED MESH 
COMPRESSION 

Let { }FiiMM ...,,0)( ∈=  denote a sequence of 3-D meshes with an 
initial I mesh M0 and F subsequent P meshes Mi (1 ≤ i ≤ F). Here 
and in the following, we assume that the first I mesh has already 
been coded in a lossless way by using a suitable static mesh coder. 
Frame-based animated mesh compression basically consists of four 
major building blocks that are illustrated in Fig. 1 along with the 
initial static mesh coding. 
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Fig. 1: Illustration of the FAMC encoding strategy. 

First, a motion-based segmentation is performed by partitioning 
the mesh vertices into K clusters in such a way that their associated 
motion can be (sufficiently well) described by a 3-D affine motion 
model. Once the partitioning is fixed, a skinning model is used in 
the second step for deriving a continuous motion field over the 
whole mesh (relative to the initial I mesh) by linearly combining 
the affine motion of adjacent clusters with appropriate weighting 
coefficients. By using this weighted affine transform, a temporal 
prediction of the geometrical data (or other attributes) is performed 
for each vertex of each P mesh Mi. As a result, prediction residuals 
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In the third step of FAMC, the prediction residual data as well 
as the affine and global motion parameters are processed by a 
DCT-based coding stage. This includes a 1-D DCT transform ap-
plied independently to the three coordinates and motion parameters 
along the temporal axis. As subsequent processing stages, a uni-
form quantization is applied, followed by a so-called delta predic-
tion step (which will be discussed later in more detail). In the 
fourth and final stage of FAMC, all information parts like trans-
form coefficient residuals, predictor side information or partition 
data are entropy-coded by using a conventional N-ary arithmetic 
coder. 

Note that since the DCT-based coding stage is operating 
along the whole P mesh sequence, a considerable delay may be 
introduced. However, in order to limit the delay, FAMC permits 
the subdivision of a given mesh sequence into suitable temporal 
segments of meshes which can be encoded and decoded independ-
ently. For more details about FAMC, please refer to [2][3]. 

3. BRIEF REVIEW OF THE CABAC FRAMEWORK 

The CABAC design, as part of the H.264/AVC video coding stan-
dard [5], is based on three components: binarization, context mod-
eling, and binary arithmetic coding. Binarization enables efficient 
binary arithmetic coding by mapping non-binary symbols to se-
quences of bits which are referred to as bin strings. The bins of a 
bin string can each either be processed in an arithmetic coding 
mode or in a so-called bypass mode. The latter is a simplified cod-
ing mode that is chosen for selected bins such as sign information 
or lesser-significance bins with an assumed fixed probability esti-
mate of 0.5, in order to speed up the overall decoding (and encod-
ing) processes. The regular arithmetic coding mode provides the 

largest compression benefit, where a bin may be context-modeled 
and subsequently be arithmetic encoded. As a design decision, in 
most cases only the most probable bin of a bin string associated 
with a given symbol is supplied with external context modeling, 
which is based on previously decoded (encoded) bins. The com-
pression performance of the arithmetic-coded bins is optimized by 
adaptive estimation of the corresponding (context-conditional) 
probability distributions. The probability estimation and the actual 
binary arithmetic coding are conducted using a multiplication-free 
method that enables efficient implementations in hardware and 
software.  A detailed description of CABAC can be found in [4]. 

4. A FIRST STEP FOR INTEGRATING CABAC INTO 
FRAME-BASED ANIMATED MESH COMPRESSION 

The skinning-based representation in FAMC consists of four dif-
ferent information parts. Two of them are further processed by the 
DCT-based coding stage prior to arithmetic coding, as shown in 
Fig. 1. In the following, we briefly outline how partition data and 
weighting coefficients are handled in our CABAC-based approach. 
After that we describe a first step of integrating CABAC into the 
DCT-based coding stage of FAMC. The status of this first 
CABAC-based approach roughly corresponds to that in [6]. 

