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Abstract. Deep neural networks have shown to learn highly predictive
models of video data. Due to the large number of images in individual
videos, a common strategy for training is to repeatedly extract short clips
with random o↵sets from the video. We apply the deep Taylor / Layer-
wise Relevance Propagation (LRP) technique to understand classification
decisions of a deep network trained with this strategy, and identify a
tendency of the classifier to look mainly at the frames close to the
temporal boundaries of its input clip. This “border e↵ect” reveals the
model’s relation to the step size used to extract consecutive video frames
for its input, which we can then tune in order to improve the classifier’s
accuracy without retraining the model. To our knowledge, this is the first
work to apply the deep Taylor / LRP technique on any neural network
operating on video data.
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16.1 Introduction

Deep neural networks have set new standards of performance in many machine
learning areas such as image classification [12, 32], speech recognition [6, 19],
video analysis [9, 10], or in the sciences [2, 31, 25]. For applications where the
input signal is very large in time or space, it has been a common practice to
train the model on small patches or clips of that signal [9, 7, 3]. This strategy
reduces the number of input variables to be processed by the network and thus,
allows to extract the problem’s nonlinearities more quickly by performing more
training iterations.

An underlying assumption of patch- or clip-based training is the locality of
the label information. This assumption is often violated in practice: For example,
discriminative information may only be contained in long-term interactions
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[6, 36, 19] or only reside at specific time steps (e.g. when a particular action
occurs). Since such label noise makes the training more di�cult [22], recent
work investigated ways to cope with this problem, e.g., attention mechanisms
[27] or weighted patch aggregation [3].

This paper aims to investigate patch- or clip-based learning from another
perspective, namely by analyzing the properties of a model trained with this
specific learning procedure. One way to study the properties of a model is to
perform introspection into how the model predicts, for example, by explaining
its predictions in terms of input variables [21]. Such explanations can now be
robustly obtained for a wide range of convolution-type or general deep neural
networks [37, 29, 35, 1, 23, 17, 14], and other machine learning models (e.g., [11]).

In this work we analyzed a convolutional neural network [33] trained
for human action recognition on the Sports1M dataset [10] using the deep
Taylor / Layer-wise Relevance Propagation (LRP) decomposition technique
[17, 15]. We first show that this explanation technique reliably captures class-
relevant information from videos. We then test how clip-based training a↵ects
the prediction strategy of the network and identify two e↵ects induced by
this training procedure. The “border e↵ect” describes the observation that
the prediction is predominantly focused at the frames close to the temporal
boundaries of its given input to compensate for a small amount of frames per
input video clip, whereas the “lookahead e↵ect” describes the observation that
the model learns to ignore the first few frames of the input video clip and
assign more relevance to the later ones. Finally we demonstrate that the insights
obtained by explaining predictions can be directly (i.e. without retraining) used
to increase the prediction accuracy of the classifier.

While a di↵erent approach for human action recognition has been analyzed
before [30] using the LRP framework [1], to our knowledge this work is the first
to analyze any neural network for video classification using the deep Taylor /
LRP decomposition technique [17]. In a recent work, voxel explanations of 3D-
CNNs [34] have been produced using di↵erent explanation frameworks [39, 26].
Further research has been done on the interpretation [4], description [38] and
segmentation of videos [20]. Outside the field of machine learning, some work
has been done on saliency detection in videos [8, 16].

16.2 Explaining the Classifier’s Predictions

In this paper, we use the deep Taylor / LRP decomposition technique [17] to
produce explanations. We give a brief textual description of the method, along
with connections to previous work. The method performs a sum-decomposition
of the function value f(x) in terms of input variables [21]

f(x) =
X

p,t

Rp,t (16.1)

where Rp,t is the relevance of pixel p in frame t. These scores are obtained
by progressively redistributing the output f(x) backwards in the network,
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Fig. 16.1. Example of a video along with the DTD explanation of this video belonging
to the class ‘Tumbling’. High relevance scores are shown in red.

