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Abstract

Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction
strategies can rarely be understood. With recent advances in Explainable Artificial Intelli-
gence, approaches are available to explore the reasoning behind those complex models’ pre-
dictions. One class of approaches are post-hoc attribution methods, among which Layer-wise
Relevance Propagation (LRP) shows high performance. However, the attempt at understand-
ing a DNN’s reasoning often stops at the attributions obtained for individual samples in input
space, leaving the potential for deeper quantitative analyses untouched. As a manual analysis
without the right tools is often unnecessarily labor intensive, we introduce three software pack-
ages targeted at scientists to explore model reasoning using attribution approaches and beyond:
(1) Zennit — a highly customizable and intuitive attribution framework implementing LRP and
related approaches in PyTorch, (2) CoRelAy — a framework to easily and quickly construct
quantitative analysis pipelines for dataset-wide analyses of explanations, and (3) ViRelAy — a
web-application to interactively explore data, attributions, and analysis results.

1 Introduction

There is no doubt that lDeep Neural Networks (DNNS)| are strong predictors, which have solved
many problems far and wide [llHj] With their inherent complexity, however, also comes a heav

down-side, which is the lack of transparency of . Recent advances in [Explainable Artiﬁciai
ntelligence (XAI) (see, e.g., [, B] for a timely overview), however, allow for a more in-depth
investigation of DNN behavior. Here, attribution methods are able to yield local explanations
i.e., attribution scores for all (input) features of individual samples. The Laver-wise Relevancd
Propagation (LRP [H, H], for example, with its mathematical roots in [Deep Taylor Decomposition
DTD) [§] and its various purposed modified backpropagation rules ﬁ%L has proven to be a
particularly powerful method of local [XA] showing excellent results [d, | when recommended
guidelines are followed, yet it is rarely used to its full potential, e.g., due to a lack of ready-made and
complete implementations. In particular, an exhaustive implementation of following contem-
porary recommendations from literature [5, [7, B] is still lacking for the popular PyTorch framework.
As one of our contributions, we thus aim to make a proper and flexible implementation of m
available to the community, which goes beyond the simple variants —5 or (GradientxInput)
often provided as the sole @], and not universally recommended variants, of the method.

If employed correctly, local m has the potential to point out previously unknown but interest-
ing model behavior, or biased and artifactual predictions [L5, [16]. With very large datasets however,
a thorough (manual) analysis of attribution results, e.g., for the understanding and verification
of model behavior, or the discovery of systematic misbehavior are very labor- and time-intensive.
Still, further insight beyond local attributions is required, e.g., to understand global model behav-
ior, or to notice methodical Clever Hans [17, 18] traits of a model. Recent approaches such as
Bpectral Relevance Analysis ( SpRAyi [@] provide a solution to this arduous task by automating
large parts of the analysis workload and are thus, together with appropriate visualizations, aiding
in the discovery of prediction strategies employed by a D model.




In this paper, we introduce a triad of software packages targeted at scientists to explore the
reasoning of machine learning models based on dataset-wide

1. With Zennit we provide a highly customizable, yet intuitive local framework, for Py-
Torch. It is focused on rule-based approaches such as and based on PyTorch’s Module
structure, enabling (and delivering) implementations of various attribution methods.

2. CoRelAy in turn digests attributions (and possibly also other sources of data), and can be
used to quickly build elaborate, dataset-wide analysis pipelines such as , consisting of,
e.g., processing, clustering and embedding steps. The framework aims at efficiency during
analysis by re-using matching (partial) pipeline results as often as possible within and between
pipeline executions, instead of re-computing the complete pipeline each time, e.g., due to
parameter changes.

3. ViRelAy provides a user-friendly entry point to the analysis results from Zennit and CoRelAy
in form of an interactive web-application. During the exploration of data with model attribu-
tions, clusterings, and visualizable embeddings, researchers can import, export, bookmark,
and share particular findings with their peers.

In combination, these three tools enable to be used to quantitatively and qualitatively
explore and investigate large scale models and data: Local model explanations can be obtained
through attributions computed with Zenm'tﬂ. Users may then analyze large sets of attributions
computed over whole datasets with pipelines built in CoRelAyE, of which the results can then be
visualized and investigated with Vz’RelAyE. The insights obtainable through this particular, yet
flexible recipe allows to go beyond passively observant, e.g., by fuelling a strategy of informed
intervention; only through the use of the here introduced scalable software packages, we were able
to identify systematically biased reasoning in m models trained on ImageNet [[19].

