
Realistic Retargeting of Facial Video

Wolfgang Paier
Fraunhofer HHI
wolfgang.paier

@hhi.fraunhofer.de

Markus Kettern
Fraunhofer HHI
markus.kettern

@hhi.fraunhofer.de

Peter Eisert
Fraunhofer HHI/

Humboldt University Berlin
peter.eisert

@hhi.fraunhofer.de

ABSTRACT
We propose a simple method for realistic retargeting of facial
performance from one shot to another. Editors can combine
different takes of a shot into one single, optimal take with
minimal manual labour and highly realistic results. Using a
static proxy mesh of the actor’s head, we obtain approximate
3D information of recorded monocular facial video. This 3D
information is used to create pose-invariant textures from
recorded facial action and to re-render it into a target shot.
This can be done for the full face or parts of it, allowing for
flexible editing.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Animations;
I.4.8 [Scene Analysis]: Tracking

Keywords
tracking, geometric proxy, facial texture, facial animation

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. Request per-
missions from Permissions@acm.org.

CVMP ’14, November 13 - 14 2014, London, United King-
dom
Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM 978-1-4503-3185-2/14/11. . . $15.00
http://dx.doi.org/10.1145/2668904.2668935

1. INTRODUCTION
Human faces are one of the most important carriers of emo-
tional as well as any other type of information in movies
and videos. Also, viewers are extremely good at noticing
artefacts in facial video. Therefore, special care has to be
taken when recording and editing facial shots. We present
a method for realistic retargeting of facial movie sequences
for either the full face or parts of it. This method enables
the editor to

• Exchange parts of a sequence between different takes,
e.g. a line of text with a mistake that flawed an other-
wise very good take

• Change the timing of facial action, e.g. when the actor
completed some action and afterwards began talking
too early

• Correct unwanted action for parts of the face, e.g. re-
moving or adding an eye blink or a smile

We use time-consistent 3D information to enable correct dis-
play and perspective distortion when replacing the facial ac-
tion recorded in one shot with action from a different shot.
This information is obtained by tracking a pre-created 3D
proxy model of the actor’s head through all recorded se-
quences. The creation of this proxy mesh can be done in
several ways, we use a single shot of the actor in a multi-
view still camera rig and an image-based 3D-reconstruction
approach. Via this proxy model, the recorded shots can be
transformed to animated texture maps. If available, multi-
ple views can be seamlessly integrated into one texture map.
This allows the reuse of a captured sequence even in shots
where the face is viewed from an angle from which it has
not been recorded. We also present the possibility to select
sub-regions of the face for retargeting allowing to synthesise
different shots into a novel one.

In order to create the synthesised shot, the animated texture
maps of a source shot are used to render the proxy mesh at
the positions where it has been tracked in the target shot.
Since the region to be replaced, be it the whole face or parts
of it, does not change its position in the texture regardless
of what happens in the shot, it can easily be identified by
drawing a mask onto a texture map. The rendered source
texture is blended with the target shot along the edges of
this mask. The colors of the rendered texture are adapted

Figure 1: Sample output of the presented anima-
tion system. Left: original video frame, right: with
retargeted facial expression

to the colors of the target shot in each frame in order to
account for changes in illumination between the two shots.

2. RELATED WORK
Facial performance capture is often used to make the per-
formance of an actor transferable to situations where it has
not been recorded. There is a rich body of research on this
topic which is divided into marker-based and marker-less
approaches. A good survey can be found in [1]. This paper
is related to marker-less facial motion capture [2, 3, 4, 5,
6] insofar as it uses related techniques to accurately track
the head position in the video footage. For example, [3]
uses optical flow together with a photogrammetric recon-
struction to drive a cyberscan model of the actor’s face in
neutral expression in order to obtain a time-consistent an-
imation mesh. The lack of detail in this smooth mesh is
compensated by extracting a bump map from a very high
resolution laser scan which adds wrinkles and skin pores. Re-
cently, [7] have proposed a method of capturing a detailed
dynamic face model from monocular video that only needs
manual intervention to match a detailed 3D-scan of the ac-
tor’s face in rest to a neutral blend shape model. From
this, a personalized blend shape model is created which is
being tracked by a combination of a state-of-the-art sparse
facial feature tracker and optical flow. After extraction of
the blend shape parameters, illumination is estimated and
a shape-from-shading method is used to add details to the
smooth tracking mesh.

