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Abstract— In an objective approach for the assessment of
quality of experience the neural correlates of EEG data are
studied when stereoscopic images are presented in three dif-
ferent conditions containing vertical disparity. These conditions
are compared to a similar image in 2D both on the channel level
by studying the ERP components and on the source level by the
localization of the corresponding ERP component. Our findings
posit that P1 component in the occipital cortex has significantly
increased in amplitude for 3D condition without vertical dispar-
ity compared to the 2D condition. According to previous studies,
this component increases when depth information are added to
the stimulus which is in line with our findings. However the
amplitude of this component has significantly decreased for 3D
condition with maximum vertical disparity compared to the 3D
condition without vertical disparity. We have concluded that the
perception of stereoscopic depth by subjects have decreased in
this case due to the distortion introduced by vertical disparity.
The underlying sources corresponding to P1 component are
localized. Except for the power differences, the source locations
do not differ for different conditions.

I. INTRODUCTION

In recent years stereoscopic imaging technologies became
popular in various fields in order to create or increase the
impression of greater realism and immersion: Movie theaters
present a remarkable number of movies in 3D today, most
modern television sets feature a 3D mode and 3D imaging
is used widely for data visualization. With the advent of
market-ready head mounted displays such as the Oculus
Rift the interest in stereoscopic imaging technologies will
further increase as new application scenarios in virtual and
augmented reality environments are in reach. However, the
success of these applications crucially relies on the systems’
quality that users experience. Such quality of experience
can be severely impaired by visual discomfort that can be
introduced to the viewer, e.g. by accommodation/vergence
conflicts, excessive binocular parallax, and other factors [1].
Unfortunately, no reliable objective computational model
for visual discomfort or most other aspects of perceived
quality is available and, thus, the assessment of the visual
quality of imaging systems relies on psychometric tests.
The typical procedure in these tests is that a subject has
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to rank the quality of a set of test stimuli. These kind of
tests suffer from different drawbacks, the ratings are highly
variable across subjects and, principally, are the results of a
conscious process, affected by subjective factors such as bias,
expectations and strategies. Practically, these psychometric
are difficult do integrate in real-time assessment procedures
and, in order to avoid unreliability by tiredness of the subject,
should not last longer than 30 minutes [2]. To overcome
these limitations of behavioral subjective tests, brain activity
recordings allow for directly monitoring the users cognitive
state. Electroencephalography (EEG) is one of the cheapest
and most mobile devices to record brain signals and was
recently shown to be a promising tool for assessing perceived
quality of audio and 2D and 3D video signals [3], [4].

If the two focal points in a stereoscopic imaging system
are not aligned vertical disparities occur alongside horizontal
disparities. Vertical disparities commonly cause visual dis-
comfort. In this paper we address the assessment of visual
discomfort caused by vertical disparities using EEG. For that
the brain signals recorded for different amounts of vertical
disparity are compared on channel level and on source level.
We find P1 ERP component to be a neural marker of vertical
disparities. We have also localized P1 component in the
brain and did not see any difference in source locations for
different conditions.

II. METHODS

A. Experimental Setup

In this experiment EEG features related to the vertical
disparity in stereoscopic images are studied. The vertical
disparity is introduced by the simulation of a 3D image of a
cube. The right camera is shifted upwards compared to the
left one to simulate the vertical disparity. Two conditions are
simulated in this way while the amount of vertical disparity
in one condition (3D-2) is 40 % less than the other condition
(3D-3). The cube is presented to the subjects in four different
conditions and two categories of 2D and 3D, i.e. three images
in 3D including 2 different 3D images with vertical disparity
levels and one 3D image without vertical disparity. The same
cube is also presented in 2D shown in Figure 1.

Each image is presented randomly for 120 trials (epochs)
and each trial lasts 4 seconds. Between the images a cross
is presented in 3D for an interval of 3 seconds. This interval
is considered for subjects to rest their eyes and it helps to
reduce the amount of ocular artifacts. To keep the subjects
attentive they were supposed to press a button when an image
of a cat was presented. 120 images of a dog (80%) and



Fig. 1. Left: The cube is presented in 2D. Right: The cube is presented in
three stereoscopic conditions (3D, 3D-2 and 3D-3).