Related Work Multiple software frameworks have been introduced using different deep learning
libraries to compute model attributions. One of the earlier and comprehensive m software pack-
ages is the LRP Toolbox [20], providing implementations of a_wide array of recommended
decomposition rules for the Caffe Deep Learning Framework [21], as well as Matlab and Python
(using NumPy [22] and CuPy [23]) via custom neural network interfaces. The software framework
iNNvestigate [24], which is based on TensorFlow [25] and Keras [26], implements LRP and other
attribution approaches. While it provides a straight-forward approach to apply multiple attribu-
tion methods on existing Keras models, its structure makes customization (e.g., by implementing
custom rules and compositions of rules) non-trivial. Captum [14], which is tightly integrated into
PyTorch, provides a broad spectrum of attribution methods. It is very customizable, but lacks
specificity for layer-type specific implementations of decomposition rules necessary for , thus
requiring a lot of work to use state-of-the-art defaults for . TorchRay [27] is another attribution
framework built on PyTorch, which also provides a broad spectrum of attribution methods, but
has no support for LRP.

2 Attribution with Zennit

Zennit provides a framework for attribution in PyTorch [28]. It is based on the Module structure
in PyTorch, and makes heavy use of its Autograd and Hook functionalities. It is mainly focused
on implementing the rule-based approach used by [6] in a simple and intuitive manner: The
provision of an easy to modify and flexible implementation of is paramount for obtaining
excellent results, by optimally aligning the method to the characteristics of the model (or parts
thereof) to be analyzed [B, [1, 9].

Simpler attribution methods, such as SmoothGrad [29] and Integrated Gradients [30], are also
implemented, although they do not make use of the rule-based system, but are straight forward
functions of the gradient of the model to be analyzed.

Thttps://github.com/chr5tphr/zennit
2https://github.com/virelay/corelay
Shttps://github.com/virelay/virelay
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Rule-Based Attributions Rule-based attribution methods assign different rules to Modules
within a model depending on the function and context. In Zennit, rule-based attributions are
computed by attaching forward and backward Hooks to Modules (layers), such that computing
the gradient of the model will instead provide the desired attribution. At the heart of Zennit is
the BasicHook, which contains the functionality to register and remove modifications to a single
Module (layer), and a general attribution method. Rules are created by providing functions to
a BasicHook to customize the general attribution method with modified inputs, parameters, and
accumulators. This makes an implementation of new rules trivial. All popular rules for LRP (for
an overview see [[7]), as well as others, such as GuidedBackprop [B1] and ExcitationBackprop [32],
come pre-implemented.

Mapping Rules with Composites The biggest problem when dealing with rule-based attri-
bution methods is to assign the desired rules to all individual layers. Zennit solves this by im-
plementing Composites, which are mappings from Module-properties to rules. Module-properties
are for example the name or type of function, its (hyper-)parameters or its position within the
model. Composites are provided with a module_map, which, given the Module-properties, re-
turns a template-rule to be assigned to the layer. One example for a built-in basic Composite is
the SpecialFirstLayerMapComposite, which assigns rules based on layer types, but handles the
first linear layer differently. This is the basis for_most —based Composites for feed-forward
networks, like EpsilonGammaBox, which uses the —5—rule for dense layers, the —’y—rule for
convolutional layers, and the —Z B_rule (or box-rule) for the first convolutional layer [7].

Temporary Model Modification with Canonizers Another problem with rule-based at-
tribution methods is that their rules may not directly be applicable to many networks, unless
they are transformed into a canonical form [B, B3, B4]. For example, multiple consecutive lin-
ear layers with only one activation at the very end cannot always be trivially attributed with all
variants of m unless the consecutive linear layers are merged into a single one. A common
example for this structure is batch normalization [B5]. To temporarily modify models in-place
into a canonical form, Zennit implements Canonizers. Due its common application, Zennit pro-
vides the MergeBatchNorm Canonizer, to temporarily merge batch normalization layers into an
adjacent linear layer [36-88]. A general Canonizer, which is, for example, needed to apply
on ResNet [39, 40], is the AttributeCanonizer, which, while registered, will modify (instance)
attributes in place, for example, to split a single module for which there is no rule, into multiple
ones for which rules may then be assigned. Model-specific Canonizers for popular models like
VGG-16 [41] and ResNet [39, #0] from, e.g., Torchvision [42], are implemented for convenience.
Canonizers are directly provided to Composites, so they will be applied right before the rules are
mapped to the layers when registering the Composite to a model.

Attributors Attributors are optional convenience functions to either compute the gradient given
a model and a Composite, or to implement black-box attribution approaches such as SmoothGrad
and Integrated Gradients. Given a gradient-based black-box attribution approach, e.g., Smooth-
Grad, it is also possible to supply a Composite, to compute a combination of, e.g., m and
SmoothGrad, since the composite will modify the gradient of the model. Non-gradient based ap-
proaches, like Occlusion Analysis [43], cannot be combined with Composites, since the modified
gradient of the Composite has no effect on the result.