However, most of these approaches are used to drive ani-
matable CG characters of differing levels of realism. That
is, the goal is to match the facial expression of an avatar to
the expression of a recorded face. Creating and animating
fully realistic CG characters is possible as has been shown
e.g. by the Digital Emily Project [8] but requires highly so-
phisticated capturing of an animatable model, both techni-
cally and in terms of human labour. In contrast, the ap-
proach presented in this paper achieves realism by using ap-
proximated geometry to re-render textures that convey the
needed expressivity and detail, as for example in [9]. Sim-
ilar strategies are used in free-viewpoint video techniques
[10, 11, 12] where the images captured in a multi-view video
camera setup are combined to create realistic renderings of
novel viewpoints. The distortions to introduce for changing
the viewing angle are obtained via a coarse approximation
of the actor’s geometry (e.g. the visual hull) and minimized
by determining the cameras closest to the viewing position
for texture generation during rendering.

3. CONNECTING 3D TO MONOCULAR
VIDEO

Time-consistent 3D or depth information is the basis of our
approach to sequence retargeting. In order to obtain this
information for a video sequence, we use a pre-generated,
detailed static proxy mesh which is registered to an initial
key-frame and tracked in subsequent frames. We create this
proxy mesh using a state-of-the-art image-based 3D recon-
struction scheme [13] which provides high-resolution 3D data
for the complete face as well as a reasonable approximation
of the surrounding hair. This allows us to choose the seams
for texture exchange more freely than when using a standard
model restricted to an arbitrary crop of the face. See figure
2 for some example reconstruction results.

For the purpose of registering the proxy mesh to a single
video key-frame, a set of 30 possible landmarks (e.g. eye
corner, nose tip, mouth corner, ear lap, ...) was defined in
advance. This allows to initialize the tracking, by selecting
some landmark positions both on the mesh as well as in the
video image.

The landmarks on the proxy mesh are static and need to
be selected only once. However, the landmarks in the video
need to be selected for each camera, therefore a graphical
user interface was developed which greatly eases the initial-
ization step (see fig. 3).

On the mesh, these landmark positions are represented by
barycentric 3D-coordinates based on the vertices of the tri-
angle containing the landmark. Since the camera positions
are unknown, one rigid transformation per camera, repre-
senting the position of the mesh in the camera coordinate
frame, is calculated. The computation is done separately
for each camera by a nonlinear minimization of the squared
sum of reprojection errors

Ereproj =
∑
x∈L

‖x− proj (RX + T)‖2 (1)

over the parameters of a rotation R and a translation vector
T. The pinhole camera model is used for projection and its

Figure 2: Examples of 3D reconstruction results

Figure 3: Screenshot of the graphical user interface
to ease the manual selection of landmarks. A land-
mark is set by selecting it in the list of possible land-
marks on the left side of the window and clicking on
the corresponding position in the video image. Ex-
isting video streams are represented as green bars
below the main image.

Figure 4: Initial matching of a 3D reconstructed
model to a video key-frame. Left: original video,
middle: texture overlay, right: diffference image

projection function proj (·) is given by

proj

xy
z

 = c−
[
fx
fy

]
◦
[

x
z
y
z

]
(2)

with c denoting the principal point and f = [fx, fy]T repre-
senting the scaled focal lengths in x and y directions. Ex-
perience shows that when using reasonably accurate anno-
tations of the movie frames, 5 landmarks are enough for a
registration serving the purposes of this paper. Figure 4
shows a rendered overlay of the 3D-reconstruction texture
over a video frame together with a difference image.

Once the proxy mesh is registered to a key-frame I0, we use
rigid model tracking based on optical flow to infer its posi-
tion in subsequent frames Ik. To prevent texture drift, we do
not use the optical flow between subsequent images Ik, Ik+1

but rather between a distorted version of the key-frame I0
and image Ik+1. The distortion reflects the positional up-
date of the proxy between I0 and Ik and the distorted image
is created by image-based rendering.

