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Abstract

Text documents can be described by a number of abstract concepts such as semantic
category, writing style, or sentiment. Machine learning (ML) models have been trained
to automatically map documents to these abstract concepts, allowing to annotate very
large text collections, more than could be processed by a human in a lifetime. Besides
predicting the text’s category very accurately, it is also highly desirable to understand
how and why the categorization process takes place. In this paper, we demonstrate that
such understanding can be achieved by tracing the classification decision back to
individual words using layer-wise relevance propagation (LRP), a recently developed
technique for explaining predictions of complex non-linear classifiers. We train two
word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM
classifier, on a topic categorization task and adapt the LRP method to decompose the
predictions of these models onto words. Resulting scores indicate how much individual
words contribute to the overall classification decision. This enables one to distill
relevant information from text documents without an explicit semantic information
extraction step. We further use the word-wise relevance scores for generating novel
vector-based document representations which capture semantic information. Based on
these document vectors, we introduce a measure of model explanatory power and show
that, although the SVM and CNN models perform similarly in terms of classification
accuracy, the latter exhibits a higher level of explainability which makes it more
comprehensible for humans and potentially more useful for other applications.

1 Introduction 1

A number of real-world problems related to text data have been studied under the 2

framework of natural language processing (NLP). Examples of such problems include 3

topic categorization, sentiment analysis, machine translation, structured information 4

extraction, and automatic summarization. Due to the overwhelming amount of text 5

data available on the Internet from various sources such as user-generated content or 6

digitized books, methods to automatically and intelligently process large collections of 7

text documents are in high demand. For several text applications, machine learning 8

(ML) models based on global word statistics like TFIDF [1,2] or linear classifiers are 9

known to perform remarkably well, e.g. for unsupervised keyword extraction [3] or 10
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document classification [4]. However more recently, neural network models based on 11

vector space representations of words (like [5]) have shown to be of great benefit to a 12

large number of tasks. The trend was initiated by the seminal work of [6] and [7], who 13

introduced word-based neural networks to perform various NLP tasks such as language 14

modeling, chunking, named entity recognition, and semantic role labeling. A number of 15

recent works (e.g. [7, 8]) also refined the basic neural network architecture by 16

incorporating useful structures such as convolution, pooling, and parse tree hierarchies, 17

leading to further improvements in model predictions. Overall, these ML models have 18

permitted to assign automatically and accurately concepts to entire documents or to 19

sub-document levels like phrases; the assigned information can then be mined on a large 20

scale. 21

In parallel, a set of techniques were developed in the context of image categorization 22

to explain the predictions of convolutional neural networks (a state-of-the-art ML model 23

in this field) or related models. These techniques were able to associate to each 24

prediction of the model a meaningful pattern in the space of input features [9–11] or to 25

perform a decomposition onto the input pixels of the model output [12–14]. In this 26

paper, we will make use of the layer-wise relevance propagation (LRP) technique [13], 27

which has already been substantially tested on various datasets and ML models [15–18]. 28

In the present work, we propose a method to identify which words in a text document 29

are important to explain the category associated to it. The approach consists in using a 30

ML classifier to predict the categories as accurately as possible, and in a second step, 31

decompose the ML prediction onto the input domain, thus assigning to each word in the 32

document a relevance score. The ML model of study will be a word-embedding based 33

convolutional neural network that we train on a text classification task, namely topic 34

categorization of newsgroup documents. As a second ML model we consider a classical 35

bag-of-words support vector machine (BoW/SVM) classifier. 36

We contribute the following: 37

(i) The LRP technique [13] is brought to the NLP domain and its suitability for 38

identifying relevant words in text documents is demonstrated. 39

(ii) LRP relevances are validated, at the document level, by building document 40

heatmap visualizations, and at the dataset level, by compiling representative words for a 41

text category. It is also shown quantitatively that LRP better identifies relevant words 42

than sensitivity analysis. 43

(iii) A novel way of generating vector-based document representations is introduced 44

and it is verified that these document vectors present semantic regularities within their 45

original feature space akin to word vector representations. 46

(iv) A measure for model explanatory power is proposed and it is shown that two 47

ML models, a neural network and a BoW/SVM classifier, although presenting similar 48

classification performance, may substantially differ in terms of explainability. 49

The work is organized as follows. In Section 2 we describe the related work for 50

explaining classifier decisions with respect to input space variables. In Section 3 we 51

introduce our neural network ML model for document classification, as well as the LRP 52

decomposition procedure associated to its predictions. We describe how LRP relevance 53

scores can be used to identify important words in documents and introduce a novel way 54

of condensing the semantic information of a text document into a single document 55

vector. Likewise in section 3 we introduce a baseline ML model for document 56

classification, as well as a gradient-based alternative for assigning relevance scores to 57

words. In Section 4 we define objective criteria for evaluating word relevance scores, as 58

well as for assessing model explanatory power. In Section 5 we introduce the dataset 59

and experimental setup, and in Section 6 we present the results. Finally, Section 7 60
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concludes our work. 61

2 Related Work 62

Explanation of individual classification decisions in terms of input variables has been 63

studied for a variety of machine learning classifiers such as additive classifiers [19], 64

kernel-based classifiers [20] or hierarchical networks [12]. Model-agnostic methods for 65

explanations relying on random sampling have also been proposed [21–23]. Despite their 66

generality, the latter however incur an additional computational cost due to the need to 67

process the whole sample to provide a single explanation. Other methods are more 68

specific to deep convolutional neural networks used in computer vision: the authors 69

of [9] proposed a network propagation technique based on deconvolutions to reconstruct 70

input image patterns that are linked to a particular feature map activation or 71

prediction. The work of [10] is aimed at revealing salient structures within images 72

related to a specific class by computing the corresponding prediction score derivative 73

with respect to the input image. The latter method is based on gradient magnitude, 74

and thus reveals the sensitivity of the classifier decision to some local variation of the 75

input image; this technique is related to sensitivity analysis [24,25]. 76

In contrast, the LRP method of [13] corresponds to a full decomposition of the 77

classifier’s actual prediction score value for the current input image. One can show that 78

sensitivity analysis decomposes the gradient square norm of the function f , i.e., 79∑
iRi = ‖∇xf(x)‖2, whereas LRP decomposes the function value itself

∑
iRi = f(x). 80

Intuitively, when the classifier e.g. detects cars in images, then sensitivity analysis 81

answers the question “what makes this car image more or less a car?”, whereas LRP 82

answers the more fundamental question “what makes this image a car at all?”. Note 83

that the LRP framework can be applied to various models such as kernel support vector 84

machines and deep neural networks [13,18]. We refer the reader to [15] for a comparison 85

of the three explanation methods, and to [14] for a view of particular instances of LRP 86

as a “deep Taylor decomposition” of the decision function. A tutorial on methods for 87

interpreting and understanding deep neural networks can be found in [26]. 88

In the context of neural networks for text classification [27] proposed to extract 89

salient sentences from text documents using loss gradient magnitudes. In order to 90

validate the pertinence of the sentences extracted via the neural network classifier, the 91

latter work proposed to subsequently use these sentences as an input to an external 92

classifier and compare the resulting classification performance to random and heuristic 93

sentence selection. The work by [28] also employs gradient magnitudes to identify 94

salient words within sentences, analogously to the method proposed in computer vision 95

by [10]. However their analysis is based on qualitative interpretation of saliency 96

heatmaps for exemplary sentences. In addition to the heatmap visualizations, we 97

provide a classifier-intrinsic quantitative validation of the word-level relevances. We 98

furthermore extend previous work from [29] by adding a BoW/SVM baseline to the 99

experiments and proposing a new criterion for assessing model explanatory power. 100