4.1. Encoding of partition data 
The partitioning information as a result of the motion segmentation 
in FAMC is stored in a vector p indexed by the vertex indices v, 
such that for each vertex the corresponding cluster index is given. 
The CABAC-based approach for encoding p consists in first trans-
forming p in a sequence of pairs (symbol, run) with symbol denot-
ing the cluster index and run denoting the number of consecutive 
occurrences of symbol in p with p being evaluated in the order of 
increasing vertex indices. These run-length pairs are then binarized 
using a fixed-length representation for symbol and a concatenated 
unary / exponential (Exp) Golomb code of order 0 (UEG0) for run 
[4][5]. Encoding of the resulting bin strings is then performed 
using a single probability model for all bins of each bin string. 

4.2. Encoding of weighting coefficients 

Weighting coefficients v
kω in FAMC are given for each vertex v to 

indicate the influence of neighboring clusters with index k in the 
temporal prediction process. The proposed coding method for 
those coefficients proceeds as follows. First, a binary flag η(v) is 
signaled for each vertex v in such a way that η(v) is set to 0 if 

)(, vkk
v
k δω =  holds, with k(v) being the cluster index to which the 

vertex v belongs. Then, for each cluster, the number of its 
neighboring clusters is UEG0 binarized and coded along with the 
corresponding cluster indices, expressed in a fixed-length binary 
representation. Finally, the uniformly quantized weights for all 
vertices with η(v) = 1 are binarized into bit planes, and the bit 
planes are encoded from the most significant bit (MSB) to the least 
significant bit (LSB). 

4.3. DCT-based coding 
DCT-based coding in FAMC consists of a 1-D DCT applied along 
the temporal direction, a uniform quantization, and a subsequent 
sample-wise prediction in the frequency domain, also referred to as 
delta prediction. Suppose the quantized transform coefficients are 
organized in an array of V rows, each row with F entries of trans-
form coefficients associated with one specific vertex v (1 ≤ v ≤ V). 



The delta predictor is acting on this array in a row-by-row fashion, 
starting from the top row corresponding to v = 1. The predictor is 
parameterized by a pair of non-negative integers )1,( −∆ f , where 

wv −=∆  denotes the offset between the current vth row of quan-
tized transform coefficients to be predicted and the wth row (with 
w < v) of corresponding reference coefficients and where f denotes 
the number of consecutive samples (beginning from the DC coeffi-
cient) that are included in the sample-wise prediction process. 

First, the predictor side information )1,( −∆ f  is UEG0 bi-
narized and coded for each row. Then, a binary-valued, so-called 
significance map is coded indicating the location of non-zero (re-
sidual) coefficients in each row. After that the magnitudes of non-
zero (residual) transform coefficients are binarized into bit planes, 
and the bit planes are encoded from MSB to LSB. Only one single 
context model is used for all bins. But due to the order of process-
ing of bins and the backward-adaptation property of probability 
estimation in CABAC, this is virtually identical to using a separate 
context model for each bit plane. Finally, the sign information of 
non-zero coefficients is encoded by using the bypass coding mode 
of CABAC. 

5. IMPROVED REPRESENTATION, BINARIZATION, AND 
CONTEXT MODELING FOR DCT-BASED CODING 

In this section, we discuss some deficiencies of the previously 
presented coding approach for the DCT-based coding stage in 
FAMC. Consequently, a more elaborate solution has been devel-
oped, which better fits to the typically observed statistical proper-
ties of transformed prediction residuals related to geometric data. 

5.1. Representation and coding of delta predictor 
The main shortcoming of the predictor design, as presented in 
Sec. 4.3, is given by the fact that it includes an unnecessarily high 
degree of freedom in the choice of the parameter f. Usually, the 
number of frames F, which is equal to the dimension of the 1-D 
DCT, is fairly high (compared to common block sizes in image or 
video coding). This implies that the wavelengths of basis functions 
with consecutive frequency indices can be assumed to be rather 
close to each other and therefore, it is a reasonable assumption to 
assert that the energy distribution of coefficients related to con-
secutive frequency indices is also quite similar to each other. This, 
in turn, is our motivation for introducing a quantization of the f 
parameter, meaning that we propose to reduce the precision for 
representation and coding of the f parameter. 

