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Abstract. While neural networks have acted as a strong unifying force
in the design of modern AI systems, the neural network architectures
themselves remain highly heterogeneous due to the variety of tasks
to be solved. In this chapter, we explore how to adapt the Layer-
wise Relevance Propagation (LRP) technique used for explaining the
predictions of feed-forward networks to the LSTM architecture used for
sequential data modeling and forecasting. The special accumulators and
gated interactions present in the LSTM require both a new propagation
scheme and an extension of the underlying theoretical framework to
deliver faithful explanations.
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11.1 Introduction

In practical applications, building high-performing AI systems is not always the
sole objective, and interpretability may also be an important issue [16].

Most of the recent research on interpretable AI has focused on feedforward
neural networks, especially the deep rectifier networks and variants used for
image recognition [79, 68]. Layer-wise relevance propagation (LRP) [6, 51] was
shown in this setting to provide for state-of-the-art models such as VGG-16,
explanations that are both informative and fast to compute, and that could be
embedded in the framework of deep Taylor decomposition [52].

However, in the presence of sequential data, one may need to incorporate
temporal structure in the neural network model, e.g. to make forecasts

* These authors contributed equally to this work.
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about future time steps. In this setting it is key to be able to learn the
underlying dynamical system, e.g. with a recurrent neural network, so that it
can then be simulated forward. Learning dynamical systems with long-term
dependencies using recurrent neural networks presents a number of challenges.
The backpropagation through time learning signal tends to either blow up or
vanish [30, 10]. To reduce this di�culty, special neural network architectures
have been proposed, in particular, the Long Short-Term Memory (LSTM) [30,
35, 37], which makes use of special accumulators and gating functions.

The multiple architectural changes and the unique nature of the sequential
prediction task make a direct application of the LRP-type explanation technique
non-straightforward. To be able to deliver accurate explanations, one needs to
carefully inspect the structure of the LSTM blocks forming the model and their
interaction.

In this chapter, we explore multiple dimensions of the interface between the
LRP technique and the LSTM. First, we analyze how the LRP propagation
mechanism can be adapted to accumulators and gated interactions in the LSTM.
Our new propagation scheme is embedded in the deep Taylor decomposition
framework [52], and validated empirically on sentiment analysis and on a
toy numeric task. Further, we investigate how modifications of the LSTM
architecture, in particular, on the cell input activation, the forget and output
gates and on the network connections, make explanations more straightforward,
and we apply these changes in a reinforcement learning showcase.

The present chapter elaborates on our previous work [2, 5].

11.2 Background

11.2.1 Long Short-Term Memory (LSTM)

Recently, Long Short-Term Memory (LSTM; [30, 35, 37]) networks have
emerged as the best-performing technique in speech and language processing.
LSTM networks have been overwhelmingly successful in di↵erent speech and
language applications, including handwriting recognition [24], generation of
writings [23], language modeling and identification [22, 78], automatic language
translation [73], speech recognition [63, 17], analysis of audio data [49], analysis,
annotation, and description of video data [15, 76, 70]. LSTM has facilitated
recent benchmark records in TIMIT phoneme recognition, optical character
recognition, text-to-speech synthesis, language identification, large vocabulary
speech recognition, English-to-French translation, audio onset detection, social
signal classification, image caption generation, video-to-text description, end-to-
end speech recognition, and semantic representations.

The key idea of LSTM is the use of memory cells that allow for constant
error flow during training. Thereby, LSTM avoids the vanishing gradient
problem, that is, the phenomenon that training errors are decaying when they
are back-propagated through time [30, 33]. The vanishing gradient problem
severely impedes credit assignment in recurrent neural networks, i.e. the correct
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identification of relevant events whose e↵ects are not immediate, but observed
with possibly long delays. LSTM, by its constant error flow, avoids vanishing
gradients and, hence, allows for uniform credit assignment, i.e. all input signals
obtain a similar error signal. Other recurrent neural networks are not able
to assign the same credit to all input signals and therefore, are very limited
concerning the solutions they will find. Uniform credit assignment enables LSTM
networks to excel in speech and language tasks: if a sentence is analyzed, then the
first word can be as important as the last word. Via uniform credit assignment,
LSTM networks regard all words of a sentence equally. Uniform credit assignment
enables to consider all input information at each phase of learning, no matter
where it is located in the input sequence. Therefore, uniform credit assignment
reveals many more solutions to the learning algorithm, which would otherwise
remain hidden.

LSTM in a Nutshell. The central processing and storage unit for LSTM recurrent
networks is the memory cell. As already mentioned, it avoids vanishing gradients
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Fig. 11.1. LSTM memory cell without peepholes. z is the vector of cell input
activations, i is the vector of input gate activations, f is the vector of forget gate
activations, c is the vector of memory cell states, o is the vector of output gate
activations, and y is the vector of cell output activations. The activation functions
are g for the cell input, h for the cell state, and � for the gates. Data flow is either
“feed-forward” without delay or “recurrent” with a one-step delay. “Input” connections
are from the external input to the LSTM network, while “recurrent” connections take
inputs from other memory cell outputs y in the LSTM network with a delay of one
time step, accordingly to Equations 11.1-11.6. The cell state c also has a recurrent
connection with one time step delay to himself via a multiplication with the forget
gate f , and gets accumulated through a sum with the current input.
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and allows for uniform credit assignment. The most commonly used LSTM
memory cell architecture in the literature [25, 66] contains forget gates [19,
20] and peephole connections [18]. In our previous work [38, 34], we found
that peephole connections are only useful for modeling time series, but not for
language, meta-learning, or biological sequences. That peephole connections can
be removed without performance decrease, was recently confirmed in a large
assessment, where di↵erent LSTM architectures have been tested [26]. While
LSTM networks are highly successful in various applications, the central memory
cell architecture was not modified since 2000 [66]. A memory cell architecture
without peepholes is depicted in Figure 11.1.