Similar to [14], we use a linearized relation between Eu-
clidean transformations applied to the 3D model and the
2D pixel displacements they impose on the rendered image.
If we assume the rotational component of the transformation
to be reasonably small, the rotation update to be applied to
each vertex of the model may be approximated by a multi-
plication with the matrix

Rlin =

 1 −rz ry
rz 1 −rx
−ry rx 1

 (3)

with rx being the angle of rotation around the x-axis etc.
The position of a vertex X of a mesh rotated around the
coordinate origin by angles rx, ry, rz and then translated by
T is thus linearly approximated by

X′ ≈ RlinX + T. (4)

A first order approximation of the projection of this dis-
placed vertex into the image is given by

x′ = x + δx (5)

δx ≈ JX

(
X′ −X

)
(6)

where JX is the Jacobian of proj(·) and is given by

JX =

[
−fx 1

z
0 fx

x
z2

0 −fy 1
z

fy
y
z2

]
. (7)

After some arithmetic manipulations, substituting (4) into
(6) yields the displacement of the image point

δx ≈ 1

z
f ◦H (8)

with

H =

[
−ryz + rzy − tx + rx

xy
z

+ ry
x2

z
+ tz

x
z

−rzx+ rxz − ty + ry
xy
z
− rx y2

z
− tz y

z

]
(9)

=
1

z
f ◦CX

[
R
T

]
(10)

CX =

[
xy
z

−z + x2

z
y −1 0 x

z

z − y2

z
xy
z

−x 0 −1 − y
z

]
(11)

which is linear in all unknowns, namely R = [rx ry rz]T and
T. The offset δx can be used to minimize the optical flow
error between the rendered frame Îk and the following frame
Ik+1 defined by

Eflow =
∑
x∈I

((
∇Îk (x)

)T
δx −

(
Ik+1 (x)− Îk (x)

))2

(12)

with ∇Îk (x) being the image gradient of Îk at pixel x.

Defined over the area Ω of the rendered 3D model, this er-
ror can be minimized directly by solving an overdetermined
system of linear equations

A

[
R
T

]
=
(
Ik+1 (Ω)− Îk (Ω)

)
(13)

where I (Ω) is the vector containing all pixel intensities of
image I in Ω. From equation (10), each pair of rows in A
depending on a point X is given by

AX =
1

z
∇Îk (Ω) (f ◦ CX) (14)

where ∇Îk (Ω) is the 2× |Ω|-matrix containing the x and y

gradients of Îk in region Ω and the rows of A being depen-
dent on the 3D points projected to the individual pixels in
Ω.

This simple optical flow-based image correspondence calcu-
lation represents one step of a Gauss-Newton optimization
and is carried out iteratively until the updates obtained are
reasonably small. Since traditional optical flow can only
handle small disparities, the optimization is performed in a
hierarchical coarse to fine manner.

4. MULTIVIEW TEXTURE EXTRACTION
All camera views of one time frame are integrated into a sin-
gle texture, compressing a synchronized multi camera video
stream into a single stream of textures. As a representation
of the multiview video stream, this has several advantages:
it is more memory efficient than the source videos since re-
dundant texture information is removed, it can be easily

integrated into common rendering pipelines and, being tem-
porally consistent, it allows the synthesis of the captured
data plus changes in viewpoint.

Figure 5: Illustration of the quality measure. Top
row: original video frames, bottom row: quality
measure rendered on the tracked proxy model

The fusion is performed by projecting each camera image
into a common texture space using the tracked 3D proxy
and previously generated texture coordinates. We use only
one source image per triangle to avoid blur or ghosting arte-
facts caused by the unavoidable geometric inaccuracies when
using a static mesh for tracking a deformable surface like the
face. To generate a texture with high details, a quality mea-
sureW(fi, li) is employed that relates to the textural details
provided by each camera image. In general, the textural de-
tail depends mostly on viewing direction and distance be-
tween triangle fi and camera li. A camera that provides
more details because of a shorter distance or better viewing
angle should be used more likely than a camera that is far
away or is looking from an acute angle. However, since the
distance between actor and cameras does not vary consider-
ably in our setup, we restrict our quality measure to the dot
product between viewing direction v and surface normal n,
see figure 5.