Recent work from [30,31] uses LRP to explain recurrent neural network predictions in 101

sentiment analysis and machine translation. 102

3 Interpretable Text Classification 103

In this Section we describe our method for identifying words in a text document, that 104

are relevant with respect to a given category of a classification problem. For this, we 105

assume that we are given a vector-based word representation and a convolutional neural 106

network that has already been trained to map accurately documents to their actual 107
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category. Our method can be divided into four steps: (1) Compute an input 108

representation of a text document based on word vectors. (2) Forward-propagate the 109

input representation through the convolutional neural network until the output is 110

reached. (3) Backward-propagate the output through the network using the layer-wise 111

relevance propagation (LRP) method, until the input is reached. (4) Pool the relevance 112

scores associated to each input variable of the network onto the words to which they 113

belong. As a result of this four-step procedure, a decomposition of the prediction score 114

for a category onto the words of the documents is obtained. Decomposed terms are 115

called relevance scores. These relevance scores can be viewed as highlighted text or can 116

be used to form a list of top-words in the document. The whole procedure is also 117

described visually in Fig 1. While we detail in this Section the LRP method for a 118

specific network architecture and with predefined choices of layers, the method can in 119

principle be extended to any architecture composed of a similar or larger number of 120

layers. 121
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Fig 1. Diagram of a CNN-based interpretable machine learning system. It
consists of a forward processing that computes for each input document a high-level
concept (e.g. semantic category or sentiment), and a redistribution procedure that
explains the prediction in terms of words.

At the end of this Section we introduce different methods which will serve as 122

baselines for comparison. A baseline for the convolutional neural network model is the 123

BoW/SVM classifier, with the LRP procedure adapted accordingly [13]. A baseline for 124

the LRP relevance decomposition procedure is gradient-based sensitivity analysis (SA), 125

a technique which assigns sensitivity scores to individual words. In the vector-based 126

document representation experiments, we will also compare LRP to uniform and TFIDF 127

baselines. 128

3.1 Representing Words and Documents 129

Prior to training the neural network and using it for prediction and explanation, we first 130

derive a numerical representation of the text documents that will serve as an input to 131

the neural classifier. To this end, we map each individual word in the document to a 132

vector embedding, and concatenate these embeddings to form a matrix of size the 133

number of words in the document times the dimension of the word embeddings. A 134

distributed representation of words can be learned from scratch, or fine-tuned 135

simultaneously with the classification task of interest. In the present work, we use only 136

pre-training as it was shown that, even without fine-tuning, this leads to good neural 137
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network classification performance for a variety of tasks like e.g. part-of-speech tagging 138

or sentiment analysis [7, 32]. 139

One shallow neural network model for learning word embeddings from unlabeled text
sources, is the continuous bag-of-words (CBOW) model of [33], which is similar to the
log-bilinear language model from [34,35] but ignores the order of context words. In the
CBOW model, the objective is to predict a target middle word from the average of the
embeddings of the context words that are surrounding the middle word, by means of
direct dot products between word embeddings. During training, a set of word
embeddings for context words v and for target words v′ are learned separately. After
training is completed, only the context word embeddings v will be retained for further
applications. The CBOW objective has a simple maximum likelihood formulation,
where one maximizes over the training data the sum of the logarithm of probabilities of
the form:

P (wt|wt−n:t+n) =
exp

(
( 1
2n ·

∑
−n≤j≤n,j 6=0 vwt+j

)>v′wt

)
∑
w∈V exp

(
( 1
2n ·

∑
−n≤j≤n,j 6=0 vwt+j

)>v′w

)
where the softmax normalization runs over all words w in the vocabulary V , 2n is the 140

number of context words per training text window, wt represents the target word at the 141

tth position in the training data and wt−n:t+n represent the corresponding context 142

words. 143

In the present work, we utilize pre-trained word embeddings obtained with the 144

CBOW architecture and the negative sampling training procedure [5]. We will refer to 145

these embeddings as word2vec embeddings. 146

3.2 Predicting Category with a Convolutional Neural Network 147

Our ML model for classifying text documents, is a word-embedding based convolutional 148

neural network (CNN) model similar to the one proposed in [32] for sentence 149

classification, which itself is a slight variant of the model introduced in [7] for semantic 150

role labeling. This architecture is depicted in Fig 1 (left) and is composed of several 151

layers. 152

As previously described, in a first step we map each word in the document to its
word2vec vector. Denoting by D the word embedding dimension and by L the
document length, our input is a matrix of shape D × L (e.g., for the purpose of
illustration, in Fig 1 we have D = 8 and L = 6). We denote by xi,t the value of the ith

component of the word2vec vector representing the tth word in the document. The
convolution/detection layer produces a new representation composed of F sequences
indexed by j, where each element of the sequence is computed as:

∀j, t : xj,t = max
(

0,
∑
i,τ xi,t−τ w

(1)
i,j,τ + b

(1)
j

)
= max

(
0,
∑
i

(
xi ∗ w(1)

i,j

)
t

+ b
(1)
j

)
where t indicates a position within the text sequence, j designates a feature map, and
τ ∈ {0, 1, . . . ,H − 1} is a delay with range H, the filter size of the one-dimensional
convolutional operation ∗. After the convolutional operation, which yields F features
maps of length L−H + 1, we apply the ReLU non-linearity element-wise (e.g., in Fig 1,
we have F = 5 features maps and a filter size H = 2, hence we use τ ∈ {0, 1} and the
resulting feature maps have a length of 5). Note that the trainable parameters w(1) and
b(1) do not depend on the position t in the text document, hence the convolutional
processing is equivariant with this physical dimension. The next layer computes, for
each dimension j of the previous representation, the maximum over the entire text
sequence of the document:

∀j : xj = maxt
{
xj,t
}
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This layer creates invariance to the position of the features in the document. Finally,
the F pooled features are fed into a logistic classifier where the unnormalized
log-probability of each of the C classes, indexed by the variable k are given by:

∀k : xk =
∑
j xj w

(2)
jk + b

(2)
k

where w(2), b(2) are trainable parameters of size F × C resp. size C defining a 153

fully-connected linear layer (e.g., in Fig 1, C = 3). The outputs xk can be converted to 154

probabilities through the softmax function pk = exp(xk)/
∑
k′ exp(xk′). For the LRP 155

decomposition we take the unnormalized classification scores xk as a starting point. 156