a cat (20%) are presented between two fixation crosses. If
the subject hit the target image (cat) by a minimum 90%
accuracy he/she was rewarded by 5 e extra. All subjects
were rewarded for their participation by 8.5 e per hour. The
distance between the subject and the screen is 280 cm and
the horizontal angle of view is 20.76 degrees. The subjects
wear 3D polarized glasses during the experiment. The reason
to prefer the polarized passive glasses over the active shutter
glasses is the results in the previous research [5] showing that
the passive glasses provide more comfortable visualization
for the subjects. EEG signals were recorded in a dimly lit
and silent room. The 3D screen is JVC 3D LCD Monitor
(model number: GD-463D10E). EEG signals are measured
by a cap of 64 active electrodes (Fp1,2, F1 to F8, FC2 to
FC6, T7 and T8, C1 to C6, Cz, Tp7, Tp9 and Tp10, Pz,
P1 to P8, PO3 and PO4, POz, PO7 to PO10, O1 and O2,
Oz, AF3, AF4, AF7, AF8, FT7 to FT10, FC3 and FC4, CP3
and CP4, CPz, VEOG) , i.e. actiCap from Brain Products
GmbH and the impedance of electrodes was kept below 10
KΩ. 21 subjects have been recorded out of which 4 data
sets had a very low signal-to-noise ratio with high number
of rejected trials which were therefore excluded from the
analysis. The data from 17 subjects, 6 of which are male and
11 are female with the average age of 25.83 is analyzed. All
subjects have normal or corrected to normal vision and are
tested for their 3D vision and gave informed consent. We
have received a permission for the experiment in accordance
with the declaration of Helsinki from the IRB of Technische
Universität Berlin (TU Berlin).

B. Pre-processing of EEG Data

EEG data is low-pass filtered at 30 Hz besides the filter
applied by the amplifier hardware at 0.016 Hz. During the
measurement FCz is selected as the original reference elec-
trode and the data is re-referenced to the common average
during the analysis. Muscle artifacts are removed from the
data by removing the trials with the variance larger than a
threshold. The baseline in the time interval between -200 ms,
i.e. 200 ms before the stimulus onset and the stimulus onset
is subtracted from each epoch of the data. Ocular artifacts are
removed by regression. The applied algorithm projects out
part of the data which is correlated with EOG electrodes.
A short measurement was conducted before the experiment
in which the subject was supposed to blink when a circle
appeared on the screen. The vertical ocular component was
measured by an electrode underneath the right eye and
Fp2. The horizontal ocular activity of the subjects was also

recorded in a similar measurement in which the subject was
supposed to follow a circle on the screen which moved
from the right end to the left end of the screen and vice
versa. The difference between the F7 and F8 are measured
as the horizontal component. Part of the EEG data which
is correlated with these two components is then projected
out from the data as it is described in [6]. In a further
step, epochs within which the difference of maximum and
minimum amplitude exceeds 70 µV are rejected.

C. Event Related Potential Analysis

Part of the responses in EEG signals caused by the above
mentioned stimuli are phased-locked with the stimuli with
a very low signal to noise ratio. These responses are called
Event Related Potentials (ERPs). To increase the signal-to-
noise ratios, EEG data is averaged over all trials to cancel
out all non-phase-locked activities. The time window of this
average is selected between 200 ms before the stimulus onset
and 900 ms after that. The BBCI toolbox, which is a Matlab
based toolbox [7], is used for the ERP analysis.

The ERP components might vary between conditions both
in their amplitude and latency of the peak. While each
component is the result of an underlying neural reaction in
the brain, different conditions are ideally differentiable from
each other based on their different ERP components. In the
following analysis we have studied ERP components in order
to extract condition dependent features.

D. Source Localization

The ERP components of different conditions are not only
of interest on the sensor level but also on the source level.
Due to the artifacts of volume conduction i.e., mixing of
the underlying brain activities on the channel level and
contribution of sources which are far from a channel in
the activity of that channel, looking at the topographies
on the scalp does not necessarily reveal the exact and
accurate locations of the underlying sources. ERP signals
corresponding to each condition in the time point of the
ERP component’s peak are localized by applying an inverse
method named eLORETA [8]. However we would like to
point out the volume conduction artifacts do not necessarily
disappear in the process of inverse modeling [9] and have
to be considered even on the source level. Although some
inverse methods such as SC-MUSIC [10] are based on the
imaginary part of cross-spectrum [11] which makes them
robust to the artifacts of volume conduction but since we
are interested in the underlying ERPs sources i.e., time
domain instead of frequency domain, these methods were
not beneficial here. As a head model we used a standardized
MNI head consisting of 152 averaged brains [12]. The MNI
brain is divided into a continuous grid with 2113 voxels.
eLORETA filters are estimated from the forward models and
applied to the time point of interest. The power at each voxel
is then estimated as the sum of the powers of the voxel in
all three dipole directions.



III. RESULTS

A. ERP Analysis on the Channel Level

EEG signals are averaged over all trials for single subjects
in the interval between -200 ms and 900 ms after the
baseline correction is applied. The ERPs on channel O2
plotted in Figure 2 (Top panel) for single subjects appeared
to be consistent enough across subjects to be averaged over
all subjects. The grand averaged ERP on channel O2 is
shown in Figure 2 in the bottom panel. In Figure 3, ERPs
corresponding to three conditions (2D, 3D and 3D-3) are
plotted and the differences between 2D and 3D as well as
3D and 3D-3 are calculated. Looking at the topographies
of the ERPs corresponding to the large ERP components, it
was obvious that the brain activity in channel O2 is larger
compared to other channels in almost all the intervals of
interest. Therefore in the following analysis we focus on
this single channel. The scalp topographies of two intervals
corresponding to the larger values of signed squared biserial
correlation coefficient are visualized for all three conditions
as well as for the differences. For all three conditions there
are two large ERP components one at around 130 ms and
the second one at around 300 ms after the stimulus onset.
However there is another negative peak which is clearer in
2D and less obvious in the other two conditions at around
150 ms. We did not focus on the ERP component at 300
ms because we believe this component is caused by the
implicit odd ball paradigm in the stimuli, i.e. all conditions
are stereoscopic except for 2D and this explains why 2D has
the largest amplitude at 300 ms component.