W(fi, li) = max(0,−nT
fivli) (15)

More sophisticated variants of W can be found in [15, 11,
16, 17]. Furthermore, a visibility test is performed and oc-
cluded or partially visible triangles receive a zero weight in
the corresponding camera view. The texture is then con-
structed by sampling each texel in its corresponding source
camera.

The task of selecting one source image for each triangle in a
mesh can be conveniently formulated as discrete optimiza-
tion problem. Using the quality measure (15), we define an
energy term D(fi, li) that ranges from 0 to 1 if the triangle
fi is visible and is set to∞ if the triangle is fully or partially
occluded.

D(fi, li) =

{
1−W(fi, li) fi is visible

∞ fi is occluded
(16)

Equation (17) describes the objective function that opti-
mizes the textural detail in the resulting texture mosaic

EtexA(L) =

n∑
i

D(fi, li) (17)

where L = {l1, ..., ln} is a label vector that assigns each
triangle fi an image Ili as texture source. The solution of
(17) can be found by minimizing D(fi, li) for each fi sepa-
rately. However, treating all triangles independently leads
to a non-smooth solution that results in a high number of
visible edges between adjacent triangles.

Figure 6: Texture mosaic (top row) and color coded
labels (bottom row). Left: without smoothness-
term, right: with smoothness-term. Blending was
disabled for the generation of these images.

Therefore, a smoothness term Vi,j is added for each pair
(fi, fj) of adjacent triangles. If both triangles have the same
texture source, Vi,j is set to zero. If two adjacent triangles
have different texture sources, Vi,j adds the sum of color dif-
ferences Πei,j along the common edge ei,j of both triangles
fi and fj to the overall objective function.

Πei,j =

ˆ
ei,j

∥∥Ili(x)− Ilj (x)
∥∥ dx (18)

Vi,j(li, lj) =

{
0 li = lj

Πei,j li 6= lj
(19)

EtexB(L) =

N∑
i

D(fi, li) + λ
∑

i,j∈N

Vi,j(li, lj) (20)

This way, seams are more likely to occur in regions where
adjacent triangles look similar, making them less visible
(see figure 6). Minimizing (20) yields a label vector L =
{l1, ..., ln} that contains the optimal source image for each
triangle in terms of spatial resolution and visibility of seams
for a single texture. However, for video based facial ani-
mation it is also necessary to consider temporal consistency
of the generated texture mosaics in order to avoid tempo-
ral artefacts, like a constantly changing source camera or a
jittering seam. In order to prevent temporal artifacts, we
also add a temporal smoothness term that penalizes chang-
ing the source camera of a triangle between two consecutive
time steps.

T (lti , l
t−t
i) =

{
0 lti = lt−t

i

1 lti 6= lt−t
i

(21)

Etex(L) =

T∑
t

N∑
i

D(f t
i , l

t
i)+ηT (lti , l

t−1
i)+λ

∑
i,j∈N

Vi,j(lti , ltj)

(22)

The optimization is performed simultaneously for each time
step. Each triangle fi has an additional temporal index t
that allows fi to have different source cameras in each time
step t. η and λ are scalar weights that determine the impact
of the spatial and temporal smoothness terms. Since objec-
tive functions similar to (20) or (22) are commonly used in
computer vision (e.g. image mosaicing, segmentation, im-
age restoration), there exist several optimization techniques
(e.g. graph cuts, belief propagation or tree re-weighted mes-
sage passing) that can be employed to solve (22). In general,
(22) is an NP-hard problem and we use the alpha-expansion
algorithm [18] to efficiently find a close-to-optimum approx-
imative solution. This is done by transforming the original
multi-label problem into a series of binary label problems
that each can be solved optimally using s-t graph cuts.

For the final construction of a texture we perform a global
color correction on the input images, which is explained in
the next section. This is necessary to reduce the effect of
different color responses among the source cameras. We also
use a simplified version of seam leveling [17] to remove low
frequency differences at seams. This technique adds piece-
wise continuous functions to the constructed texture mosaic,
see figure 7.