3.3 Explaining Predictions with Layer-wise Relevance 157

Propagation 158

Layer-wise relevance propagation (LRP) [13,36] is a recently introduced technique for 159

estimating which elements of a classifier input are important to achieve a certain 160

classification decision. It can be applied to bag-of-words SVM classifiers as well as to 161

layer-wise structured neural networks. For every input data point and possible target 162

class, LRP delivers one scalar relevance value per input variable, hereby indicating 163

whether the corresponding part of the input is contributing for or against a specific 164

classifier decision, or if this input variable is rather uninvolved and irrelevant to the 165

classification task. 166

The main idea behind LRP is to redistribute, for each possible target class 167

separately, the output prediction score (i.e. a scalar value) that causes the classification, 168

back to the input space via a backward propagation procedure that satisfies a layer-wise 169

conservation principle. Thereby each intermediate classifier layer up to the input layer 170

gets allocated relevance values, and the sum of the relevances per layer is equal to the 171

classifier prediction score for the class being considered. Denoting by xi,t , xj,t , xj , xk 172

the neurons of the CNN layers presented in the previous Section, we associate to each of 173

them respectively a relevance score Ri,t , Rj,t , Rj , Rk. Accordingly the layer-wise 174

conservation principle can be written as: 175∑
i,tRi,t =

∑
j,tRj,t =

∑
j Rj =

∑
k Rk (1)

where each sum runs over all neurons of a given layer of the network. To formalize the 176

redistribution process from one layer to another, we introduce the concept of messages 177

Ra←b indicating how much relevance circulates from a given neuron b to a neuron a in 178

the next lower-layer. We can then express the relevance of neuron a as a sum of 179

incoming messages using: Ra =
∑
b∈upper(a)Ra←b where upper(a) denotes the 180

upper-layer neurons connected to a. To bootstrap the propagation algorithm, we set the 181

top-layer relevance vector to ∀k : Rk = xk · δkc where δ is the Kronecker delta function, 182

and c is the target class of interest for which we would like to explain the model 183

prediction in isolation from other classes. 184

In the top fully-connected layer, messages are computed following a weighted 185

redistribution formula: 186

Rj←k =
zjk∑
j zjk

Rk (2)

where we define zjk = xjw
(2)
jk + F−1(b

(2)
k + ε · (1xk≥0 − 1xk<0)). This formula 187

redistributes relevance onto lower-layer neurons in proportion to zjk representing the 188

contribution of each neuron to the upper-layer neuron value in the forward propagation, 189

incremented by a small stabilizing term ε that prevents the denominator from nearing 190

zero, hence avoiding positive and negative relevance messages that are too large. In the 191

limit case where ε→∞, the relevance is redistributed uniformly along the network 192
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connections. As a stabilizer value we use ε = 0.01 as introduced in [13]. After 193

computation of the messages according to Eq 2, the latter can be pooled onto the 194

corresponding neuron by the formula Rj =
∑
k Rj←k. 195

The relevance scores Rj are then propagated through the max-pooling layer using 196

the formula: 197

Rj,t =

{
Rj if t = arg maxt′ xj,t′

0 else
(3)

which is a “winner-take-all” redistribution analogous to the rule used during training for 198

backpropagating gradients, i.e. the neuron that had the maximum value in the pool is 199

granted all the relevance from the upper-layer neuron. Finally, for the convolutional 200

layer we use the weighted redistribution formula: 201

R(i,t−τ)←(j,t) =
zi,j,τ∑
i,τ zi,j,τ

Rj,t (4)

where zi,j,τ = xi,t−τw
(1)
i,j,τ + (HD)−1(b

(1)
j + ε · (1xj,t>0 − 1xj,t≤0)), which is similar to 202

Eq 2 except for the increased notational complexity incurred by the convolutional 203

structure of the layer. Messages can finally be pooled onto the input neurons by 204

computing Ri,t =
∑
j,τ R(i,t)←(j,t+τ). 205

3.4 Word Relevance and Vector-Based Document 206

Representation 207

So far, the relevance has been redistributed only onto individual components of the 208

word2vec vector associated to each word, in the form of single input neuron relevances 209

Ri,t. To obtain a word-level relevance value, one can pool the relevances over all 210

dimensions of the word2vec vector, that is computed as: 211

Rt =
∑
iRi,t (5)

and use this value to highlight words in a text document, as shown in Fig 1 (right). 212

These word-level relevance scores can further be used to condense the semantic 213

information of text documents, by building vectors d ∈ RD representing full documents 214

through linearly combining word2vec vectors: 215

∀i : di =
∑
t Rt · xi,t (6)

The vector d is a summary that consists of an additive composition of the semantic 216

representation of all relevant words in the document. Note that the resulting document 217

vector lies in the same semantic space as word2vec vectors. A more fined-grained 218

extraction technique does not apply word-level pooling as an intermediate step and 219

extracts only the relevant subspace of each word: 220

∀i : di =
∑
t Ri,t · xi,t (7)

This last approach is particularly useful to address the problem of word homonymy, and 221

will thus result in even finer semantic extraction from the document. In the remaining 222

we will refer to the semantic extraction defined by Eq 6 as word-level extraction, and to 223

the one from Eq 7 as element-wise (ew) extraction. In both cases we call vector d a 224

document summary vector. 225

3.5 Baseline Methods 226

In the following we briefly mention methods which will serve as baselines for comparison. 227

Sensitivity Analysis. Sensitivity analysis (SA) [20,24,25] assigns scores 228

Ri,t = (∂xk/∂xi,t)
2 to input variables representing the steepness of the decision function 229
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in the input space. These partial derivatives are straightforward to compute using 230

standard gradient propagation [37] and are readily available in most neural network 231

implementations. We would like to point out that, per definition, sensitivity analysis 232

redistributes the quantity ‖∇xk‖22, while LRP redistributes xk. However, the local 233

steepness information is a relatively weak proxy of the actual function value, which is 234

the real quantity of interest when estimating the contribution of input variables with 235

respect to a current classifier’s decision. We further note that relevance scores obtained 236

with LRP are signed, while those obtained with SA are positive. 237

BoW/SVM. As a baseline to the CNN model, a bag-of-words linear SVM classifier 238

will be used to predict the document categories. In this model each text document is 239

first mapped to a vector x with dimensionality V the size of the training data 240

vocabulary, where each entry is computed as a term frequency - inverse document 241

frequency (TFIDF) score of the corresponding word. Subsequently these vectors x are 242

normalized to unit Euclidean norm. In a second step, using the vector representations x 243

of all documents, C maximum margin separating hyperplanes are learned to separate 244

each of the classes of the classification problem from the other ones. As a result we 245

obtain for each class c ∈ C a linear prediction score of the form sc = w>c x+ bc, where 246

wc ∈ RV and bc ∈ R are class specific weights and biases. In order to obtain a LRP 247

decomposition of the prediction score sc for class c onto the input variables, we simply 248

compute Ri = (wc)i · xi + bc/D, where D is the number of non-zero entries of x. 249

Respectively, the sensitivity analysis redistribution of the prediction score squared 250

gradient reduces to Ri = (wc)
2
i . 251

Note that the BoW/SVM model, being a linear predictor relying directly on word 252

frequency statistics, lacks expressive power in comparison to the CNN model which 253

additionally learns intermediate hidden layer representations and convolutional filters. 254