More specifically, we allow only integer multiples of 2b for 
the choice of f − 1, where b ≥ 0 is a suitably chosen and fixed non-
negative integer (for a given encoding/decoding process). Conse-
quently, for coding of f, the b LSBs of the binary representation of 
f − 1 are discarded. In addition to this modification, we propose to 
adjust the whole coding process for the predictor side information, 
as shown in Fig. 2 and as described in the following. 

Prior to coding of f, a so-called skip flag is coded using a 
separate context model. It signals whether the current values of p 
and f − 1 are both identical to the previously coded parameter val-
ues (of the row above), denoted as p_prev and f_prev - 1, re-
spectively. If the skip flag is equal to 0, first the value of p is en-
coded using a concatenated unary/Exp-Golomb binarization. For 
encoding of f − 1, a predictor (f_pred - 1) >> b (with ">>" 
denoting the binary right shift operator) is subtracted from the 
value of (f - 1) >> b, and the magnitude of the resulting differ-
ence dimRes is binarized and encoded by using the same Exp-

Golomb binarization as for the parameter p. Note that the predictor 
f_pred – 1 is the previously coded value f − 1 (not necessarily of 
the row above). The sign of dimRes is encoded only if both possi-
ble values for the sign lead to admissible values of f − 1. In other 
words, if dimPos is smaller or equal to the largest possible value 
f_max and dimNeg is larger than 0, both values are valid and it has 
to be signaled which of both cases has been selected at the en-
coder.  

5.2. Coding and context modeling of significance map 
For a more efficient encoding of the significance map, we propose 
a scheme similar to the encoding of the significance map of trans-
form coefficient levels in H.264/AVC. First, a coded_block_flag is 
signaled which indicates whether all coefficients of a row are zero. 
If not all coefficients are vanishing, for each transform coefficient, 
a significant_coeff_flag is encoded which indicates whether the 
coefficient is non-zero. After each significant_coeff_flag equal to 
1, a last_significant_coeff_flag is encoded which signals whether 
all of the remaining transform coefficient levels of the row are 
equal to zero. More details about this so-called sig/last coding can 
be found in [4][5]. 

Note that for each column of the array of V × F transform co-
efficients (corresponding to a specific frequency index), one sepa-
rate context model is used for both coding of significant_coeff_flag 
and last_significant_coeff_flag. This corresponds to the grouping 
of flags belonging to the same frequency index into one single 
statistical model.  

5.3. Binarization and coding of absolute values of transform 
coefficient levels 
We propose to encode non-zero (residual) transform coefficient 
levels by using a concatenated unary/k-th order Exp-Golomb 
(UEGk) binarization [4][5] instead of using a bit-plane approach. 
Our empirical analysis turned out that the usage of a fixed length 
of 16 for the unary prefix part together with the usage of one or 
two context models for all prefix bins does not lead to a noticeable 
bit-rate increase compared to the optimal, individually tuned com-
bination of parameters. For the order k of the Exp-Golomb code, 
however, we found that it is beneficial to select its optimal value in 
the range of 1 – 8. We also observed that the optimal choice for k 
is very likely to be equal to 1/2 ×(number of bit planes − 2). Since 
we allow the usage of either one context model for all bins of the 
prefix or two context models (one for the first bin and another one 
for all other bins) for the unary prefix and k in the range of 1 to 8, 

if((p == p_prev) && ((p == 0) || (f-1 == f_prev-1))) 
  write_skip_flag( 1 ) 
else 
{ 
  write_skip_flag( 0 ) 
  unary_exp_golomb( p ) 
  if( p > 0 ) 
  { 
    dimRes := ( (f-1) >> b ) - ( (f_pred-1) >> b ) 
    unary_exp_golomb( dimRes ) 
    if( dimRes != 0 ) 
    { 
      dimPos := f_pred + ( dimRes << b ) 
      dimNeg := f_pred - ( dimRes << b ) 
      if( dimPos <= f_max && dimNeg > 0 ) 
        encodeSign( dimRes ) 
    } 
  } 
} 

Fig. 2: Pseudocode for encoding of predictor side information. 



these values have to be derived by the encoder and signaled in the 
bit stream. This leads to a signaling overhead of 4 bits. 