di↵erently from back-propagation, until the input variables are reached. This
redistribution procedure satisfies a conservation principle [13, 1], where each
neuron passes to the lower-layer as much as it has received from the higher layer.
Let i, j be neurons of adjacent layers. Let ai be the activation of neuron i and wij

be the weight that connects it to neuron j. In linear layers, the redistribution is
in proportion to the positive contribution of the input activations Ri j / aiw

+
ij

of each neuron [1, 17]. In pooling layers, the redistribution is in proportion
to the activations ai inside the pool [17]. For the first convolutional layer we
redistribute in proportion to the signed contributions plus some additive term
Ri j / aiwij � liw

+
ij

�hiw
�
ij

where li and hi are the minimal and maximal pixel
values respectively [17].

Another popular explanation technique is sensitivity analysis [5, 28], which
computes importance scores as e.g.

Sp,t =
⇣ df

dxp,t

⌘2
. (16.2)
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We note that this analysis can be interpreted as performing a sum-decomposition
of the squared gradient norm (krfk2 =

P
p,t

Sp,t), and is thus closer to an
explanation of the function’s variation. We refer the reader for a comparison of
di↵erent explanation methods to [24, 18].

16.3 Experiments

We use the 3-dimensional convolutional neural network architecture C3D as
described by [33], with 1+1+2+2+2 convolutional layers, each group followed
by a max-pooling layer and finally 2 consecutive dense layers, where each linear
layer is followed by a ReLU activation. Kernel sizes for all convolutions are
3 ⇥ 3 ⇥ 3, pooling kernels are 1 ⇥ 3 ⇥ 3 where the dimensions correspond to time
by height by width. The network is trained on the Sports-1M data set, which
consists of roughly 1 million sports videos from YouTube with 487 classes [10].
Videos are pre-processed by spatially resizing to 128⇥171 pixels and then center-
cropping to 121⇥ 121 pixels. We take video clips at particular o↵sets, composed
of 16 frames each. The pre-trained model we use, as supplied by [33], used to be
state-of-the-art in human action recognition. It achieves a top-1 accuracy (most
confidently predicted class is the label) per clip of 46.1%, a top-1 accuracy over
10 random clips of a single video of 61.1%, as well as a top-5 accuracy (label is
in the 5 most confidently predicted classes) for the same setting of 85.2%. Thus,
the model successfully performs the classification task and can be analyzed.

We explain predictions for 1000 videos from the test set of Sports-1M using
deep Taylor / LRP decomposition [17]. Additional explanations are given for the
same 3-dimensional convolutional neural network architecture untrained as well
as using gradient-based sensitivity analysis [5, 28] for comparison.

16.3.1 Heatmap Analysis

To get a first impression of the prediction, we take a look at the individual
explanation of one specific video clip. In Fig. 16.1, we show an exemplary video
and the deep Taylor / LRP decomposition (DTD) for the predicted class label
“Tumbling”. The hands are identified as relevant, especially when the latter are
touching the trampoline, which is characteristic of that class. Other parts of
the image such as the trees in the background are not highlighted and therefore
found to be non-relevant. The DTD analysis is also less noisy and more focused
on the class-relevant features than sensitivity analysis (Fig. 16.1c).

An interesting observation that can be made is that the training procedure
tends to make the relevance converge from the center frames of the video clip
to its frames closest to the beginning and end respectively as evidenced by
the di↵erence between DTD and the same analysis performed on an untrained
network (Fig. 16.1d). This so-called border e↵ect will be studied quantitatively
in Section 16.3.2. The initial focus on the center of the sequence is due to these
frames being more densely connected to the output.



Understanding Patch-Based Learning of Video Data 309

U#V .h. mMi`�BM2/

U�V .22T h�vHQ` f G_S .2+QKTQbBiBQM U+V a2MbBiBpBiv �M�HvbBb

Fig. 16.2. Relevance share (Pt)t. Red color shows these vectors for a large number of
videos. Lines show the mean relevance share and polynomial fits.