In our definition of an LSTM network, all units of one kind are pooled to
a vector: z is the vector of cell input activations, i is the vector of input gate
activations, f is the vector of forget gate activations, c is the vector of memory
cell states, o is the vector of output gate activations, and y is the vector of cell
output activations.

We assume to have an input sequence, where the input vector at time t
is xt. The matrices Wz, Wi, Wf , and Wo correspond to the weights of the
connections between inputs and cell input, input gate, forget gate, and output
gate, respectively. The matrices Uz, Ui, Uf , and Uo correspond to the weights
of the connections between the cell output activations with one-step delay and
cell input, input gate, forget gate, and output gate, respectively. The vectors bz,
bi, bf , and bo are the bias vectors of cell input, input gate, forget gate, and
output gate, respectively. The activation functions are g for the cell input, h
for the cell state, and � for the gates, where these functions are evaluated in
a component-wise manner if they are applied to vectors. Typically, either the
sigmoid 1

1+exp(�x) or tanh are used as activation functions. � denotes the point-
wise multiplication of two vectors. Without peepholes, the LSTM memory cell
forward pass rules are (see Figure 11.1):

zt = g (Wz xt + Uz yt�1 + bz) cell input (11.1)

it = � (Wi xt + Ui yt�1 + bi) input gate (11.2)

ft = � (Wf xt + Uf yt�1 + bf ) forget gate (11.3)

ct = it � zt + ft � ct�1 cell state (11.4)

ot = � (Wo xt + Uo yt�1 + bo) output gate (11.5)

yt = ot � h (ct) cell output (11.6)

Long-Term Dependencies vs. Uniform Credit Assignment. The LSTM network
has been proposed with the aim to learn long-term dependencies in sequences
which span over long intervals [37, 36, 31, 32]. However, besides extracting long-
term dependencies, LSTM memory cells have another, even more important,
advantage in sequence learning: as already described in the early 1990s, LSTM
memory cells allow for uniform credit assignment, that is, the propagation of
errors back to inputs without scaling them [30]. For uniform credit assignment
of current LSTM architectures, the forget gate f must be one or close to one.
A memory cell without an input gate i just sums up all the squashed inputs
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it receives during scanning the input sequence. Thus, such a memory cell is
equivalent to a unit that sees all sequence elements at the same time, as has
been shown via the “Ersatzschaltbild” (engl. equivalent circuit diagram) [30].
If an output error occurs only at the end of the sequence, such a memory cell,
via backpropagation, supplies the same delta error at the cell input unit z at
every time step. Thus, all inputs obtain the same credit for producing the correct
output and are treated on an equal level and, consequently, the incoming weights
to a memory cell are adjusted by using the same delta error at the input unit z.

In contrast to LSTM memory cells, standard recurrent networks scale the
delta error and assign di↵erent credit to di↵erent inputs. The more recent the
input, the more credit it obtains. The first inputs of the sequence are hidden
from the final states of the recurrent network. In many learning tasks, however,
important information is distributed over the entire length of the sequence and
can even occur at the very beginning. For example, in language- and text-related
tasks, the first words are often important for the meaning of a sentence. If the
credit assignment is not uniform along the input sequence, then learning is very
limited. Learning would start by trying to improve the prediction solely by using
the most recent inputs. Therefore, the solutions that can be found are restricted
to those that can be constructed if the last inputs are considered first. Thus, only
those solutions are found that are accessible by gradient descent from regions in
the parameter space that only use the most recent input information. In general,
these limitations lead to suboptimal solutions, since learning gets trapped in local
optima. Typically, these local optima correspond to solutions which e�ciently
exploit the most recent information in the input sequence, while information
way back in the past is neglected.

11.2.2 Layer-Wise Relevance Propagation (LRP)

Layer-wise relevance propagation (LRP) [6] (cf. [51] for an overview) is a
technique to explain individual predictions of deep neural networks in terms
of input variables. For a given input and the neural network’s prediction, it
assigns a score to each of the input variables indicating to which extent they
contributed to the prediction. LRP works by reverse-propagating the prediction
through the network by means of heuristic propagation rules that apply to
each layer of a neural network [6]. In terms of computational cost the LRP
method is very e�cient, as it can be computed in one forward and backward pass
through the network. In various applications LRP was shown to produce faithful
explanations, even for highly complex and nonlinear networks used in computer
vision [6, 64]. Besides it was able to detect biases in models and datasets used for
training [44], e.g. the presence of a copyright tag that spuriously correlated to
the class ‘horse’ in the Pascal VOC 2012 dataset. Further, it was used to get new
insights in scientific and medical applications [71, 39, 77], to interpret clustering
[40], and to analyze audio data [75, 9], and to compare text classifiers for topic
categorization [3].
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Conservative Propagation. LRP explains by redistributing the neural network
output progressively from layer to layer until the input layer is reached. Similar to
other works such as [41, 80, 67], the propagation procedure implemented by LRP
is based on a local conservation principle: the net quantity, or relevance, received
by any higher layer neuron is redistributed in the same amount to neurons of the
layer below. In this way the relevance’s flow is analog to the Kirchho↵’s first law
for the conservation of electric charge, or to the continuity equation in physics
for transportation in general form. Concretely, if j and k are indices for neurons
in two consecutive layers, and denoting by Rj k the relevance flowing between
two neurons, we have the equations:

P
j
Rj k = Rk

Rj =
P

k
Rj k.

This local enforcement of conservation induces conservation at coarser scales,
in particular, conservation between consecutive layers

P
j
Rj =

P
j

P
k
Rj k =P

k

P
j
Rj k =

P
k
Rk, and ultimately, conservation at the level of the whole

deep neural network, i.e. given an input x = (xi)i and its prediction f(x), we
have

P
i
Ri = f(x)6. This global conservation property allows to interpret the

result as the share by which each input variable has contributed to the prediction.

