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Abstract. Objective: Neurophysiological correlates of vertical disparity in 3D images

are studied in an objective approach using EEG technique. These disparities are

known to negatively affect the quality of experience and to cause visual discomfort in

stereoscopic visualizations.

Approach: We have presented 4 conditions to subjects: one in 2D and three

conditions in 3D, one without vertical disparity and two with different vertical disparity

levels. Event Related Potentials (ERPs) are measured for each condition and the

differences between ERP components are studied. Analysis is also performed on the

induced potentials in the time frequency domain.

Main results: Results show that there is a significant increase in the amplitude of

P1 components in 3D conditions in comparison to 2D. These results are consistent

with previous studies which have shown that P1 amplitude increases due to the depth

perception in 3D compared to 2D. However the amplitude is significantly smaller for

maximum vertical disparity (3D-3) in comparison to 3D with no vertical disparity.

Our results therefore suggest that the vertical disparity in 3D-3 condition decreases

the perception of depth compared to other 3D conditions and the amplitude of P1

component can be used as a discriminative feature.

Significance: The results show that the P1 component increases in amplitude due

to the depth perception not only in non-stereoscopic images but also in the three

dimensional stimuli. On the other hand the vertical disparity in the stereoscopic images

is studied here and we suggest that the amplitude of P1 component is modulated with

this parameter and decreases due to the decrease in the perception of depth.
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1. Introduction

In order to act in their natural environment, it is crucial for humans to perceive and

interpret surfaces of objects organized in three-dimensional space. Visual cues that

allow for the perception of depth can be categorized in monocular and binocular cues

[1]. Examples of binocular cues are convergence and stereopsis and are possible due to

the horizontal displacement of the two eyes. Convergence is a binocular oculomotor cue

resulting from the inward movement of the eyeball when the eyes focus an object at a

certain depth. Stereopsis (or retinal disparity) allows for the most compelling experience

of depth; the projection of an object has a slightly different position on each of the retina

of the two eyes. This retinal disparity allows the human brain estimate the depth of the

object by triangulation [1].

Stereopsis has been used for at least two centuries for evoking the illusion of depth

[2, 3] and its technical applications comprise entertainment (e.g. 3D movies), medical

engineering (e.g. digital stereo microscopes) and visualizations in virtual or augmented

reality [4]. It has been shown that stereoscopic depth leads to a more engaging viewing

experience for the observers [4, 5]. In all of these applications, quality of experience

(QoE) is an important factor for the acceptance, if not even for the feasibility, of the

technology and the perceptual quality is an important aspect of QoE [6]. A factor that

can act as a source of quality degradation can be categorized by its position in the line

of signal capturing, signal transmission and signal presentation. During the capturing,

the camera system setup and the size and intensity of temporal convergence changes

affect the perceived quality. Coding and transmission of the 3D visual signal introduce

compression artifacts, transmission errors and potentially frame synchronization errors.

The viewing environment influences the QoE via the used displays, the viewing distance

and angle, crosstalk, and ambient light [7].

Some of the perceptual artifacts arising in this pipeline are also observable in a 2D

video transmission system, e.g. reduced visual quality by compression or annoyance due

to buffer time given by the throughput of the channel. Other artifacts are 3D exclusive,

such as the puppet-theater effect or the cardboard effect [7]. Next to these degradations

in perceptual quality affecting psychological states of the observers, there is, particular to

3D visualizations, the notion of visual discomfort that affects the (neuro-)physiological

state as well and occurs with visual fatigue, eyestrain or even nausea [8]. Factors

leading to visual discomfort include conflicts between vergence and accommodation,

exceeding binocular parallax and errors in dichoptic presentation. One source of the

latter, potentially occurring due to misaligned cameras, are vertical disparities, as these

do not occur in natural scenes observed by horizontally separated eyes. However, the

definitions of visual discomfort and visual fatigue are still blurry and thus a precise

relation is still an unsatisfactorily answered question [8]. While visual discomfort can

be perceived within an instant, the sense of visual fatigue arises after a certain duration

of visual stimulation [8, 9].

The assessment of perceived 3D video quality is current subject to research and ITU-
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T SG9 in cooperation with the video quality experts group (VQEG) is making progress

in the development of psychophysical assessment methods. The standardization efforts

recognize the different natures of quality of experience with regard to stereoscopy and

thus follow two lines: [10] drafts the recommendation for the subjective assessment

methods of 3D video quality. In principle, those methods are closely related to those

developed for the assessment of 2D visual quality [11, 12] and address similar types

of degradations. The quality factors relevant to stereoscopy, such as visual fatigue or

discomfort, are addressed in [13]. Typically, the results of psychophysical quality tests

are reported in terms of mean opinion scores (MOS) that are calculated as averaged

individual ratings of the test participants presented a certain stimulus. Psychophysical

tests have some well known limitations, as they require a sufficient large number of

participants to obtain statistical significance, also the judgment of participants might

be biased by several factors [14]. Furthermore, in the case of 3D quality and in order

to assess visual fatigue, presentation sessions have to be of longer duration as the effect

might not be consciously perceivable instantaneously.