6. NON-NORMATIVE ENHANCED PREDICTION 
SELECTION RULE 

For the choice of (nearly) optimal values of p and f − 1 as used in 
the delta predictor of the DCT-based coding stage of FAMC, a 
suitable selection process has to be designed. In the original refer-
ence encoder of FAMC, the sum of absolute differences between 
the row to predict and its predictor candidate (which is defined by 
p and f − 1) was minimized. Obviously, this approach does not 
properly take into account the real cost in bits for signaling p and 
f − 1. It also neglects the amount of bits necessary for encoding the 
corresponding transform coefficients. 

In order to enhance the selection process for values p and 
f − 1, it is necessary to minimize the bit-rate portion that results 
from coding p and f − 1 plus the bit-rate portion that results from 
encoding the resulting residual errors. In principle, however, it is 
hardly possible (due to the lack of computational resources) to find 
the optimal combination of all possible values p and f − 1 in such a 
rate-minimizing sense. Therefore, we restrict the predictor selec-
tion process to certain pairs (p, f − 1) only, given the so far en-
coded values of p and f − 1. This does not necessarily result in the 
optimal choice for all possible values of p and f − 1. However, as 
will be shown next, this enhanced selection rule does provide an 
improved performance relative to the initial FAMC encoder in [3]. 

7. EXPERIMENTAL RESULTS 

Three configurations have been experimentally evaluated relative 
to the initial FAMC approach using a conventional N-ary arithme-
tic coder [2][3]: 

Coder 1: FAMC using the first approach as described in Sec. 4. 
Coder 2: FAMC using the improved DCT-based coding approach 

as described in Sec. 5 (for prediction residuals of geo-
metric data only). 

Coder 3: FAMC using the enhanced prediction selection rule as 
described in Sec. 6, in addition to the configuration of 
Coder 2. 

The original FAMC coder and each of the three coder configura-
tions have been tested by using a representative set of mesh se-
quences that has been adopted as a benchmark test data set during 
the MPEG standardization of FAMC. Encoding of each of these 
mesh sequences has been performed with quantization bit-depth 
values 4, 6, 8, 10, 12, and 14 bits for the prediction residuals and 
with identical settings for the remaining parameters. Since the de-
coded mesh sequences for a certain quantization bit depth are ex-
actly identical for each of the four configurations (i.e., they pro-
duce identical distortions), it is reasonable to only compare the bit 
rates of the four resulting bit streams. For each mesh sequence and 
each quantization bit depth, the percentage of bit-rate savings rela-
tive to the initial FAMC version using the N-ary arithmetic coder 
was calculated. Table 1 shows these figures of percentage for each 
mesh sequence and for each configuration, averaged over all quan-
tization bit depths. In addition, Table 1 shows the overall average 
bit-rate savings. For the most advanced configuration of Coder 3, 
an average bit-rate reduction of 31% relative to the original FAMC 
approach has been achieved. This configuration has also been 

adopted as part of the FAMC-related specification in MPEG-4 
AFX [7] both for its normative and non-normative aspects. 

8. CONCLUSIONS 

We have presented an approach for integrating CABAC into the 
FAMC framework. The context modeling stage of the DCT-based 
coding stage in FAMC has been adapted to the statistical proper-
ties of the prediction residuals. In combination with an enhanced 
prediction selection rule, average bit-rate savings of more than 
30% relative to the initial FAMC approach have been achieved. 
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Mesh sequence Coder 1 Coder 2 Coder 3 

Troll 23.0% 27.7% 30.6% 
Raptor 38.7% 44.2% 46.6% 

Camel_collapse 17.6% 22.7% 27.0% 
Camel_gallop 31.8% 39.4% 41.6% 

Horse_collapse 2.2% 4.4% 9.3% 
Horse_gallop 17.4% 25.1% 27.5% 

Chicken 17.3% 21.6% 22.1% 
Cow 12.2% 13.8% 14.3% 

Dance 29.2% 33.9% 35.1% 
Dolphin 27.1% 32.2% 34.8% 

Humanoid 43.0% 50.2% 52.3% 
Snake 36.2% 40.5% 41.0% 
Eagle 12.6% 18.8% 20.9% 

Average 23.7% 28.8% 31.0% 

Table 1: Average bit-rate savings relative to the original 
FAMC coder using a conventional N-ary arithmetic coder. 