LRP in Deep Neural Networks. LRP has been most commonly applied to deep
rectifier networks. In these networks, the activations at the current layer can be
computed from activations in the previous layer as:

ak = max
�
0,
P

0,j
ajwjk

�

A general family of propagation rules for such types of layer is given by [51]:

Rj =
X

k

aj · ⇢(wjk)

✏ +
P

0,j
aj · ⇢(wjk)

Rk

Specific propagation rules such as LRP-✏, LRP-↵1�0 and LRP-� fall under this
umbrella. They are easy to implement [42, 51] and can be interpreted as the
result of a deep Taylor decomposition of the neural network function [52].

On convolutional neural networks for computer vision, composite strategies
making use of di↵erent rules at di↵erent layers have shown to work well
in practice [43, 51]. An alternative default strategy in computer vision is to
uniformly employ the LRP-↵1�0 in every hidden layer [53], the latter has the
advantage of having no free parameter, and delivers positive explanations. On
convolutional neural networks for text, LRP-✏ with a small ✏ value was found to
work well [3, 57], it provides a signed explanation.

While LRP was described in the context of a layered feed-forward neural
network, the principle is general enough to apply to arbitrary directed acyclic
graphs, including recurrent neural networks unfolded in time such as LSTMs.

6 The global conservation is exact up to the relevance absorbed by some stabilizing
term, and by the biases, see details later in Section 11.3.1.
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11.3 Extending LRP for LSTMs

We address the question of how to explain the LSTM model’s output by
expanding the previously described LRP technique to “standard” LSTM
architectures, in the form they are most commonly used in the literature [26],
i.e. following the recurrence Equations 11.1-11.6 and Figure 11.1 introduced in
Section 11.2.1, and usually containing the tanh nonlinearity as an activation
function for the cell input and the cell state.

For this, we first need to identify an appropriate structure of computation in
these models, and introduce some notation. Let s, g be the neurons representing
the signal and the gate, let p be the neuron representing the product of these
two quantities. Let f be the neuron corresponding to the forget gate. Let k be
the neuron on which the signal is being accumulated. Let k � 1, p � 1, . . . be the
same neurons at previous time steps. We can recompose the LSTM forward pass
in terms of the following three elementary types of computation:

1. linear mappings zs =
P

0,j
ajwjs , zg =

P
0,j

ajwjg

2. gated interactions ap = tanh
�
zs

�
· sigm

�
zg

�

3. accumulation ak = af · ak�1 + ap

These three types of computation and the way they are typically
interconnected are shown graphically in Fig. 11.2.
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ap   –1

ap

ak

ak–1linear mappings

gated interactions

accum
ulation

af

Fig. 11.2. Three elementary computations performed by the LSTM from the
perspective of LRP.

Linear mappings form the input of the gated interactions. The output of
some of the gated interactions enter into the accumulation function.

11.3.1 Linear Mappings

Each output of this computation is a weighted sum over a large number of input
variables. Here, one strategy is to redistribute the relevance in proportion to
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the weighted activations ajwjs, as they occur in the linear projection formulas
above. One way of implementing this strategy is the epsilon-rule (LRP-✏) given
by [6]:

Rj =
X

s

ajwjs

✏s +
P

0,j
ajwjs

Rs

where ✏s = ✏ ·sign
�P

0,j
ajwjs

�
is a small stabilizer that pushes the denominator

away from zero by some constant factor, and has the e↵ect of absorbing some
relevance when the weighted activations are weak or contradictory. This type of
propagation rule was employed by previous works with recurrent neural networks
[4, 14, 57, 2, 77]. A large value for ✏ tends to keep only the most salient factors
of explanation. Note that, in our notation, neuron biases are taken into account
via a constant neuron a0 = 1 whose connection weight is the corresponding bias.
This neuron also gets assigned a share of relevance. However its relevance will
not be propagated further and will get trapped in that neuron, since the “bias
neuron” has no lower-layer connections.

11.3.2 Gated Interactions

These layers do not have a simple summing structure as the linear mappings.
Their multiplicative nonlinearity makes them intrinsically more di�cult to
handle. Recently, three works extended the LRP propagation technique to
recurrent neural networks, such as LSTMs [37] and GRUs [12], by proposing a
rule to propagate the relevance through such product layers [4, 14, 2]. These LRP
extensions were tested in the context of sentiment analysis, machine translation
and reinforcement learning respectively. Arras et al. [4], in particular, proposed
the signal-take-all redistribution rule

(Rg, Rs) = (0, Rp)

referred as “LRP-all” in our experiments. This redistribution strategy can be
motivated in a similar way the gates were initially introduced in the LSTM
model [37]: the gate units are intended to control the flow of information in the
LSTM, but not to be information themselves.

In the following, we provide further justification of this rule based on Deep
Taylor Decomposition (DTD) [52], a mathematical framework for analyzing the
relevance propagation process in a deep network. DTD expresses the relevance
obtained at a given layer as a function of the activations in the lower-layer,
and determines how the relevance should be redistributed based on a Taylor
expansion of this function. Consider the relevance function Rp(zg, zs) mapping
the input z = (zg, zs) of the gated interaction to the relevance received by the
output of that module. We then write its Taylor expansion:

Rp(zg, zs) = Rp(ezg, ezs) +
@Rp

@zg

���
ez
· (zg � ezg) +

@Rp

@zs

���
ez
· (zs � ezs) + . . .

where ez = (ezg, ezs) is a root point of the function, and where the first-order terms
can be used to determine on which lower-layer neurons (g or s the relevance
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should be propagated). In practice, a root point and its gradient are di�cult to
compute analytically. However, we can consider instead a relevance model [52]
which is easier to analyze, in our case, of the form:

bRp(zg, zs) = sigm(zg) · tanh(zs) · cp.

The variable cp is constant and set such that Rp(zg, zs) = bRp(zg, zs) locally. This
model is a reasonable approximation when Rp results from a propagation rule
where the activation term naturally factors out (cf. [52]). The relevance model
for the gated interaction of the standard LSTM is depicted in Fig. 11.3 (left).

sigm(zg) · tanh(zs) · cp sigm(zg) ·max(0, zs) · cp sigm(2 zg) · sigm(2 zs) · cp
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Fig. 11.3. DTD relevance models for di↵erent choices of nonlinear functions with
nearest root point (white dot). The left model is the standard LSTM. Positive contours
are drawn as continuous lines, negative contours as dashed lines, and the dark line
represents the zero-valued contour.