This led to a parallel line of research on perceived quality assessment investigating

psychophysiological approaches. In these studies, electroencephalography (EEG) is used

to assess the perceived quality of experience of several types of multimedia signals,

such as speech signals [15, 16, 17], 2D images [18, 19, 20, 21, 22, 23] and 2D videos

[24, 25, 26, 27, 28]. In [29] EEG-based assessment of multi-modal quality of experience

is evaluated. The correlation between the perceived quality of 3D videos subject to

compression quantified in terms of MOS and the power in different neural oscillatory

bands is studied in [30]. In [31, 32] the EEG-based assessment of the accommodation-

vergence conflict is addressed within a framework using event related potentials (ERP).

The effect of different shutter frequencies of shutter glasses on the neural workload is

analyzed in [33] by using EEG. For a more detailed overview on neurophysiological

approaches to multimedia quality assessment see [34, 35].

In the present study the neurophysiological correlates of vertical disparity in 3D

images are studied using EEG. Vertical disparity causes visual discomfort for the

subjects which can be crucial specifically in medical applications of 3D technology.

The goal is therefore to find discriminative features of brain signals [36, 37] correlated

with the vertical disparity. This features can be potentially applied in the prediction

of visual discomfort before causing visual fatigue or medical errors caused by visual

discomfort. For this purpose we have conducted an experiment in which four different

conditions are compared including a 2D image as a ground truth and three 3D figures

of the same image. In two 3D images two levels of vertical disparity are introduced, i.e.

3D-2 with minimum vertical disparity and 3D-3 with maximum vertical disparity and

in one 3D image, i.e. 3D, there is no vertical disparity. In Section 2, more details of the

experimental set up and the analysis methods are described. The results based on the

ERP analysis as well as time frequency analysis of the induced potentials are presented

in Section 3. Our results show the P1 component which increases in amplitude for 3D

compared to 2D condition. However, in 3D-3 this component has significantly smaller
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amplitude compared to 3D and 3D-2. This phenomenon is explained by the reduction

of depth perception in 3D-3. Large vertical disparity has caused the subjects to have a

lower perception of the 3D effect. Another significant difference occurs at N1 component

due to an implicit discrimination which is going to be discussed in detail. The summary

and discussion follow in Section 4.

2. Methods

The purpose of this study is to develop an objective procedure in the evaluation of

quality of experience when the parameter of interest is the vertical disparity. We would

like to extract features in brain signals recorded by EEG electrodes which correspond to

the change of vertical disparity. For this purpose a simple image of a cube is presented

to the subjects in four different conditions. In one condition the image is presented

in 2D as a ground truth condition for our comparisons. The second condition is the

same image but in 3D without any vertical disparity and the other two conditions are

3D images with two different levels of vertical disparity. The experimental setup and

methods of the analysis are described below.

2.1. Experimental Setup

A cube is presented to the subjects in four different conditions and two categories of

2D and 3D. Three images are in 3D and the vertical disparity is the parameter which is

varying between them. One image is the reference image with no vertical disparity in

2D (2D) which is shown in Figure 1(a).

(a) (b)

Figure 1. a) The cube is presented in 3D with three vertical disparities (3D, 3D-2

and 3D-3) as well as in 2D. b) A three dimensional cross is presented in between the

epochs as a pause interval for subjects to relax their eyes. The cross in projected on

the cube in this figure to show its exact location relative to the cube.

The second image is in 3D without a vertical disparity (3D) and the third image has

a medium vertical disparity (3D-2). The vertical disparity is introduced in a simulation

by moving the right camera upwards. The forth image has the maximum vertical

disparity (3D-3). 3D-2 has 0.4 vertical disparity compared to the maximum amount
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Figure 2. Visualization of each trial in the experimental setup. The order of images

are randomized in 120 trials.

in 3D-3. Each image is presented randomly for 120 times (epochs) and each time for 4

seconds. Between the images a cross is presented in 3D for 3 seconds. This time period

is considered for subjects to rest their eyes and it helps to reduce the amount of ocular

artifacts and therefore during this period subjects are allowed to move or blink.

In Figure 1(b), the cross is projected on the cube for the visualization of the exact

position of the cross relative to the cube. A diagram in Figure 2 is a visualization of

four epochs including all the images and the pauses in between. In order to keep the

subjects attentive they were supposed to press a button when an image of a cat was

presented. For that purpose, they are presented by 120 images of a dog (80%) and a cat

(20%). Each of these images was presented between two fixation crosses. If the subject

hit the target image (cat) by minimum 90% accuracy he/she was rewarded at the end

by 5 e extra. All subjects were rewarded for their participation by 8.5 e per hour.