Additional examples of di↵erent videos are shown in Figs. 16.6 and 16.7.
In particular, the aforementioned observation of higher relevance towards the
videos’ borders is more clearly visible in Figs. 16.6a and 16.6b. Furthermore,
we can also observe that the final frames receive more relevance than any other
ones in Figs. 16.6a, 16.7a and 16.7b. This lookahead e↵ect will also be studied
quantitatively in Section 16.3.2.

16.3.2 Quantifying Border and Lookahead E↵ects

To refine the intuition developed in Section 16.3.1 about the presence of a border
and lookahead e↵ect, we produce DTD explanations for a large number of videos
and analyze their average properties. Because the border e↵ect occurs in the
temporal domain, we only focus on the temporal axis of explanations Rp,t by
defining a frame-wise explanation Rt =

P
p
Rp,t. From these relevance scores,

we can define a vector (Pt)t where Pt = Rt/
P

t
Rt is the share of relevance at

time t. Since our input video clips each contain 16 frames, this vector has size
16, which we can visualize in a plot. Results are shown in Fig. 16.2. The red
pattern represents the distribution of these 16-dimensional vectors, for which we
can compute an average over the dataset (blue line). Results are also compared
to sensitivity analysis, as well as DTD on the untrained model.

Results confirm our previous observations of higher relevance in the bordering
frames. Note that DTD and sensitivity analysis (Fig. 16.2c) produce consistent
results with respect to the border e↵ect. We can further verify that this e↵ect is
not due to an architecture-related artifact, by performing the same DTD analysis
on the untrained model (Fig. 16.2b): The border e↵ect is present only for the
trained model. For the untrained model, relevance at the border is instead lower
compared to other frames. The additional lookahead e↵ect can be observed from
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this analysis where the relevance is slightly higher for the last frame as opposed
to the first frame.

In order to determine the strength of the border and lookahead e↵ects,
we need a quantitative measure for them. We propose to capture these e↵ects
by fitting vectors (Pt)t using simple quadratic regression. More specifically, we
consider the quadratic model

q(t) = B · t2 + C · t + D (16.3)

and fit the coe�cients B, C,D to minimize the least square error
P

t
kE[Pt] �

q(t)k2, where E[·] is the expectation over the Sports-1M test set. The strength
of the border e↵ect is captured by the variable B. Similarly, to capture the
lookahead e↵ect, we fit a linear model

l(t) = L · t + A (16.4)

using similar least squares objective, and identify the lookahead strength by the
parameter L. Fitted models q(t) and l(t) are shown as green and cyan lines in
Fig. 16.2.

Table 16.1. Parameters for fitted models q(t) and l(t) as in Eqs. 16.3 and 16.4. Relevant
coe�cients are shown in bold.

DTD SA DTD-u

B 0.0010 0.0018 �0.0005
C �0.0168 �0.0322 0.0082
D 0.1085 0.1661 0.0389

L 0.0007 �0.0012 �0.0002
A 0.0558 0.0729 0.0640

These parameters are shown in Table 16.1 for the deep Taylor / LRP
decomposition (DTD), sensitivity analysis (SA), and the DTD on the untrained
model (DTD-u). Coe�cients used for the analysis are shown in bold. We can
observe that the border parameter B is positive for both analyses performed
on the trained model. The lookahead parameter however has varying signs
depending on the choice of analysis. We will see later in Section 16.3.4 that
this parameter is influenced by the o↵set of the input sequence.

16.3.3 Border E↵ect and Step Size

The border e↵ect can be intuitively understood as an attempt by the network
to look beyond the sequence received as input. This suggests that upscaling
the input sequence may reduce this e↵ect as more context becomes available.
For example, Fig. 16.6a is a static scene with barely any motion and shows,
compared to other samples, more relevance at the border frames. To test this,
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Fig. 16.3. Border parameter B by step size (logarithmic scale)

Fig. 16.4. Lookahead parameter L by intra-video frame o↵set.

we will subsample videos with various step sizes. We start with a step size of
1
16 , which is the same frame repeated 16 times. We then double the step size
repeatedly until we reach a value of 32. At each step size, we apply DTD as
well as sensitivity analysis. Note that the model is left untouched. The border
parameter B for each step size is given in Fig. 16.3. For low step sizes, the
border e↵ect is strong. As the step size increases, the border e↵ect is reduced,
thus confirming the above intuition.