Moreover the CNN model can take advantage of the semantic similarity encoded in the 255

distributed word2vec representations, while for the BoW/SVM model all words are 256

“equidistant” in the bag-of-words semantic space. As our experiments will show, these 257

limitations lead the BoW/SVM model to sometimes identify spurious words as relevant 258

for the classification task. 259

In analogy to the semantic extraction proposed in Section 3.4 for the CNN model, 260

we can build vectors d representing documents by leveraging the word relevances 261

obtained with the BoW/SVM model. To this end, we introduce a binary vector x̃ ∈ RV 262

whose entries are equal to one when the corresponding word from the vocabulary is 263

present in the document and zero otherwise (i.e. x̃ is a binary bag-of-words 264

representation of the document). Thereafter, we build the document summary vector d 265

component-wise, so that d is just a vector of word relevances: 266

∀i : di = Ri · x̃i (8)

Uniform/TFIDF based Document Summary Vector. Instead of the word-level 267

relevance Rt resp. Ri used in Eq 6 and Eq 8, we can apply a uniform weighting. This 268

corresponds to building the document vector d as an average of word2vec word 269

embeddings in the first case, and to taking a binary bag-of-words vector as the document 270

representation d in the second case. Moreover, we can replace Rt in Eq 6 by an inverse 271

document frequency (IDF) score, and Ri in Eq 8 by a TFIDF score. Both correspond to 272

TFIDF weighting of either word2vec vectors, or of one-hot vectors representing words. 273
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4 Quality of Word Relevances and Model 274

Explanatory Power 275

In this Section we describe how to evaluate and compare the outcomes of algorithms 276

which assign relevance scores to words (such as LRP or SA) through intrinsic validation. 277

Furthermore, we propose a measure of model explanatory power based on an extrinsic 278

validation procedure. The latter will be used to analyze and compare the relevance 279

decompositions or explanations obtained with the neural network and the BoW/SVM 280

classifier. Both types of evaluations will be carried out in Section 6. 281

4.1 Measuring the Quality of Word Relevances through 282

Intrinsic Validation 283

An evaluation of how well a method identifies relevant words in text documents can be 284

performed qualitatively, e.g. at the document level, by inspecting the heatmap 285

visualization of a document, or by reviewing the list of the most (or the least) relevant 286

words per document. A similar analysis can also be conducted at the dataset level, e.g. 287

by compiling the list of the most relevant words for one category across all documents. 288

The latter allows one to identify words that are representatives for a document category, 289

and eventually to detect potential dataset biases or classifier specific drawbacks. 290

However, in order to quantitatively compare algorithms such as LRP and SA regarding 291

the identification of relevant words, we need an objective measure of the quality of the 292

explanations delivered by relevance decomposition methods. To this end we adopt an 293

idea from [15]: A word w is considered highly relevant for the classification f(x) of the 294

document x if removing it and classifying the modified document x̃ results in a strong 295

decrease of the classification score f(x̃). This idea can be extended by sequentially 296

deleting words from the most relevant to the least relevant or the other way round. The 297

result is a graph of the prediction scores f(x̃) as a function of the number of deleted 298

words. In our experiments, we employ this approach to track the changes in 299

classification performance when successively deleting words according to their relevance 300

value. By comparing the relative impact on the classification performance induced by 301

different relevance decomposition methods, we can estimate how appropriate these 302

methods are at identifying words that are really important for the classification task at 303

hand. The above procedure constitutes an intrinsic validation, as it does not rely on an 304

external classifier. 305

4.2 Measuring Model Explanatory Power through Extrinsic 306

Validation 307

Although intrinsic validation can be used to compare relevance decomposition methods 308

for a given ML model, this approach is not suited to compare the explanatory power of 309

different ML models, since the latter requires a common evaluation basis. Furthermore, 310

even if we would track the classification performance changes induced by different ML 311

models using an external classifier, it would not necessarily increase comparability, 312

because removing words from a document may affect different classifiers very differently, 313

so that their graphs f(x̃) are not comparable. Therefore, we propose a novel measure of 314

model explanatory power which does not depend on a classification performance change, 315

but only on the word relevances. Hereby we consider ML model A as being more 316

explainable than ML model B if its word relevances are more “semantic extractive”, i.e. 317

more helpful for solving a semantic related task such as the classification of document 318

summary vectors. 319
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More precisely, in order to quantify the ML model explanatory power, we undertake 320

the following steps: 321

(1) Compute document summary vectors for all test set documents using Eq 6 or 7 322

for the CNN and Eq 8 for the BoW/SVM model. Hereby use the ML model’s predicted 323

class as target class for the relevance decomposition (i.e. the summary vector generation 324

is unsupervised). 325

(2) Normalize the document summary vectors to unit Euclidean norm, and perform 326

a K-nearest-neighbors (KNN) classification of half of these vectors, using the other half 327

of summary vectors as neighbors (using standard KNN classification, i.e. nearest 328

neighbors are identified by Euclidean distance and neighbor votes are weighted 329

uniformly). Use different hyperparameters K. 330

(3) Repeat step (2) over 10 random data splits, and average the KNN classification 331

accuracies for each K. Finally, report the maximum (over different K) KNN accuracy 332

as explanatory power index (EPI). The higher this value, the more explanatory power 333

the ML model and the corresponding document summary vectors, will have. 334

In a nutshell, our EPI metric of explanatory power of a given ML model “f”,
combined with a relevance map “R”, can informally be summarized as:

d(x) =
∑
t [R(f(x))� x]t

EPI(f,R) = max
K

KNN accuracy
(
{d(x(1)), . . . ,d(x(N))},K

)
(9)

where d(x) is the document summary vector for input document x, and subscript t 335

denotes the words in the document. The sum
∑
t and element-wise multiplication � 336

operations stand for the weighted combination specified explicitly in Eq 6 - 8. The KNN 337

accuracy is estimated over all test set document summary vectors indexed from 1 to N , 338

and K is the number of neighbors. 339

In the proposed evaluation procedure, the use of KNN as a common external 340

classifier enables us to compare different ML models in an unbiased manner, in terms of 341

the density and local neighborhood structure of the semantic information extracted via 342

the summary vectors in input feature space. Indeed we recall that summary vectors 343

constructed via Eq 6 and 7 lie in the same semantic space as word2vec embeddings, and 344

that summary vectors obtained via Eq 8 lie in the bag-of-words space. 345

5 Experimental Setup 346

This Section describes the dataset, preprocessing and training procedure used in our 347

experiments. 348

5.1 Dataset 349

We consider a topic categorization task, and employ the freely available 20Newsgroups 350

dataset consisting of newsgroup posts evenly distributed among twenty fine-grained 351

categories. More precisely we use the 20news-bydate version, which is already 352

partitioned into 11314 training and 7532 test documents corresponding to different 353

periods in time. 354

5.2 Preprocessing and Training 355

As a first preprocessing step, we remove the headers from the documents (by splitting at 356

the first blank line) and tokenize the text with NLTK. Then, we filter the tokenized 357

data by retaining only tokens composed of the following four types of characters: 358
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alphabetic, hyphen, dot and apostrophe, and containing at least one alphabetic 359

character. Hereby we aim to remove punctuation, numbers or dates, while keeping 360

abbreviations and compound words. We do not apply any further preprocessing, as for 361

instance stop-word removal or stemming, except for the SVM classifier where we 362

additionally perform lowercasing, as this is a common setup for bag-of-words models. 363