Heatmaps Since attributions for image data are often visualized in heatmaps, Zennit comes with
an image module to easily visualize and store attributions as heatmap images. Various color maps
are available. The images are stored using intensities and 8-bit palettes where indices correspond
to the attributed relevances. This makes it easy to change the color map afterwards, without
re-computing the relevance values. An example for visualized heatmaps is given in Figure [l.

3 Building Analysis Pipelines with CoRelAy

While attribution methods can give a qualitative insight into a model’s prediction strategies, a user
may only guess how the attributions of individual heatmaps are part of the model’s reasoning. A
deeper insight into the model may be gained by conducting a dataset-wide analysis. Lapuschkin



Figure 1: Heatmaps of attributions of lighthouses, using the pre-trained VGG-16 network provided
by Torchvision. The Composite EpsilonGammaBox was used and the attributions were visualized
with the color map coldnhot (negative relevance is light-/blue, irrelevant pixels are black, positive
relevance is red to yellow).

et al. [[18] introduced bpectral Relevance Analysi&i, with which they quantitatively analyze a model’s
prediction strategy by visually embedding and clustering attributions with Spectral Clustering [44,
45] and b-distributed Stochastic Neighborhood Embedding (t-SNE) [46]. Anders et al. [[19] extended

RAj| by using different clustering and visual embeddings, as well as computing a pre-ranking
of interesting classes based on the linear separability of their clusterings. CoRelAy is a tool to
quickly compose quantitative analysis pipelines like éERAi, which provide multiple embeddings,
representations, and labels of the data. While our main use-case and motivation for CoRelAy was to
analyze attributions provided by Zennit, CoRelAy is not limited to any kind of data, e.g., CoRelAy
may also be used for a quick dataset exploration with multiple clusterings and embeddings.

Processors and Params Processors are the actions in a pipeline. To implement a Processor,
an inheriting class will have to implement a method with the name function, and class-scope
Params. In Python terminology, Params are descriptors, which change based on the instance they
are bound to (similar to methods). Params are used to easily define the arguments of Processors,
their desired types, default values, and others. Processors already have the Params is_output, to
signal that the output of this Processor should be returned by the Pipeline (even if intermediate),
and io, which can be assigned to a Storage object to cache data on disk. Many Processors come
pre-implemented with CoRelAy, which are categorized into pre-processing, distance functions,
affinity functions, Laplacians, embedding methods, and flow Processors. Flow Processors are
used to design more complex flows of Pipelines, of which the most important are Parallel and
Sequential. With Parallel, the output of the previous Processor may be passed to multiple
Processors, e.g., to compute multiple clusterings on the same data or to try to compute a visual
embedding with different hyperparameters. With Sequential, Processors may be combined to
do multiple steps where there is only a single Task in a Pipeline.

with hbpy.File('spray.h5', 'a') as fd:
iobj = HashedHDF5(fd.require_group('proc_data'))
pipeline = SpectralClustering(
embedding=EigenDecomposition(n_eigval=8, io=iobj),
clustering=Parallel([
Parallel([
KMeans (n_clusters=k, io=iobj) for k in range(2, 20)
1, broadcast=True),
TSNEEmbedding (io=iobj)
1, broadcast=True, is_output=True)
)
data = numpy.random.normal(size=(64, 3, 32, 32))
clusterings, tsne = pipeline(data)

Figure 2: Example code to instantiate and execute a simple pipeline, using 8 eigenvalues
for the Spectral Embedding, clustering using k-means with k& € {2,...,20}, and visualizing with
. The results are additionally cached in a file called spray.h5.



Pipelines and Tasks Pipelines are feed-forward functions, which have Tasks that have to
be fulfilled from front to back to execute the pipeline. In CoRelAy, Pipelines can be seen as
computation templates, where there are steps involved to compute a certain result, which can be
individually changed. A Task is such a step, with a default Processor, and optionally an allowed
type of Processor. When instantiating a Pipeline, Tasks may be assigned a new Processor to
handle the data instead of the default one. A Pipeline can be executed by simply calling it as
a function with the input data as its arguments. Depending on the Processors used and their
respective is_output flags, the output of the Pipeline may have none, one, or a hierarchy of
results. If Processors within the Pipeline own an io object, they will cache their results by
hashing the input data and parameters. When calling the same Pipeline with the same data,
these results will be looked up instead of being re-computed. CoRelAy has a SpRAy| Pipeline
(¢f. [19]) pre-implemented, to produce data which can be directly used with ViRelAy. A
Pipeline may be instantiated and executed as shown in Figure g,

4 Interactive Visualization with ViRelAy

With quantitative analyses, a large amount of results are created, and it may become hard to
connect the different results and representations with the original data. A labor-intensive manual
comparison and creation of individual plots, in an attempt to extract the essence of the results
may become inevitable to find correlations in the data. The analysis performed with M has a
very distinct and common set of objects that need to be compared: the source data points, their
attributions (wrt. a model), a visual 2-dimensional representation of the (embedded) attribution
data, clustering labels and global auxiliary scores. ViRelAy is an interactive web-application, with
which the results may be freely explored by visually connecting these 5 objects. ViRelAy’s back-end
is implemented in Python using Flask [47], and its front-end is implemented using Angular [4§].