The topography corresponding to the difference between
3D and 2D shows a large difference in the occipital area
with an increase for the 3D condition. This result is in line
with the previous studies [13], [14] which show that depth
perception in 3D images increases the P100 [15] amplitude
compared to 2D images. However the stimuli used in these
studies were non-stereoscopic stimuli. Here we have shown
that the same results are produced in the case of stereoscopic
images for P1 component. However the comparison between
3D-3 and 3D shows a large activity in the occipital area
but with a decrease in the amplitude of 3D-3 condition.
Student’s t-test is applied to the differences which shows
all the above mentioned differences are significant. The
difference between the components in 3D and 3D-2 was not
significant and therefore is not presented here. Given that
an increase in the depth perception causes an increase in
the amplitudes of P1, we believe that the decrease in the
amplitude of this component for 3D-3 compared to 3D is a
sign of a decrease in the perception of depth by subjects.
This hypothesis explains the similarity between the ERP
components considering both the amplitude and latency of
3D-3 and 2D. Further analysis is performed on the same data
set for N1 ERP component in [16].

B. Source Localization of P1 Component

As described in Section II-D, the underlying brain activi-
ties corresponding to the earliest ERP component is localized

Fig. 2. Top: ERPs averaged over all epochs for each subject on channel
O2 and condition 2D are plotted in the time interval between -200 ms and
900 ms. The ERP components across subjects are consistent enough to be
averaged over all subjects. The same holds for all other 3 conditions. Bottom:
ERP of all conditions averaged over all subjects in a single channel O2 are
plotted in the same time interval as above.

Fig. 4. Underlying sources modeled as dipoles in each grid point
localized using eLORETA method for 2D condition. The source locations
corresponding to other conditions are identical to 2D with the difference
in their amplitudes corresponding to the differences we already saw in the
ERP amplitudes.

and compared between conditions. The first ERP component
in Figure 3 corresponding to P100 is localized for the time
point corresponding to the maximum amplitude in O2 for
each condition. Figure 4 shows the corresponding sources
for condition 2D localized by eLORETA. Having localized
the sources in other conditions, the source activities appear
to be at the same locations for all conditions in the occipital
cortex. These locations are consistent with previous studies
[17] in which the authors refer to the P1 component in this
interval as the late P1 and report the source locations in
ventral extrastriate cortex of the fusiform gyrus.

IV. CONCLUSION

In this study the simulated vertical disparity in the 3D
image resulted in a decrease in the amplitude of P1 ERP
component compared to those components in the 3D condi-
tion without vertical disparity. In previous studies it have
been shown that the amplitude in P1 increases for the
stimulus containing depth information compared to a 2D
image. However the 3D stimuli in those studies were all non
stereoscopic images while we have shown the same results in
the stereoscopic images. On the other hand the amplitude of
P1 component has significantly decreased for 3D-3 compared
to 3D. The comparison between 3D-2 and 3D did not show
significant differences for these components. Considering
that P1 amplitude increases by an increase in the perception
of depth, we conclude that the significant decrease in 3D-3



Fig. 3. In the first row the ERPs corresponding to three conditions and the differences between 3D and 3D-3 plus the difference between 2D and 3D in
the time interval of -200 ms and 900 ms are plotted. In the next two rows (corresponding to the first and the second selected intervals respectively) the
corresponding topographies are shown.

is a sign of a decrease in the perception of depth by subjects.
This means that the effect of the vertical disparity in a 3D
image reduces the stereoscopic feeling for subjects although
the image still includes depth information. Furthermore, we
have shown P1 is an important feature which one could
extract from EEG data for detection of vertical disparity
when it is high enough to affect the depth perception in
the subjects. As we mentioned before 3D-2 did not result in
significant differences compared to 3D which is potentially
because the vertical disparity was not strong enough to affect
the depth perception.

Next to the channel level, we also analyzed the ERP
components on the source level. We were interested to know
if there are any differences between the source locations
corresponding to different conditions. We realized the un-
derlying sources corresponding to the P1 component did not
differ between conditions. The location of these sources are
in ventral extrastriate cortex of the fusiform gyrus which is
in line to the previous study [17].

In future work we will investigate multi-modal [18] and
deep [19] approaches for 3D quality assessment.
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