Having built the relevance model, we would like to perform a Taylor
expansion of it at some root point in the vicinity of the observed point z =
(zg, zs). The nearest root point of the relevance model is found at (ezg, ezs) =
(zg, 0), and more generally any root point satisfies ezs = 0. A Taylor expansion
of this simplified relevance model gives:

bRp(zg, zs) = bRp(ezg, ezs)

+ sigm0(ezg) · tanh(ezs) · cp · (zg � ezg) ( = Rg)

+ sigm(ezg) · tanh0(ezs) · cp · (zs � ezs) ( = Rs)

+ . . .

Clearly, the first linear term Rg is zero for the nearest root point, thus, no
relevance will be redistributed to the gate, however, the saturation e↵ect of
the hyperbolic tangent can create a mismatch between the first-order term,
and the function value to redistribute. However, if replacing in the LSTM the
hyperbolic tangent by the identity or the ReLU nonlinearity (as this was done,
for example, in [59]), then we get an exact decomposition of the relevance model
with (Rg, Rs) = (0, bRp), since the Taylor remainder is exactly zero in this case.
This corresponds to the LRP-all redistribution rule.
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This section has justified the signal-take-all strategy for standard LSTMs. In
Section 11.4 modified LSTM variants that are tuned for further interpretability
will benefit from a di↵erent propagation strategy. For example, using sigmoids
both for the gate and the signal (cf. Fig. 3 right) suggests a di↵erent propagation
strategy.

A more complete set of propagation rules that have been used in practice [4,
14, 57, 2, 77, 59], and that we consider in our experiments, is given in Table 11.1.
In addition to the definitions provided in Table 11.1, in order to avoid near
zero division, one may add a stabilizing term into the denominator of the LRP-
prop and LRP-abs variants, similarly to the epsilon-rule stabilization for linear
mappings. It has the form ✏ · sign

�
zg + zs

�
in the first case, and simply ✏ in the

other case, where ✏ is a small positive number.

Table 11.1. Overview of LRP propagation rules for gated interactions, and whether
they derive from a deep Taylor decomposition. LRP-all stands for “signal-take-all”,
LRP-prop stands for “proportional”, LRP-abs is similar to LRP-prop but with absolute
values instead, and LRP-half corresponds to equal redistribution.

Name Proposed in Received by gate Received by signal DTD

LRP-all [4] Rg = 0 Rs = Rp X
LRP-prop [14, 2] Rg =

zg
zg+zs

Rp Rs = zs
zg+zs

Rp ⇥
LRP-abs Rg =

|zg |
|zg |+|zs|Rp Rs = |zs|

|zg |+|zs|Rp ⇥
LRP-half [2] Rg = 0.5 ·Rp Rs = 0.5 ·Rp ⇥

11.3.3 Accumulation

The last type of module one needs to consider is the accumulation module that
discounts the LSTM memory state with a “forget” factor, and adds a small
additive term based on current observations:

ak = af · ak�1 + ap.

Consider the relevance Rk of the accumulator neuron ak for the final time step.
Define Rk = ak · ck. Through the accumulation module, we get the following
redistribution:

Rp = ap · ck

Rk�1 = af · ak�1 · ck,

where we have used the signal-take-all strategy in the product, and the epsilon-
rule (with no stabilizer) in the sum. Iterating this redistribution process on
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previous time steps, we obtain:

Rp�1 = af · ap�1 · ck

Rp�2 = (af · af�1) · ap�2 · ck

...
Rp�T =

�Q
T

t=1 af�t+1

�
· ap�T · ck.

Note that, here, we assume a simplified recurrence structure over the standard
LSTM presented in Fig. 11.1, in particular we assume that neurons ap do not
redistribute relevance to past time steps via zs (i.e. zs is connected only to
the current input and not to previous recurrent states), to simplify the present
analysis.

Now we inspect the structure of the relevance scores Rp, . . . , Rp�T at each
time step, as given above. We can see that the relevance terms can be divided
into three parts:

1. A product of forget gates: This term tends to decrease exponentially with
every further redistribution step, unless the forget gate is equal to one. In
other words, only the few most recent time steps will receive relevance.

2. The value of the product neuron ap at the current time step. In other words,
the relevance at a given time step is directly influenced by the activation of
its representative neuron, which can be either positive or negative.

3. A term that does not change with the time steps, and relates to the amount
of relevance available for redistribution.

These observations on the structure of the relevance over time provide a further
justification for the LRP explanation procedure, which we will be validating
empirically in Section 11.5. They also serve as a starting point to propose new
variants of the LSTM for which the relevance redistribution satisfies further
constraints, as proposed in the following Section 11.4.

11.4 LSTM Architectures Motivated by LRP

A “standard” LSTM network with fully connected LSTM blocks, as presented
in Fig. 11.1, is a very powerful network capable of modelling extremely complex
sequential tasks. However, in many cases, an LSTM network with a reduced
complexity is able to solve the same problems with a similar prediction
performance. With the further goal of increasing the model’s interpretability,
we propose some modifications which simplify the LSTM network and make the
resulting model easier to explain with LRP.

11.4.1 LSTM for LRP Backward Analysis: Nondecreasing Memory
Cells

The LRP backward propagation procedure is made simpler if memory cell states
ct are nondecreasing, this way the contribution of each input to each memory
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cell is well-defined, and the problem that a negative and a positive contribution
cancel each other is avoided. For nondecreasing memory cells and backward
analysis with LRP, we make the following assumptions over the LSTM network
from Fig. 11.1 and Equations 11.1-11.6:

(A1) ft = 1 for all t. That is, the forget gate is always 1 and nothing is forgotten.
This ensures uniform credit assignment over time, and alleviates the problem
identified earlier in Section 11.3.3 that the relevance redistributed via the
accumulation module decreases over time.