We truncate the resulting sequence of tokens to a chosen fixed length of 400 in order to 364

simplify neural network training (in practice our CNN can process any arbitrary sized 365

document). Lastly, we build the neural network input by horizontally concatenating 366

pre-trained word embeddings, according to the sequence of tokens appearing in the 367

preprocessed document. In particular, we take the 300-dimensional freely available 368

word2vec embeddings [5]. Out-of-vocabulary words are simply initialized to zero vectors. 369

As input normalization, we subtract the mean and divide by the standard deviation 370

obtained over the flattened training data. We train the neural network by minimizing 371

the cross-entropy loss via mini-batch stochastic gradient descent using l2-norm and 372

dropout as regularization. We tune the ML model hyperparameters by 10-fold 373

cross-validation in case of the SVM, and by employing 1000 random documents as fixed 374

validation set for the CNN model. However, for the CNN hyperparameters, we did not 375

perform an extensive grid search and stopped the tuning once we obtained models with 376

reasonable classification performance for the purpose of our experiments. 377

6 Results 378

This Section summarizes our experimental results. We first describe the classification 379

accuracy of the four ML models: three CNNs with different filter sizes and a 380

BoW/SVM classifier. Remaining results are divided into two parts, first a qualitative 381

one and then a quantitative one. In the qualitative part, we demonstrate that LRP can 382

be used to identify relevant words in text documents. We also compare heatmaps for 383

the best performing CNN model and the BoW/SVM classifier, and report the most 384

representative words for three exemplary document categories. These results 385

demonstrate qualitatively that the CNN model produces better explanations than the 386

BoW/SVM classifier. After that we move to the evaluation of the document summary 387

vectors, where we show that a 2D PCA projection of the document vectors computed 388

from the LRP scores groups documents according to their topics (without requiring the 389

true labels). Since worse results are obtained when using the SA scores or the uniform 390

or TFIDF weighting, this indicates that the explanations produced by LRP are 391

semantically more meaningful than the former. In the quantitative part, we confirm the 392

observations made before, namely that (1) the LRP decomposition method provides 393

better explanations than SA and that (2) the CNN model outperforms the BoW/SVM 394

classifier in terms of explanatory power. 395

6.1 Performance Comparison 396

Table 1 summarizes the performance of our trained models. Herein CNN1, CNN2, 397

CNN3 respectively denote neural networks with convolutional filter size H equal to 1, 2 398

and 3 (i.e. covering 1, 2 or 3 consecutive words in the document). One can see that the 399

linear SVM performs on par with the neural networks, i.e. the non-linear structure of 400

the CNN models does not yield a considerable advantage toward classification accuracy. 401

Similar results have also been reported in previous studies [38], where it was observed 402

that for document classification a convolutional neural network model starts to 403

outperform a TFIDF-based linear classifier only on datasets in the order of millions of 404

documents. This can be explained by the fact that for most topic categorization tasks, 405

the different categories can be separated linearly in the very high-dimensional 406
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bag-of-words or bag-of-N-grams space thanks to sufficiently disjoint sets of features. 407

However, despite similar performance, the CNN models present some advantages over 408

the SVM in that their computational costs scale linearly with the training data size, 409

and that each training iteration involves a mini-batch of fixed size; besides, they can 410

take advantage of the word similarity information encoded in the distributed word 411

embeddings, whereas for a BoW/SVM model, any training algorithm that solves the 412

dual optimization problem for an arbitrary kernel has a computational cost that scales 413

at least quadratically in the number of training samples (moreover when the kernel 414

matrix does not fit in memory, this constitutes a major factor in the computation 415

time) [39], additionally the latter model does not consider any word similarity. 416

Table 1. Test set performance of the ML models for 20-class document classification.

ML Model Test Accuracy (%)

BoW/SVM (V = 70631 words) 80.10
CNN1 (H = 1, F = 600) 79.79
CNN2 (H = 2, F = 800) 80.19
CNN3 (H = 3, F = 600) 79.75

6.2 Identifying Relevant Words 417

Fig 2 compiles the resulting LRP heatmaps we obtain on an exemplary sci.space test 418

document that is correctly classified by the SVM and the best performing neural 419

network model CNN2. Note that for the SVM model the relevance values are computed 420

per bag-of-words feature, i.e., the same words will have the same relevance irrespectively 421

of their context in the document, whereas for the CNN classifier we visualize one 422

relevance value per word position. Here we consider as target class for the LRP 423

decomposition the classes sci.space and sci.med. We can observe that the SVM 424

model considers insignificant words like the, is, of as very relevant (either negatively or 425

positively) for the target class sci.med, and at the same time mistakenly estimates 426

words like sickness, mental or distress as negatively contributing to this class (indicated 427

by blue coloring). Besides, in the present work, we compute the TFIDF score of a word 428

w as the raw word count multiplied by (1 + log 1+N
1+nw

), where N is the total number of 429

training documents, and nw is the number of training documents in which w occurs, 430

hence the inverse document frequency has a minimum value of one; this further explains, 431

in part, why frequent words like the are not entirely ignored by the SVM model. On the 432

other hand, we notice that the CNN2 heatmap is consistently more sparse and 433

concentrated on semantically meaningful words. This sparsity property can be 434

attributed to the max-pooling non-linearity which for each feature map in the neural 435

network selects the most relevant feature that occurs in the document. As can be seen, 436

it significantly simplifies the interpretability of the results by a human. Another 437

disadvantage of the SVM model is that it relies entirely on local and global word 438

statistics, thus can only assign relevances proportionally to the TFIDF BoW features 439

(plus a class-dependent bias term), while the neural network model benefits from the 440

knowledge encoded in the word2vec embeddings. For instance, the word weightlessness 441

is not highlighted by the SVM model for the target class sci.space, because this word 442

does not occur in the training data and thus is simply ignored by the SVM classifier. 443

The neural network however is able to detect and attribute relevance to unseen words 444

thanks to the semantic information encoded in the pre-trained word2vec embeddings. 445

As a dataset-wide analysis, we determine the words identified through LRP and SA 446

as class representatives. For that purpose we set one class as target class for the 447

relevance decomposition, and conduct LRP, resp. SA, over all test set documents (i.e. 448

irrespectively of the true or ML model’s predicted class). Subsequently, we sort all the 449
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Fig 2. LRP heatmaps of the document sci.space 61393 for the CNN2 and
SVM model. Positive relevance is mapped to red, negative to blue. The color opacity
is normalized to the maximum absolute relevance per document. The LRP target class
and corresponding classification prediction score is indicated on the left.