These functions correspond to connected components of the
mesh that are textured from the same source image. At
seams, they are constrained to stay at a fixed value that
minimizes the color difference along the seam (e.g. mean
colour). All other values are obtained by a diffusion like ap-
proach, which distributes and smooths them based on the
neighbourhood and mesh topology. To remove the remain-
ing high frequency discrepancies, we use feathering with a

Figure 7: Left: 2 adjacent triangles with a visible
seam textured from two different images T1 and T2,
center: Levelling function (white=0, red > 0, blue
< 0), right: adding the levelling function removed
the visible seam

blending radius of approximately 20 pixels.

5. ANIMATION RETARGETING
After tracking and texture extraction, each captured scene
is represented as a sequence of textures, rigid body trans-
formations and the proxy head model. This representation
enables us to create novel views by exchanging parts of the
face between different sequences, change facial actions or
to make an already good shot even better. Our animation
retargeting approach consists of three tasks:

1. Selection of source and target sequence and manipula-
tion mask

2. Re-rendering of the source sequence into the target
video

3. Integration of the replaced parts by color correction
and blending

The selection of replaced facial areas is very intuitive by
simply masking the desired area. This can be done directly
in texture space which eases the following processing steps,
as it provides a consistent representation of the manipulated
region over time. This is important as selection in texture
space is not affected by rigid head motion.

However, depending on the parametrization of texture-space
it can be a more convenient approach to mark areas to be
replaced on the 3D-mesh itself in camera space, see figure
8. Then, the user does not need to take care if the modified
area expands over multiple tiles in texture-space. A further
advantage of the latter approach is that the user perceives
an immediate feedback, since he/she sees which parts of the
video are actually manipulated. The mesh-based selection
can be easily transformed to texture space, for example by
rendering each selected triangle into the texture map. After
all regions have been marked, the selection is represented by
a binary mask in texture space.

To perform a smooth integration of the re-rendered face,
we use alpha blending which generates smooth transitions
at the border between original and replaced regions in the
video footage. Therefore, we generate a smooth weight map
W in texture space using a distance transform [19] Di,j of
the binary selection mask

Wi,j = 1−min
(

1.0,
Di,j (M)

r

)
(23)

Figure 8: Highlighted selection of modified facial
region. Top: in camera space, bottom: in texture
space

with M being the binary selection mask and r being the
blending radius. The weight map and the source texture are
both rendered into the target video, where they are used to
calculate the weighted average of the original video and the
source video. Due to the convenient data representation,
this step can be performed with currently available graphics
APIs in a single rendering pass by simply adding the weight
map to the extracted textures as alpha-channel.

However, simple alpha blending alone does not achieve a
satisfactory integration, since changing light conditions or
different camera settings during a capture session can cause
obvious mismatches in color and/or brightness, see figure 9.
Therefore, a color correction step is necessary that adapts
the source texture to better fit the color characteristics of
the target video frame. Such discrepancies are typically
modelled by a low dimensional global color transform, since
camera settings and light affect each pixel in a similar man-
ner. For example, [20] presents a global method that trans-
fers color statistics between images to make them look more
similar.

Each image is transformed to the decorrelated CIE Lab color
space and a color statistic N (µ, σ2) is calculated for each
channel. The correction is then performed for the l, α and
β component as follows:

Figure 9: Left: Original frame, middle: modified
frame without color correction, right: with color
correction

c∗src = csrc − µsrc

cnew = c∗src
σdst
σsrc

+ µdst (24)

with c corresponding to a single component of the pixel’s

color vector
[
l α β

]T
and µ and σ being the mean and

the standard deviation of the corresponding channel. cnew
is calculated by scaling the centered value of c and adding
µdst to better fit the target color distribution Ndst(µ, σ2).
Despite its simplicity, this method already provides great
improvement, see figure 9.