(A2) g > 0, that is, the cell input activation function g is positive. For example
we can use a sigmoid �(x) = 1

1+exp(�x) : g(x) = ag�(x), with ag 2 {2, 3, 4}.

Indeed methods like LRP and the epsilon-rule for linear mappings (cf.
Section 11.3.1) face numerical stability issues when negative contributions
cancel with positive contributions [53]. With a positive g all contributions are
positive, and the redistribution in the LSTM accumulation module is made
more stable. Further, we assume that the cell input z has a negative bias,
that is, bz < 0. This is important to avoid the drift e↵ect. The drift e↵ect is
that the memory content only gets positive contributions, which leads to an
increase of c over time. Typical values are bz 2 {�1, �2, �3, �4, �5}.

(A3) We want to ensure that for the cell state activation it holds h(0) = 0, such
that, if the memory content is zero, then nothing is transferred to the next
layer. Therefore we set h = ah tanh, with ah 2 {1, 2, 4}.

(A4) The cell input z is only connected to the input, and is not connected to other
LSTM memory cell outputs. Which means Uz is zero. This ensures that LRP
assigns relevance z to the input and z is not disturbed by redistributing
relevance to the network.

(A5) The input gate i has only connections to other memory cell outputs, and
is not connected to the input. That is, Wi is zero. This ensures that LRP
assigns relevance only via z to the input.

(A6) The output gate o has only connections to other memory cell outputs, and
is not connected to the input. That is, Wo is zero. This ensures that LRP
assigns relevance only via z to the input.

(A7) The input gate i has a negative bias, that is, bi < 0. Like with the cell
input the negative bias avoids the drift e↵ect. Typical values are bi 2
{�1, �2, �3, �4}.

(A8) The output gate o may also have a negative bias, that is, bo < 0. This allows
to bring in di↵erent memory cells at di↵erent time points. It is related to
resource allocation.

(A9) The memory cell state content is initialized with zero at time t = 0, that is,
c0 = 0. Lastly, the memory cell content ct is non-negative ct � 0 for all t,
since zt � 0 and it � 0.
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The resulting LSTM forward pass rules for LRP are:

zt = ag � (Wz xt + bz) cell input (11.7)

it = � (Ui yt�1 + bi) input gate (11.8)

ct = it � zt + ct�1 cell state (11.9)

ot = � (Uo yt�1 + bo) output gate (11.10)

yt = ot � ah tanh (ct) cell output (11.11)

See Figure 11.4a which depicts these forward pass rules for LRP.
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Fig. 11.4. LSTM memory cell used for Layer-Wise Relevance Propagation (LRP).
(a) z is the vector of cell input activations, i is the vector of input gate activations,
c is the vector of memory cell states, o is the vector of output gate activations, and
y is the vector of cell output activations. (b) The memory cell is nondecreasing and
guarantees the Markov property. (a and b) Data flow is either “feed-forward” without
delay or “recurrent” with a one-step delay. External input reaches the LSTM network
only via the cell input z. All gates only receive recurrent input, that is, from other
memory cell outputs. (c) LSTM memory cell without gates. External input is stored
in the memory cell via the input z.

11.4.2 LSTM for LRP Backward Analysis: Keeping the Markov
Property

Forget gates can modify the memory cells’ information at some future time step,
i.e. they could completely erase the cells’ state content. Output gates can hide
the cells’ information and deliver it in the future, i.e. output gates can be closed
and open at some future time, masking all information stored by the cell. Thus,
in order to guarantee the Markov property, the forget and output gates must be
disconnected.
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The resulting LSTM forward pass rules for Markov memory cells are:

zt = ag � (Wz xt + bz) cell input (11.12)

it = � (Ui yt�1 + bi) input gate (11.13)

ct = it � zt + ct�1 cell state (11.14)

yt = ah tanh (ct) cell output (11.15)

See Figure 11.4b for an LSTM memory cell that guarantees the Markov property.

11.4.3 LSTM without Gates

The most simple LSTM architecture for backward analysis does not use any
gates. Therefore complex dynamics that have to be treated in the LRP backward
analysis are avoided.

The resulting LSTM forward pass rules are:

zt = ag � (Wz xt + bz) cell input (11.16)

ct = zt + ct�1 cell state (11.17)

yt = ah tanh (ct) cell output (11.18)

Note that even this simple architecture can solve sequential problems, since
di↵erent biases can be learned by the cell inputs to specialize on di↵erent time
steps and activate the memory cell output accordingly.

See Figure 11.4c for an LSTM memory cell without gates which perfectly
redistributes the relevance across the input sequence.

11.5 Experiments

11.5.1 Validating Explanations on Standard LSTMs: Selectivity
and Fidelity

First we verify that the LRP explanation is able to select input positions
that are the most determinant either in supporting or in contradicting an
LSTM’s prediction, using a sentiment prediction task. To that end we perform
a perturbation experiment aka “pixel flipping” or “region perturbation” [6, 64]
commonly used in computer vision to evaluate and generate explanations, e.g.
[47, 1, 11, 54]. Here we confirm whether the sign and ordering of the relevance
reflect what the LSTM considers as highly speaking for or against a particular
class.

Another property of the relevance we test is fidelity. To that end we use a
synthetic task where the input-output relationship is known and compare the
relevances w.r.t some ground truth explanation. By using a synthetic toy task
we can avoid problems of disentangling errors made by the model from errors
made by the explanation [72]. Here we seek to validate the magnitude of the
relevance as a continuously distributed quantity. To the best of our knowledge
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we are the first one to conduct such a continuous analysis of the relevance in
recurrent neural networks. Yet another work validated LSTM explanations via
a toy classification task [77], however it practically treated the relevance as a
binary variable.

Explanation Methods. Now we introduce the various explanation methods we
consider in our experiments with standard LSTMs. For the LRP explanation
technique we consider all product rule variants specified in Table 11.1 (cf.
Section 11.3.2) , i.e. LRP-all [4], LRP-prop [14, 2], LRP-abs and LRP-half [2].
Since the LRP backward pass delivers one relevance value per input dimension,
we simply sum up the relevances across the input dimensions to get one relevance
value per time step. Besides LRP we also consider gradient-based explanation
[21, 45, 68, 13], occlusion-based relevance [46, 79], and Contextual Decomposition
(CD) [56], as alternative methods.