words appearing in the test data in decreasing order of the obtained word-level relevance 450

values, and retrieve the twenty most relevant ones. The result is a list of words identified 451

via LRP or SA as being highly supportive for a classifier decision toward the considered 452

class. Fig 3 and 4 list the most relevant words for different target classes, as well as the 453

corresponding word-level relevance values for the CNN2 and the SVM model. Through 454

underlining we indicate words that do not occur in the training data. Interestingly, we 455

observe that some of the most “class-characteristic” words identified via the neural 456

network model correspond to words that do not even appear in the training data. In 457

contrast, such words are simply ignored by the SVM model as they do not occur in the 458

bag-of-words vocabulary. Similarly to the previous heatmap visualizations, the 459

class-specific analysis reveals that the SVM classifier occasionally assigns high relevances 460

to semantically insignificant words like for example the pronoun she for the target class 461

sci.med (20th position in the first row left column of Fig 4), or to the names pat, henry, 462

nicho for the target the class sci.space (resp. 7, 13, 20th position in the first row 463

middle column of Fig 4). In the former case the high relevance is due to a high term 464

frequency of the word (indeed the word she achieves its highest term frequency in one 465

sci.med test document where it occurs 18 times), whereas in the latter case this can be 466

explained by a high inverse document frequency or by a class-biased occurrence of the 467

corresponding word in the training data (pat appears within 16 different training 468

document categories but 54.1% of its occurrences are within the category sci.space 469

alone, 79.1% of the 201 occurrences of henry appear among sci.space training 470

documents, and nicho appears exclusively in nine sci.space training documents). On 471

the contrary, the neural network model seems less affected by word count regularities 472

and systematically attributes the highest relevances to words semantically related to the 473

target class. These results demonstrate that, subjectively, the neural network is better 474

suited to identify relevant words in text documents than the BoW/SVM model. For a 475

given classifier, when comparing the lists of the most relevant words obtained with LRP 476

or SA in Fig 3 and 4, we do not discern any qualitative difference between LRP and SA 477

class representatives. Nevertheless, we recall that these “keywords” correspond to the 478

greatest observed relevance scores across the test set documents, and do not reflect the 479

differences between LRP and SA at the document level. Indeed in practice we noticed 480
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sci.med sci.space comp.graphics

L
R
P symptoms (7.3), treat-

ments (6.6), medication
(6.4), osteopathy (6.3),
ulcers (6.2), sciatica
(6.0), hypertension (6.0),
herb (5.6), doctor (5.4),
physician (5.1), Therapy
(5.1), antibiotics (5.1),
Asthma (5.0), renal
(5.0), medicines (4.9),
caffeine (4.9), infection
(4.9), gastrointestinal
(4.8), therapy (4.8),
homeopathic (4.7).

spacecraft (11.0), orbit
(10.8), NASA (8.6),
Mars (7.8), moon (7.1),
orbiting (7.1), Martian
(6.8), orbital (6.8),
shuttle (6.7), SMOS
(6.6), telescope (6.5),
Space (6.5), rocket
(6.3), GRBs (6.0), Earth
(6.0), astronaut (5.9),
Moon (5.7), Shuttle
(5.7), lander (5.6), Flyby
(5.3).

Graphics (6.9), raytrac-
ing (6.8), graphics (6.8),
polygon (6.5), anima-
tion (6.3), Image (6.2),
shaders (6.2), pixel (5.7),
fractal (5.5), viewports
(5.5), Autodesk (5.4), vi-
sualization (5.2), RGB
(5.1), images (5.0), TIFF
(5.0), Corel (4.9), Studio
(4.9), algorithm (4.8),
Bezier (4.8), polygons
(4.7).

S
A sciatica (0.4), symptoms

(0.4), osteopathy (0.4),
Therapy (0.3), treat-
ments (0.3), herb (0.3),
cancer (0.3), allergic
(0.3), cravings (0.3), ul-
cers (0.3), Asthma (0.3),
IVF (0.3), medication
(0.2), Addiction (0.2),
caffeine (0.2), drug
(0.2), sulfation (0.2), Dr.
(0.2), penicillin (0.2), gel
(0.2).

orbit (0.4), Martian
(0.4), spacecraft (0.4),
rocket (0.4), NASA
(0.4), GRBs (0.4), tele-
scope (0.3), Mars (0.3),
docking (0.3), SMOS
(0.3), moon (0.3), Earth
(0.3), hyperspace (0.3),
Space (0.3), Galileo
(0.3), space (0.3), plane-
tary (0.3), satellite (0.3),
Shuttle (0.3), Astronomy
(0.3).

raytracing (0.4), ani-
mation (0.4), Autodesk
(0.4), RGB (0.3), graph-
ics (0.3), Graphics (0.3),
Image (0.3), pixel (0.3),
visualization (0.3), frac-
tal (0.3), Pixel (0.3),
GIF (0.3), CG (0.3),
viewports (0.3), Corel
(0.3), shaders (0.3),
polygon (0.3), TIFF
(0.3), JPEG (0.3),
Rodchenko (0.3).

Fig 3. The 20 most relevant words per class for the CNN2 model. The words
are listed in decreasing order of their LRP(first row)/SA(second row) relevance (value
indicated in parentheses). Underlined words do not occur in the training data.

that within a document, the first two most relevant words identified with LRP or SA 481

are often identical, but the remaining words will be ordered differently in terms of their 482

LRP or SA relevance. As an example, if we consider the test documents of the classes 483

sci.space, sci.med, and comp.graphics, retaining only documents with a length 484

greater or equal to 10 tokens (this amounts to 1165 documents), and perform a 485

relevance decomposition for the true document class using the CNN2 model, then in 486

81,9% of the cases LRP and SA will identify the same word as the most relevant per 487

document, and if the two most relevant words are considered, 42.6% of the cases will be 488

equal, 15,8% for three words and only 4.0% for four words. Similar results are obtained 489

using the SVM model: in 50.9% of the cases LRP and SA identify the same word as the 490

most relevant, if we consider the two most relevant, 23.1% of the cases are identical, 491

7.3% for three words and 1.6% for four words. In addition, the differences between LRP 492

and SA are confirmed by the quantitative evaluation in Section 6.4. 493

6.3 Document Summary Vectors 494

The word2vec embeddings are known to exhibit linear regularities representing semantic 495

relationships between words [5, 33]. We explore whether these regularities can be 496
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sci.med sci.space comp.graphics
L
R
P cancer (1.4), photogra-

phy (1.0), doctor (1.0),
msg (0.9), disease (0.9),
medical (0.8), sleep
(0.8), radiologist (0.7),
eye (0.7), treatment
(0.7), prozac (0.7), vita-
min (0.7), epilepsy (0.7),
health (0.6), yeast (0.6),
skin (0.6), pain (0.5),
liver (0.5), physician
(0.5), she (0.5).

space (1.6), launch
(1.4), ics.uci.edu (1.2),
moon (1.1), orbit (1.0),
mars (1.0), pat (1.0),
nasa (0.9), dietz (0.9),
shuttle (0.8), solar (0.7),
command (0.7), henry
(0.6), fred (0.6), gamma
(0.6), sci.space (0.6),
pluto (0.6), satellite
(0.6), dc-x (0.6), nicho
(0.6).

graphics (2.0), phigs
(1.4), image (1.4), im-
ages (1.4), xv (1.3), tiff
(1.2), polygons (1.1),
comp.graphics (1.0),
mpeg (1.0), format
(1.0), siggraph (1.0),
povray (0.9), quicktime
(0.8), bockamp (0.8),
surface (0.8), animation
(0.8), iges (0.8), studio
(0.8), jpeg (0.8), pov
(0.7).