16.3.4 Lookahead E↵ect and O↵set

The lookahead e↵ect is the tendency of the network to look predominantly at
the end of the sequence. We would like to test whether this e↵ect occurs at
every position in the video or mainly at the beginning. One of our suspicions is,
that many videos start with some opening screen, where the title of the video,
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authors etc. are introduced. It would seem natural that the model ignores the
first few frames of the video and assigns more relevance to the later frames.
An example for such a video clip is shown in Fig. 16.7b. We start by taking
the input sequence at the beginning of the video, then, we slide the window by
8-framed o↵sets until we reach an o↵set of 256. The results are shown in Fig.
16.4. We observe that for o↵sets 0, 8 and 16, the lookahead parameter is high
compared to other o↵sets, and becomes low and constant for larger o↵sets. This
behavior for small o↵sets supports the hypothesis of non-informative content at
the beginning of the video.

16.3.5 Step Size and Model Accuracy

As a final experiment, we look at how the step size not only controls the
border e↵ect, but also the model’s classification accuracy. In particular, we
test whether we can improve the classifier accuracy by simply choosing a step
size di↵erent from the training data, without retraining the model. We use the
previously defined step sizes and plot in Fig. 16.5 the resulting border parameter
in correspondence to the produced classification accuracy. (The measure of
accuracy is the membership of the true label to the top five predictions.) A low
step size produces few correct predictions. Performance slowly increases until
the highest accuracy is reached at a step size of 2, about 1% above the baseline
accuracy of 60%. After that, accuracy drops again until a step size of 16. A
key observation here is that the optimal step size is di↵erent from the step size
1 used for training the model. Thus, the classification accuracy was improved
at no cost. Note that we could have made this observation without any model
explanation by simple validation over the frame rate. However, the contribution
of the explanation module here is the insight of how the model utilizes frames
in the input clip, which led to this experiment in the first place.

16.4 Conclusion

In this work, we have explained the reasoning of a highly predictive video
neural network trained on a sports classification task. For this, we have used the
recently proposed deep Taylor / LRP framework, which allowed us to robustly
identify which frames in the video and which pixels of each frame are relevant for
prediction. The method was able to correctly identify video features specific to
certain sports. In addition, the analysis has also revealed systematic imbalances
in the way relevance is distributed in the temporal domain. These imbalances,
that we called “border e↵ect” and “lookahead e↵ect”, can be understood as an
attempt by the network to look beyond the sequence it receives as input. Based
on the result of this analysis, we then explored how transforming the input
data reduces/increases these imbalances. In particular, down-sampling the data
was shown to reduce the border e↵ect, and also to bring a small increase in
classification accuracy (Fig. 16.5), without actually retraining the model. Even
though the “lookahead e↵ect” did not immediately lead to a strategy to improve
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Fig. 16.5. Border parameter B by top-5 accuracy along step size. The grey bar
indicates the baseline accuracy.

the model, it implied flaws in the preprocessing of the training data. While
these specific findings were only shown in this respective context of C3D and
Sports1M, we were able to demonstrate to what extent the findings of such an
analysis of a video classifier could be used to gain insight of a model’s relation
to its input data. We speculate that other models might share similar relations.
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Fig. 16.6. Examples of videos belonging to di↵erent classes. For each example from
top to bottom: input video, deep Taylor / LRP decomposition, sensitivity analysis.
Captions are the true label followed by the predicted label in parentheses.
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Fig. 16.7. Examples of videos belonging to di↵erent classes. For each example from
top to bottom: input video, deep Taylor / LRP decomposition, sensitivity analysis.
Captions are the true label followed by the predicted label in parentheses.