However, in contrast to [20] we do not only have correspond-
ing color distributions but also local correspondences, since
our head model is tracked and every local region in the re-
rendered face should correspond to the same part of the ac-
tor’s face in the original video. This allows us to perform an
improved color correction by re-writing the color matching
scheme using a linear model:

φ (c) =
[

1 c
]

(25)

xnew = φ (xsrc) ∗ b, (26)

with φ (c) being a feature vector and b being a set of linear
coefficients. This corresponds directly to (24) as it has a
constant offset and a scaling factor. On closer examination

of the relation between each
[
l α β

]T
src and its corre-

sponding
[
l α β

]T
dst we found that, in our dataset, l

fits perfectly to the linear model. However, α and β can be
explained better by a more complex model. Therefore we
extend the feature vector φ (c) by a squared term:

φ (c) =
[

1 c c2
]T

(27)

Now the color matching can also model a non linear relation

between
[
l α β

]T
src and

[
l α β

]T
dst but it still can

be solved using an ordinary linear least squares solver. To
prevent unnecessarily high impact of c2, we add a regular-
ization term. Now, the objective function is given by

Figure 10: Improved color correction. Left: target
video, middle: color correction by transfer of image
statistics, right: our linear least squares approach

Ecol(b) =

n∑
i=0

(
φ
(
cisrc

)T
∗ b− cidst

)
+ bTWb (28)

W =

 0
0

λ

 (29)

with λ being a scalar factor that determines the impact of
the regularization. It is also possible to make the color cor-
rection more robust by rejecting corresponding color values
if they exceed a certain threshold, or by using a robust esti-
mator. Figure 10 shows the result of the improved color cor-
rection. The results are similar, but regions like the forehead
and the ridge of the nose (first and third row), which seem
to be too bright when using Reinhard’s method look more
realistic. The second row shows another example where the
simple transfer of image statistics produces a slightly over
saturated result. In most cases our color correction blends
better into the background or produces at least equally good
results.

6. RESULTS AND DISCUSSION
Experimental results
In this section, some results of the facial retargeting are
presented. We use the video footage of three synchronized
HD cameras, 1920x1080@30 fps. The cameras were not

Figure 11: Top: Final texture with seam optimiza-
tion, color correction and blending enabled. Bot-
tom: close up on the facial region

equally white balanced, which is an additional challenge.
Each row of figure 12 shows the original video frame on
the left and the synthesized video frame on the right side.
The source video frames from which the new facial expres-
sion is synthesised, are located in the center. Figure 12
shows the good quality of our presented facial animation
method. The produced results were evaluated visually, since
the proposed method generates new content from existing
video footage which makes it not easy to provide a proper
groundtruth. A video containing further results like ani-
mated sequences can be found in the supplementary mate-
rial: http://youtu.be/tTLytzbEZr0. The tracking and the
geometric proxy are accurate enough to allow a realistic re-
rendering of video sequences. The extracted textures have
no noticeable seams (see figure 11) and even the different
white balancing is handled by our global per-pixel color cor-
rection to allow for a seamless integration of new facial ex-
pressions. A non-optimized implementation of our system
tracks up to 4 frames per seconds and texture extraction
takes several seconds per frame. Re-rendering and blending
can be directly implemented using standard graphic APIs
and is therefore very fast.

Conclusion
We presented a method for realistic retargeting of facial
video sequences. Our method uses existing video footage
and allows the editor to modify the facial animation or ex-
pressions of an actor during post-production. This includes
for example, changing the timing of a facial action, correct-
ing or removing facial actions or importing parts of the face
from a different take. Our method produces realistic results
since all animations are taken from existing video footage
and there is no need for manual animation of meshes. We
use video footage of three synchronized full HD cameras and
a pre-generated geometric proxy of the actor’s head which
is being tracked rigidly in each movie stream. Using the 3D
geometry we generate one texture per frame that integrates
the color information of all cameras. Now, facial action can
be transferred from one video into another by rendering the
textured proxy mesh into the target video. All animated
facial regions are marked in texture space using a binary
texture, since it is consistent over time. Finally, we use a
global color correction and alpha blending to integrate the
new facial animation.

Future work
The use of a static proxy mesh creates difficulties in shots
where facial action involves strong deformations of the fa-
cial geometry. These inaccuracies become more visible when
the viewpoint has to be changed in re-rendering. We aim at
creating a deformable head model and track deformation
parameters along with the head pose in video in order to
overcome this issue. The integration of facial animations
into a new video is currently done using simple alpha blend-
ing. A graph cut based approach could be used to find an
optimal seam in a certain area around the determined bor-
der between the imported facial animation and the back-
ground video. We use a global color correction approach to
make the retargeted video look more like the original video,
however this does not consider illumination based intensity
differences. Therefore, a reasonable extension of our current
system would be an additional estimation of a local illumi-
nation model, to improve realism of the inserted textures,
especially for scenes involving artistic lighting.