S
A disease (6.2), msg (5.9),

doctor (5.3), treatment
(5.3), counselor (4.5),
medical (4.2), cancer
(4.1), geb (3.5), pho-
tography (3.3), gordon
(3.3), health (3.1), banks
(3.0), symptoms (2.8),
dyer (2.7), needles (2.7),
epilepsy (2.6), pain (2.4),
prozac (2.3), patients
(2.2), physician (2.2).

space (19.6), nasa (8.0),
orbit (6.8), launch (5.9),
moon (5.7), sci.space
(5.4), pat (4.8), dietz
(4.2), flight (3.7), solar
(3.5), fred (3.5), rockets
(3.4), spacecraft (3.3),
lunar (3.1), nick (2.9),
satellite (2.9), shuttle
(2.9), mars (2.8), fund-
ing (2.8), henry (2.7).

graphics (14.3), image
(8.8), images (6.7), ani-
mation (5.8), pov (5.4),
polygon (4.6), tiff (4.4),
impulse (4.3), studio
(4.0), comp.graphics
(4.0), vesa (3.7), viewer
(3.6), surface (3.5),
mpeg (3.5), routine
(3.4), format (3.3),
algorithm (3.2), daemon
(3.1), fractal (3.1),
polygons (3.0).

Fig 4. The 20 most relevant words per class for the BoW/SVM model. The
words are listed in decreasing order of their LRP(first row)/SA(second row) relevance
(value indicated in parentheses). Underlined words do not occur in the training data.
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transferred to a new document representation, which we denote as document summary 497

vector, when building this vector as a weighted combination of word2vec embeddings 498

(see Eq 6 and Eq 7) or as a combination of one-hot word vectors (see Eq 8). We 499

compare the weighting scheme based on the LRP relevances to the following baselines: 500

SA relevance, TFIDF and uniform weighting (see Section 3.5). 501

The two-dimensional PCA projection of the summary vectors obtained via the 502

CNN2 resp. the SVM model, as well as the corresponding TFIDF/uniform weighting 503

baselines are shown in Fig 5. In these visualizations we group the 20Newsgroups test 504

documents into six top-level categories (the grouping is performed according to the 505

dataset website), and we color each document according to its true category (note 506

however that, as mentioned earlier, the relevance decomposition is always performed in 507

an unsupervised way, i.e., with the ML model’s predicted class). For the CNN2 model, 508

we observe that the two-dimensional PCA projection reveals a clear-cut clustered 509

structure when using the element-wise LRP weighting for semantic extraction, while no 510

such regularity is observed with uniform or TFIDF weighting. The word-level LRP or 511

SA weightings, as well as the element-wise SA weighting present also a form of bundled 512

layout, but not as dense and well-separated as in the case of element-wise LRP. For the 513

SVM model, the two-dimensional visualization of the summary vectors exhibits partly a 514

cross-shaped layout for LRP and SA weighting, while again no particular structure is 515

observed for TFIDF or uniform semantic extraction. This analysis confirms the 516

observations made in the last Section, namely that the neural network outperforms the 517

BoW/SVM classifier in terms of subjective human interpretability. Fig 5 furthermore 518

suggests that LRP provides semantically more meaningful semantic extraction than the 519

baseline methods. In the next Section we will confirm these observations quantitatively. 520

6.4 Quantitative Evaluation 521

6.4.1 How well does LRP identify relevant words ? 522

In order to quantitatively validate the hypothesis that LRP is able to identify words 523

that either support or inhibit a specific classifier decision, we conduct several 524

word-deleting experiments on the CNN models using LRP scores as relevance indicator. 525

More specifically, in accordance with the word-level relevances we delete a sequence of 526

words from each document, re-classify the documents with “missing words”, and report 527

the classification accuracy as a function of the number of deleted words. The word-level 528

relevances are computed on the original documents (with no words deleted). For the 529

deleting experiments, we consider only 20Newsgroups test documents that have a length 530

greater or equal to 100 tokens (after prepocessing), this amounts to 4963 test 531

documents, from which we delete up to 50 words. For deleting a word we simply set the 532

corresponding word embedding to zero in the CNN input. Moreover, in order to assess 533

the pertinence of the LRP decomposition method as opposed to alternative relevance 534

models, we additionally perform word deletions according to SA word relevances, as well 535

as random deletion. In the latter case we sample a random sequence of 50 words per 536

document, and delete the corresponding words successively from each document. We 537

repeat the random sampling 10 times, and report the average results (the standard 538

deviation of the accuracy is less than 0.0141 in all our experiments). We additionally 539

perform a biased random deletion, where we sample only among words contained in the 540

word2vec vocabulary (this way we avoid deleting words we have already initialized as 541

zero-vectors as they are outside the word2vec vocabulary, however as our results show 542

this biased deletion is almost equivalent to strict random selection). 543

As a first deletion experiment, we start with the subset of test documents that are 544

initially correctly classified by the CNN models, and successively delete words in 545

decreasing order of their LRP/SA word-level relevance. In this first deletion experiment, 546
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Fig 5. PCA projection of the summary vectors of the 20Newsgroups test
documents. The LRP/SA based weightings were computed using the ML model’s
predicted class, the colors denote the true labels.

the LRP/SA relevances are computed with the true document class as target class for 547

the relevance decomposition. In a second experiment, we perform the opposite 548

evaluation. Here we start with the subset of initially falsely classified documents, and 549

delete successively words in increasing order of their relevance, while considering 550

likewise the true document class as target class for the relevance computation. In the 551

third experiment, we start again with the set of initially falsely classified documents, 552

but now delete words in decreasing order of their relevance, considering the classifier’s 553

initially predicted class as target class for the relevance decomposition. 554

Fig 6 summarizes the resulting accuracies when deleting words from the CNN1, 555

CNN2 and CNN3 input documents respectively (each row in the figure corresponds to 556

one of the three deletion experiments). Note that we do not report results for the 557

BoW/SVM model, as our focus here is the comparison between LRP and SA and not 558

between different ML models. Besides we note that intrinsic validation is also not the 559

right tool for comparing the BoW/SVM and the CNN models, as the resulting 560

accuracies are not directly comparable (deleting a word from the bag-of-words 561

document representation has a different effect than setting a word to zero in the CNN 562

input). Through successive deletion of either “positive-relevant” words in decreasing 563

order of their LRP relevance, or of “negative-relevant” words in increasing order of their 564

LRP relevance, we confirm that both extremal LRP relevance values capture pertinent 565
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information with respect to the classification problem. Indeed in all deletion 566

experiments, we observe the most pronounced decrease resp. increase of the 567

classification accuracy when using LRP as relevance model. We additionally note that 568

SA, in contrast to LRP, is largely unable to provide suitable information to pinpoint 569

words that speak against a specific classification decision. Instead it appears that the 570

lowest SA relevances (which mainly correspond to zero-valued relevances) are more 571

likely to identify words that have no impact on the classifier decision at all, as this 572

deletion scheme has even less impact on the classification performance than random 573

deletion when deleting words in increasing order of their relevance, as shown by the 574

second deletion experiment. 575
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Fig 6. Word deletion experiments for the CNN1, CNN2 and CNN3 model.
The LRP/SA target class is either the true document class, and words are deleted in
decreasing (first row, lower curve is better) resp. increasing (second row, higher curve is
better) order of their LRP/SA relevance, or else the target class is the predicted class
(third row, higher curve is better) in which case words are deleted in decreasing order of
their relevance. Random (biased) deletion is reported as average over 10 runs.