Data Loading ViRelAy is designed to process the data of CoRelAy. The results of CoRelAy
are stored in HDF5 [49] files in a hierarchy that ViRelAy is able to use post-hoc, reducing loading
times for an improved user interaction quality. The analysis file, along with the source data and
the attribution data, both also stored in HDF5, are referenced in a project file. A single project
file may contain one source dataset with one attribution for each sample, as well as an arbitrary
amount of analysis files. To compare different datasets or attribution approaches, ViRelAy can be
executed by supplying an arbitrary amount of project files, between which the client may switch
during execution.

Explorative User Interaction The user interface is shown in Figure E At the top of the
interface is (1) the project selection, where the projects, as dictated by the project files, show
up as tabs and may be selected to switch between datasets and attribution methods. Below the
project selection, on the left side is (2) the analysis selection, where the analysis approach (given
by supplying multiple analysis files in a single project file), the category (which often is the data
label, but may be chosen as any group of data points), the clustering method (which influences
(8) the available clusters and (6) the data point coloring), and the embedding (which is the 2d
representation of the data points as shown in (6) the visualization canvas) can be selected. Selecting
a different analysis method resets all categories. To the right is (3) the color map selection, which
changes the color map used in (9) the data/attribution selection, with a color bar indicating low
(left) and high (right) values. The next item to the right is (4) the data/attribution visualization
mode selection, which changes whether (9) the data/attribution visualization shows the source data
(input), its attribution with the selected color map (attribution), or the attribution superimposed
onto a gray-scale image of the source data (overlay). The (5) import and export buttons allow to
export the currently selected analysis, category, clustering, embedding, color map, visualization
mode and selected points by downloading a JSON-file, or importing a JSON-file to change the
selections to the configuration of a previously downloaded file. This may be used either to remember
or to share interesting results. The selection may also be shared or bookmarked in the form of a
URL using the (5) share button. At the center of the interface is (6) the 2d-visualization canvas,
which shows the points in the selected 2-dimensional embedding space (produced by, e.g., )
colored by the clusters indicated in (8) the cluster point selection. In this canvas, the user may
zoom or pan, and select points which will be highlighted by a more saturated color and shown in
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Figure 3: The ViRelAy user interface. Highlighted points are: (1) — Project selection, (2) — analysis
setup and category selection, (3) — color map selection, (4) — data/attribution visualization mode
selection, (5) — import/export/share current selection, (6) — 2d visual embedding canvas, (7) —
auxiliary score plot, (8) — cluster point selection, (9) — data/attribution visualization.

(9) the data/attribution visualization. Hovering over data points will show a preview of the source
data inside the canvas. To the right is (7) the auxiliary category score plot, which in Figure
are the eigenvalues of the Spectral Embedding. Below, there is (8) the cluster point selection,
which shows the available clusters of the selected clustering, as well as the colors used for members
of these clusters in (6) the 2d-visualization canvas, and the number of points in this cluster in
parentheses. Finally, at the bottom is (9) the data/attribution visualization, where, depending on
which mode was selected in (4) the data/attribution mode selection, will show either the source
data, the attribution heatmap, or the attribution superimposed on a gray-scale version of the
source image, of a subset of the selected points.

5 Conclusion

In advocacy of reproducibility in machine learning [50], we have introduced three open source soft-
ware frameworks to attribute, analyze, and interactively explore a model’s dataset-wide prediction
strategies: With Zennit, we hope to provide an intuitive tool within the boundaries of PyTorch
to compute attributions in a customizable and intuitive fashion, and to make the multitude of
rules in [LRP| and other rule-based attribution methods more accessible. We especially hope that
any kind of model can now be analyzed by extending attribution approaches easily based on the
intuitive structure of Zennit. By introducing CoRelAy, we hope to provide a simple way to analyze
attributions dataset-wide in swiftly built pipelines, and thus explore the unused potential of insight
into prediction models. Using ViRelAy, we hope to make the exploration of analysis results as ef-
fortless as possible by providing an interactive combined viewer of source data, attributions, visual
embeddings, clusterings, and others. Zennit, CoRelAy, and ViRelAy in combination have already
been successfully used in the analysis of ImageNet [51] on millions of images to find artifactual
Clever Hans behavior [[19], thus demonstrating effectiveness and scalability. With the frameworks’
introduction, we hope to aid the community in the research and application of methods of m
and beyond, to gain deeper insights into the prediction strategies of
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