Acknowledgement
The work presented in this paper has been funded by the
Seventh Framework Programme EU projects RE@CT (FP7-
ICT-288369) and Reverie (FP7-ICT-287723).

7. REFERENCES
[1] F. Pighin and J. Lewis, “Facial motion retargeting,” in

ACM SIGGRAPH Courses, 2006.

[2] K. Li, Q. Dai, R. Wang, Y. Liu, F. Xu, and J. Wang,
“A data-driven approach for facial expression
retargeting in video,” IEEE Transactions on
Multimedia, vol. 16, pp. 299–310, 2014.

[3] G. Borshukov, D. Piponi, O. Larsen, J. P. Lewis, and
C. Tempelaar-Lietz, “Universal capture - image-based
facial animation for ”the matrix reloaded”,” in ACM
SIGGRAPH Courses, 2005.

[4] J.-X. Chai, J. Xiao, and J. Hodgins, “Vision-based
control of 3d facial animation,” in ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, 2003.

Figure 12: Left: original target video frame, center: source video frames, right: target video with retargeted
facial expression

[5] D. Sibbing, M. Habbecke, and L. Kobbelt, “Markerless
reconstruction and synthesis of dynamic facial
expressions,” Computer Vision and Image
Understanding, vol. 115, no. 5, pp. 668–680, 2011.

[6] P. Eisert and B. Girod, “Analyzing facial expressions
for virtual conferencing,” 1998.

[7] P. Garrido, L. Valgaert, C. Wu, and C. Theobalt,
“Reconstructing detailed dynamic face geometry from
monocular video,” ACM Transactions on Graphics,
vol. 32, no. 6, pp. 158:1–158:10, 2013.

[8] O. Alexander, M. Rogers, W. Lambeth, M. Chiang,
and P. Debevec, “Creating a photoreal digital actor:
The digital emily project,” in European Conference on
Visual Media Production (CVMP), London, UK, 2009.

[9] P. Eisert and J. Rurainsky, “Geometry-assisted
image-based rendering for facial analysis and
synthesis.” Sig. Proc.: Image Comm., vol. 21, no. 6,
pp. 493–505, 2006.

[10] J. Kilner, J. Starck, and A. Hilton, “A comparative
study of free-viewpoint video techniques for sports
events,” in European Conference on Visual Media
Production (CVMP), 2006.

[11] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P.
Seidel, “Free-viewpoint video of human actors,” in
ACM SIGGRAPH, 2003.

[12] C. Lipski, F. Klose, K. Ruhl, and M. Magnor,
“Making of who cares hd stereoscopic free viewpoint
video,” in European Conference on Visual Media
Production (CVMP), 2011.

[13] D. Blumenthal-Barby and P. Eisert, “High-resolution
depth for binocular image-based modelling,”
Computers & Graphics, vol. 39, pp. 89–100, 2014.

[14] P. Eisert and B. Girod, “Model-based 3d-motion
estimation with illumination compensation,” in Image
Processing and Its Applications, vol. 1, 1997, pp.
194–198 vol.1.

[15] Z. Janko and J.-P. Pons, “Spatio-Temporal
Image-Based Texture Atlases for Dynamic 3-D
Models,” in IEEE International Workshop on 3-D
Digital Imaging and Modeling, 2009.

[16] C. Allene, J.-P. Pons, and R. Keriven, “Seamless
image-based texture atlases using multi-band
blending,” in ICPR. IEEE, 2008.

[17] V. Lempitsky and D. Ivanov, “Seamless Mosaicing of
Image-Based Texture Maps,” in CVPR, 2007.

[18] Y. Boykov and V. Kolmogorov, “An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, no. 9, pp.
1124–1137, 2004.

[19] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance
transforms of sampled functions,” Cornell Computing
and Information Science, Tech. Rep., 2004.

[20] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley,
“Color transfer between images,” IEEE Computer
Graphics Applications, vol. 21, no. 5, pp. 34–41, 2001.