For the gradient-based explanation we use as the relevance, either the
prediction function’s partial derivative w.r.t. the input dimension of interest
and square this quantity, we denote this variant simply as Gradient, or else we
multiply this derivative by the input dimension’s value, we call it Gradient ⇥
Input relevance. In both cases, similarly to LRP, the relevance of several input
dimensions can be summed up to obtain one relevance value per time step.

For the occlusion-based explanation we take as the relevance, either a
di↵erence of prediction function values (i.e. of prediction scores before softmax
normalization), we denote this variant as Occlusionf-di↵, or else we use a
di↵erence of predicted probabilities, we call it OcclusionP-di↵, where the
di↵erence is calculated over the model’s prediction on the original input and
a prediction with an altered input where the position of interest (for which the
relevance is being computed) is set to zero.

For the CD explanation method [56] we employ the code from the authors7

to generate one relevance value per time step (this necessitates to run the CD
decomposition as many times as there are time steps in the input sequence).

Testing Selectivity. In order to assess the selectivity, we consider a five-class
sentiment prediction task of movie reviews. As a dataset we use the Stanford
Sentiment Treebank (SST) [69] which contains labels (from very negative,
negative, neutral, positive, to very positive sentiment) for resp. 8544/1101/2210
train/val/test sentences and their constituent phrases. As an LSTM model we
employ the bidirectional LSTM model from Li et al. [45] already trained on SST8

and previously employed by the authors to perform a gradient-based analysis on
the network decisions. The input consists of a sequence of 60-dimensional word
embeddings, the LSTM hidden layer has size 60, and the only text preprocessing
is lowercasing. On binary sentiment classification of full sentences (ignoring the
neutral class) the model reaches 82.9% test accuracy, and on five-class sentiment
prediction of full sentences it achieves 46.3% accuracy.

7 https://github.com/jamie-murdoch/ContextualDecomposition
8 https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP
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For the perturbation experiment we consider all test sentences with a length
of at least ten words (thus we retain 1849 sentences), and compute word-level
relevances (i.e. one relevance value per time step) using as the target output
class the true sentence class, and considering all five classes of the sentiment
prediction task. For the computation of the LRP relevance we use as a stabilizer
value, for linear mappings and product layers, ✏ = 0.0019.

Then, given these word-level relevances, we iteratively remove up to five
words from each input sentence, either in decreasing or increasing order of
their relevance, depending on whether the corresponding sentence was initially
correctly or falsely classified by the LSTM. We expect this input modification
to decrease resp. increase the model’s confidence for the true class, which we
measure in terms of the model’s accuracy. For removing a word we simply discard
it from the input sequence and concatenate the remaining parts of the sentence.
An alternative removal scheme would have been to set the corresponding word
embedding to zero in the input (which in practice gave us similar results),
however the former enables us to generate more natural texts, although we
acknowledge that the resulting sentence might be partly syntactically broken
as pointed out by Poerner et al. [57].

Our results of the perturbation experiment are compiled in Figure 11.5.
When looking at the removal of the most relevant words (Figure 11.5 left),

we observe that the occlusion-based relevance, LRP-all and CD are the most
competitive methods, and perform on-par; followed by Gradient ⇥ Input, which
performs better than Gradient. The remaining methods, which are the other
LRP variants LRP-prop, LRP-abs, LRP-half are almost equivalent to random,
and thus not adequate to detect words speaking for a specific class.

In the removal of the least relevant words (Figure 11.5 right), OcclusionP-di↵

performs best; followed by Occlusionf-di↵, LRP-all, CD and Gradient ⇥ Input.
Again the remaining LRP variants are almost equivalent to random. However
this time Gradient performs worse than random, this indicates that low Gradient
relevance is more likely to identify unimportant words for the classification
problem (like stop-words) rather than identifying words speaking against a
specific class (this was also observed in previous work, see e.g. [4] Table 1).

In summary, our perturbation experiment in sentiment analysis suggests that
if one is interested in identifying the most influential positions that strongly
support or inhibit a specific classification decision using a standard LSTM model,
then the occlusion-based relevance, the LRP method with the product rule from
Arras et al. [4], and the CD method of Murdoch et al. [56] are good candidates
to provide this information.

For another evaluation of recurrent neural networks explanations, including
a standard LSTM model, we further refer to Poerner et al. [57], in particular to
their experiment using a subject-verb agreement task. Here the authors find that
LRP and DeepLIFT [67] perform best among the tested explanation methods,

9 Except for the LRP-prop variant, where we take ✏ = 0.2. We tried following values:
[0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 1.0], and took the lowest one to achieve numerical
stability.



11. Explaining and Interpreting LSTMs 231

Fig. 11.5. Impact of word removal on initially correctly (left) and initially falsely
(right) classified sentences. The relevance target class is the true sentence class, and
words are deleted in decreasing (left) and increasing (right) order of their relevance.
Random deletion is averaged over 10 runs (std < 0.02). A steep decline (left) and
incline (right) indicate selective relevance.

both when using the signal-take-all strategy proposed in Arras et al. [4] for
product layers10.

Testing Fidelity. In order to validate the fidelity, we consider a toy task with a
linear input-output relationship. In particular we use the addition/subtraction
of two numbers. Accordingly we expect the relevances to be linearly related to
the actual input values, which we can directly measure in terms of the empirical
correlation.