When comparing the different CNN models, we observe that the CNN2 and CNN3 576

models, as opposed to CNN1, produce a steeper decrease of the classification 577

performance when deleting the most relevant words from the initially correctly classified 578
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documents, both when considering LRP as well as SA as relevance model, as shown by 579

the first deletion experiment. This indicates that the networks with greater filter sizes 580

are more sensitive to single word deletions, most likely because during these deletions 581

the meaning of the surrounding words becomes less obvious to the classifier. This also 582

provides some weak evidence that, while CNN2 and CNN3 behave similarly (which 583

suggests that a convolutional filter size of two is already enough for the considered 584

classification problem), the learned filters in CNN2 and CNN3 do not only focus on 585

isolated words but additionally consider bigrams or trigrams of words, as their results 586

differ a lot from the CNN1 model in the first deletion experiment. 587

6.4.2 Quantifying the Explanatory Power 588

In order to quantitatively evaluate and compare the ML models in combination with a 589

relevance decomposition or explanation technique, we apply the evaluation method 590

described in Section 4.2. That is, we compute the accuracy of an external classifier 591

(here KNN) on the classification of document summary vectors (obtained with the ML 592

model’s predicted class). For these experiments we remove test documents which are 593

empty or contain only one word after preprocessing (this amounts to remove 25 594

documents from the 20Newsgroups test set). The maximum KNN mean accuracy 595

obtained when varying the number of neighbors K (corresponding to our EPI metric of 596

explanatory power) is reported for several models and explanation techniques in Table 2. 597

Table 2. Results averaged over 10 random data splits. For each semantic extraction
method, we report the dimensionality of the document summary vectors, the
explanatory power index (EPI) corresponding to the maximum mean KNN accuracy
obtained when varying the number of neighbors K, the corresponding standard
deviation over the multiple data splits, and the hyperparameter K that led to the
maximum accuracy.

Dim Semantic Extraction Explanatory Power Index KNN Parameter

word2vec/CNN1 LRP (ew) 0.8045 (± 0.0044) K = 10
SA (ew) 0.7924 (± 0.0052) K = 9
LRP 0.7792 (± 0.0047) K = 8
SA 0.7773 (± 0.0041) K = 6

word2vec/CNN2 LRP (ew) 0.8076 (± 0.0041) K = 10
SA (ew) 0.7993 (± 0.0045) K = 9

300 LRP 0.7847 (± 0.0043) K = 8
SA 0.7767 (± 0.0053) K = 8

word2vec/CNN3 LRP (ew) 0.8034 (± 0.0039) K = 13
SA (ew) 0.7931 (± 0.0048) K = 10
LRP 0.7793 (± 0.0037) K = 7
SA 0.7739 (± 0.0054) K = 6

word2vec TFIDF 0.6816 (± 0.0044) K = 1
uniform 0.6208 (± 0.0052) K = 1

BoW/SVM LRP 0.7978 (± 0.0048) K = 14
70631 SA 0.7837 (± 0.0047) K = 17

BoW TFIDF 0.7592 (± 0.0039) K = 1
uniform 0.6669 (± 0.0061) K = 1

When comparing the best CNN based weighting schemes with the corresponding 598

TFIDF baseline result from Table 2, we find that all LRP element-wise weighted 599

combinations of word2vec vectors are statistical significantly better than the TFIDF 600

weighting of word embeddings at a significance level of 0.05 (using a corrected 601

resampled t-test [40]). Similarly, in the bag-of-words space, the LRP combination of 602

one-hot word vectors is significantly better than the corresponding TFIDF document 603
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representation with a significance level of 0.05. Lastly, the best CNN2 explanatory 604

power index is significantly higher than the best SVM based explanation at a 605

significance level of 0.10. Although the CNN2 model has only a slightly superior result 606

over the SVM model, the document vectors obtained through the former model have a 607

much lower dimensionality than those extracted via the SVM. 608

In Fig 7 we plot the mean accuracy of KNN (averaged over ten random test data 609

splits) as a function of the number of neighbors K, for the CNN2 and the SVM model, 610

as well as the corresponding TFIDF/uniform weighting baselines (for CNN1 and CNN3 611

we obtained similar plot as for CNN2). One can further see from Fig 7 that (1) 612

(element-wise) LRP provides consistently better semantic extraction than all baseline 613

methods and that (2) the CNN2 model has a greater explanatory power than the 614

BoW/SVM classifier since it produces semantically more meaningful summary vectors 615

for KNN classification. 616
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Fig 7. KNN accuracy when classifying the document summary vectors. The
accuracy is computed on one half of the 20Newsgroups test documents (other half is
used as neighbors). Results are averaged over 10 random data splits.

Overall the good performance, both qualitatively as well as quantitatively, of the 617

element-wise combination of word2vec embeddings according to the LRP relevance 618

illustrates the usefulness of LRP for extracting a new vector-based document 619

representation preserving semantic neighborhood regularities in the input feature space. 620

7 Conclusion 621

We have demonstrated qualitatively and quantitatively that LRP constitutes a useful 622

tool for identifying, both for fine-grained analysis at the document level and as a 623

dataset-wide introspection across documents, words that are important to a classifier’s 624

decision. This knowledge enables us to broaden the scope of applications of standard 625

machine learning classifiers like support vector machines or neural networks, by 626

extending the primary classification result with additional information linking the 627

classifier’s decision back to components of the input, in our case words in a document. 628

Furthermore, based on LRP relevance, we have introduced a new way of condensing the 629

semantic information contained in word embeddings (such as word2vec) into a 630

document vector representation that can be used for nearest neighbors classification, 631

and that leads to better performance than standard TFIDF weighting of word 632

embeddings. The resulting document vector is the basis of a new measure of model 633

explanatory power which was proposed in this work, and its semantic properties could 634

find applications in various visualization and search tasks, where the document 635

similarity is expressed as a dot product between vectors. Another future application of 636
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LRP-based semantic extraction could be the aggregation of word representations into 637

sub-document representations like phrases, sentences or paragraphs. 638

Our work is a first step toward applying the LRP decomposition to the NLP domain, 639

and we expect this technique to be also suitable for types of applications that are based 640

on other neural network architectures such as character-based or recurrent network 641

classifiers, or on other types of classification problems (e.g. sentiment analysis). More 642

generally, LRP could contribute to the design of more accurate and efficient classifiers, 643

not only by inspecting and leveraging the input space relevances, but also through the 644

analysis of intermediate relevance values “at classifier hidden layers”. 645
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