For our purpose we use a variant of the adding problem of Hochreiter et al.
[36], where instead of using explicit markers, we use implicit ones; further we

10 Ancona et al. [1] also performed a comparative study of explanations on LSTMs,
however, in order to redistribute the relevance through product layers, the authors
use standard gradient backpropagation. This redistribution scheme violates one of
the key underlying property of LRP, which is local relevance conservation, hence
their results for LRP are not conclusive.
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remove the sequence start and end positions. This way we enforce the LSTM
model to attribute non-zero relevance only to the relevant numbers in the input
and not to markers (since in general it is unclear what “ground truth” relevance
should be attributed to a marker, to which we could compare the computed
relevance to). Thus our input sequence of length T has the form:

2

666666664

n1 0
... 0

na�1 0
0 na

na+1 0
... 0

nb�1 0
0 nb

nb+1 0
... 0
nT 0

3

777777775

where the non-zero entries nt, with t 2 {1, ..., T}, are randomly sampled real
numbers, and the two relevant positions a and b are sampled uniformly among
{1, ..., T} with a < b. The target output is na + nb for addition, and na � nb for
subtraction. To ensure that the train/val/test sets do not overlap, we use 10000
sequences with T 2 {4, ..., 10} for training, 2500 sequences with T 2 {11, 12}
for validation, and 2500 sequences with T 2 {13, 14} as test set. Training is
performed by minimizing Mean Squared Error (MSE).

More particularly, we consider two minimal tasks, which are solvable by a
standard LSTM with only one memory cell, followed by a linear output layer
with no bias (thus the model has 17 trainable parameters):

– the addition of signed numbers (where nt is sampled uniformly from
[�1, �0.5] [ [0.5, 1.0]),

– the subtraction of positive numbers (where nt is sampled uniformly from
[0.5, 1.0])11.

For each task we train 50 LSTM models with a validation MSE < 10�4, the
resulting test MSE is also < 10�4.

Then, using the model’s predicted output, we compute one relevance value
Rt per time step t 2 {1, ..., T}, for each considered explanation method.

For the occlusion-based relevance we use only the Occlusionf-di↵ variant, since
the model output is one-dimensional and the considered task is a regression.
For the gradient-based relevance we report only the Gradient ⇥ Input results,
since the pure Gradient performs very poorly. For the computation of the LRP
relevance we didn’t find it necessary to add any stabilizing term (therefore we
use ✏ = 0.0 for all LRP rules).

Our results are reported in Table 11.2. For the positions a and b, we checked
whether there is a correlation between the computed relevance and the input
numbers’ actual value. Besides, we verified the portion of the relevance (in
absolute value) assigned to these positions, compared to the relevance attributed
to all time steps in the sequence.

11 We use an arbitrary minimum magnitude of 0.5 only to simplify training (since
sampling very small numbers would encourage the model weights to grow rapidly).
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Table 11.2. Statistics of the relevance w.r.t. the numbers na and nb on toy arithmetic
tasks. ⇢ denotes the correlation and E the mean and for each LSTM model these
statistics are computed over 2500 test points. Reported results are the mean (and
standard deviation in parenthesis), in %, over 50 trained LSTM models.

⇢(na, Ra) ⇢(nb, Rb) E[ |Ra|+|Rb|P
t |Rt| ]

Addition na + nb

Gradient ⇥ Input 99.960 (0.017) 99.954 (0.019) 99.68 (0.53)

Occlusion 99.990 (0.004) 99.990 (0.004) 99.82 (0.27)

LRP-prop 0.785 (3.619) 10.111 (12.362) 18.14 (4.23)

LRP-abs 7.002 (6.224) 12.410 (17.440) 18.01 (4.48)

LRP-half 29.035 (9.478) 51.460 (19.939) 54.09 (17.53)

LRP-all 99.995 (0.002) 99.995 (0.002) 99.95 (0.05)

CD 99.997 (0.002) 99.997 (0.002) 99.92 (0.06)

Subtraction na � nb

Gradient ⇥ Input 97.9 (1.6) -98.8 (0.6) 98.3 (0.6)

Occlusion 99.0 (2.0) -69.0 (19.1) 25.4 (16.8)

LRP-prop 3.1 (4.8) -8.4 (18.9) 15.0 (2.4)
LRP-abs 1.2 (7.6) -23.0 (11.1) 15.1 (1.6)

LRP-half 7.7 (15.3) -28.9 (6.4) 42.3 (8.3)

LRP-all 98.5 (3.5) -99.3 (1.3) 99.3 (0.6)

CD -25.9 (39.1) -50.0 (29.2) 49.4 (26.1)

Interestingly several methods pass our sanity check (they are reported in
bold in the Table) and attribute as expected a correlation of almost one in the
addition task, namely: Gradient ⇥ Input, Occlusion, LRP-all and CD.

However, on subtraction, only Gradient ⇥ Input and LRP-all assign a correct
correlation of near one to the first number, and of near minus one to the second
number, while the remaining explanation methods fail completely.

For both addition and subtraction, we observe that methods that fail in
the correlation results also erroneously assign a non-negligible portion of the
relevance to clearly unimportant time steps.

One key di↵erence between the two arithmetic tasks we considered, is that
our addition task is non-sequential and solvable by a Bag-of-Words approach
(i.e. by ignoring the ordering of the inputs), while our subtraction task is truly
sequential and requires the LSTM model to remember which number arrives in
the first position and which number in the second.

From this sanity check, we certainly can not deduce that every method that
passes the subtraction test is also appropriate to explain any complex nonlinear
prediction task. However, we postulate that an explanation method that fails on
such a test with the smallest possible number of free parameters (i.e. an LSTM
with one memory cell) is generally a less suited method.
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In this vein, our present analysis opens up new avenues for improving and
testing LSTM explanation methods in general, including the LRP method and its
LRP-all variant, whose results in our arithmetic task degrade when more memory
cells are included to the LSTM model, which suggests that gates might also be
used by the standard LSTM to store the input numbers’ value12. The latter
phenomenon could be either avoided by adapting the LSTM architecture, or
could be taken into account in the relevance propagation procedure by employing
alternative propagation rules for products. This leads us to the next subsection,
where we use an adapted LSTM model and di↵erent product rules, for the task
of reward redistribution.

11.5.2 Long Term Credit Assignment in Markov Decision Processes
via LRP and LSTMs

Assigning the credit for a received reward to actions that were performed is one
of the central tasks in reinforcement learning [74]. Long term credit assignment
has been identified as one of the biggest challenges in reinforcement learning
[62]. Classical reinforcement learning methods use a forward view approach by
estimating the future expected return of a Markov Decision Process (MDP).
However, they fail when the reward is delayed since they have to average
over a large number of probabilistic future state-action paths that increases
exponentially with the delay of the reward [58, 48].

In contrast to using a forward view, a backward view approach based on
a backward analysis of a forward model avoids problems with unknown future
state-action paths, since the sequence is already completed and known. Backward
analysis transforms the forward view approach into a regression task, at which
deep learning methods excel. As a forward model, an LSTM can be trained to
predict the final return, given a sequence of state-actions. LSTM was already
used in reinforcement learning [66] for advantage learning [7] and learning
policies [27, 50, 28]. However, backward analysis via sensitivity analysis like
“backpropagation through a model” [55, 60, 61, 8] have major drawbacks: local
minima, instabilities, exploding or vanishing gradients in the world model, proper
exploration, actions being only regarded by sensitivity but not their contribution
(relevance) [29, 65].

Contribution analysis, however, can be used to decompose the return
prediction (the output relevance) into contributions of single state-action pairs
along the observed sequence, obtaining a redistributed reward (the relevance
redistribution). As a result, a new MDP is created with the same optimal policies
and, in the optimal case, with no delayed rewards (expected future rewards equal
zero) [2]. Indeed, for MDPs the Q-value is equal to the expected immediate
reward plus the expected future rewards. Thus, if the expected future rewards are

12 The same phenomenon can occur, on the addition problem, when using only positive
numbers as input. Whereas in the specific toy tasks we considered, the cell input
(zt) is required to process the numbers to add/subtract, and the cell state (ct)
accumulates the result of the arithmetic operation.
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zero, the Q-value estimation simplifies to computing the mean of the immediate
rewards.

In the following experiment we do not evaluate the performance of the agent
under this reward redistribution. Instead, the aim of this experiment is to show
how di↵erent LRP product rules change the explanation of the model and,
therefore, the reward redistribution.

LSTM and Markov Properties. For LSTMs with forget gate or output gate
[26], as described in Section 11.2.1, the cell content does not comply to Markov
assumptions. This is because the current contribution of an input to a memory
cell can be modified or hidden by later inputs, via the forget gate or output gate.
For example, the forget gate can erase or reduce the contribution of the current
input in the future due to some later inputs. Likewise, the output gate can hide
the contribution of the current input by closing the gate until some future input
opens the gate and reveals the already past contribution.

Figure 11.4b shows an LSTM memory cell that complies with the Markov
property.

Environment. In our environment, an agent has to collect the Moneybag and
then collect as many Coins as possible in a one dimension grid world. Only
Coins collected after collecting the Moneybag give reward. At each time step,
the agent can move to the left or to the right. All rewards are only given at the
end of the episode, depending on how many Coins the agent collected in the
Moneybag.

Training the model. We are given a collection of sequences of state-action pairs.
Each sequence represents one episode. Each episode is labeled with a scalar
corresponding to the episode return. States and actions in the sequence are
encoded as a vector of four binary features representing if the Moneybag is
collected, if a Coin is collected, and the chosen action for the current timestep
(one binary feature per action). In this experiment, we use a Long Short-Term
Memory (LSTM) [30, 37] to predict the return of an episode [2]. Notice that since
we are using an LSTM, the input encoding does not have to fulfil the Markov
property. Once the LSTM is trained, we use LRP [6] as contribution analysis for
backward analysis.

LRP and di↵erent product rules. We trained an LSTM network, as depicted
in Figure 11.4b, to predict the return given a sequence of states and actions.
Later, we applied di↵erent product rules to propagate the relevance through the
input gates and the cell inputs (cf. Table 11.1 Section 11.3.2). Results are shown
in Figure 11.6 and 11.7. When no relevance is propagated through the input
gates (LRP-all), certain important events are not detected by the contribution
analysis, i.e. no relevance is assigned to the event Moneybag. This is due to the
representation learned by the LSTM model, which stores information about the
Moneybag feature, which in turn is used to activate a learned Coins counter via
the input gate once the Moneybag has been collected. As such, the Moneybag
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event contributes through the input gate. When relevance is allowed to flow
through the input gates (LRP-prop and LRP-half), all events can be detected,
including the actions that lead to the Moneybag event. However, the amount of
relevance is not completely conserved when it is propagated through the gates,
as a small amount of relevance can get trapped in the LSTM cell, in particular
via the relevance of the initial time step input gate.

Fig. 11.6. LRP with di↵erent product rules as contribution analysis method in
backward analysis, for one specific sequence of state-actions. State and action sequence
is represented as a vector of four binary features. In this environment, Coins only give
reward once the Moneybag is collected. When relevance is allowed to flow through the
gate (LRP-prop and LRP-half rule), the event Moneybag is detected. Otherwise, only
coin events are detected.

11.6 Conclusion

We presented several ways of extending the LRP technique to recurrent neural
networks such as LSTMs, which encompasses defining a rule to propagate the
relevance through product layers. Among the tested product rule variants we
showed that, on standard LSTM models, the signal-take-all strategy leads to
the most pertinent results, and can be embedded in the deep Taylor framework
where it corresponds to choosing the nearest root point in the gated interaction
relevance model.

Additionally, we showed that the relevance propagation flow can be made
more straightforward and stable by adapting the LSTM model towards the
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Fig. 11.7. LRP with di↵erent product rules as contribution analysis method in
backward analysis, for one specific sequence of state-actions. Since Coins without
Moneybag do not count for the reward, no relevance is assigned to these events.

LRP technique and that, in this case, propagating a share of relevance through
the gates leads to a detection of relevant events earlier in time. The resulting
simplified and less connected LSTM model can potentially solve the same
problems as the standard LSTM, although in practice this may necessitate using
more memory cells.

More generally, further investigating the representational power of the new
proposed LSTM, as well as its interplay with various LRP propagation rules, in
particular via controlled experiments, would be a subject for future work.
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