The distance between the subject and the screen is 280 cm and the horizontal angle of

view is 20.76 degrees. The subjects wear 3D polarized glasses during the experiment.

EEG signals were recorded in a dimly lit and silent room. The 3D screen is JVC 3D

LCD Monitor (model number: GD-463D10E). EEG signals are measured by a cap of

64 active electrodes (Fp1,2, F1 to F8, FC2 to FC6, T7 and T8, C1 to C6, Cz, Tp7,

Tp9 and Tp10, Pz, P1 to P8, PO3 and PO4, POz, PO7 to PO10, O1 and O2, Oz,

AF3, AF4, AF7, AF8, FT7 to FT10, FC3 and FC4, CP3 and CP4, CPz, VEOG) , i.e.

actiCap from Brain Products GmbH and the impedance of electrodes was kept below

10 KΩ. 21 subjects have been recorded out of which 4 data sets had a very low signal-

to-noise ratio with high number of rejected trials which were therefore excluded from

the analysis. The data from 17 subjects, 6 of which are male and 11 are female with

the average age of 25.83 is analyzed. All subjects have normal or corrected to normal

vision and are tested for their 3D vision and gave informed consent. We have received

a permission for the experiment in accordance with the declaration of Helsinki from the

IRB of Technische Universität Berlin (TU Berlin).
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2.2. Pre-processing of EEG Data

During the analysis, data is low-pass filtered at 30 Hz and the amplifier hardware-

setup applied a high pass filter at 0.016 Hz to the data. FCz is selected as the original

reference electrode during the measurement and the data is re-referenced to the common

average. Muscle artifacts are removed from the data by removing the trials with the

variance larger than a threshold. The threshold is estimated as the 90th percentile plus

the difference between the 10th and 90th percentile multiplied by 10. The baseline in

the time interval between -200 ms, i.e. 200 ms before the stimulus onset, and 0 ms is

subtracted from each epoch of the data individually. Ocular artifacts are removed by

regression. The algorithm projects out part of the data which is correlated with EOG

electrodes. For this purpose, a short measurement was conducted in which the subject

was supposed to blink upon the appearance of a circle on the screen. An electrode

was installed below the right eye of the subject. The horizontal ocular activity of the

subjects was also recorded in a measurement in which the subject was supposed to

follow a circle on the screen which moved from the right end to the left end of the screen

and vice versa. The difference between the EOG electrode under the right eye and

Fp2 is calculated as the vertical component and the difference between F7 and F8 as

the horizontal component. Part of the EEG data which was correlated with these two

components is then projected out from the data as it is described in [38]. In a further

step, epochs within which the difference of maximum and minimum amplitude exceeds

70 µV are rejected.

2.3. Event Related Potential Analysis

When the above mentioned stimuli are presented to the subjects, responses are caused

in the brain which are measured by EEG electrodes. Part of these responses which are

phased-locked with the stimuli with a very low signal-to-noise ratio are called Event

Related Potentials (ERPs). To increase the signal-to-noise ratios, EEG data is averaged

over all trials to cancel out all non-phase-locked activities, i.e. an average over 120 trials

of each condition for each subject. The time window of this average is selected between

200 ms before the stimulus onset and 700 ms after that. The BBCI toolbox, which is a

Matlab based toolbox [39], is used for the ERP analysis.

2.4. Statistical Test

To test the significance of the results two statistical tests are applied on the data: 1)

Student’s t-test 2) Bootstrap re-sampling test. The first statistical test is the method

which is applied here to test the significance of the amplitude differences in the ERP

analysis. In this approach the amplitude differences are measured for each condition

within single-participant average. A two sample Student’s t-test is applied on two ERPs

belonging to each condition averaged over the epochs of each single subject to verify if

the means of two populations are different. Alpha value is set to 0.01. Student’s t-test
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is applied to the data and the time intervals with insignificant differences are set to zero.

Bonferroni correction for the problem of multiple comparisons is applied.

In the second approach, we deal with the significance of the time frequency analysis.

In this approach we have verified the significance of the differences between the absolute

values of the wavelet transformations for each two conditions. In this approach we

have 17 subjects and two conditions for each subject which makes 34 data sets in

total. In a permutation test we mix up these data sets and randomly choose two

sets of data each containing 17 data sets and label these two sets with two conditions.

Note that the data sets in each group do not necessarily have the right label of that

condition. In the next step we estimate the grand average of the absolute values of

wavelet transformations corresponding to each group by averaging over all 17 data sets

and estimate the differences between the newly estimated grand averages. This new

estimation is expected to be smaller than the original differences. The same procedure

is repeated for N times and finally the p-values are estimated.

2.5. Time Frequency Analysis

A wavelet transformation is applied to measure the time-frequency behavior of signals

in four conditions. The wavelet coefficients are estimated by the convolution of ERPs

by a Morlet wavelet.

X(a, b) =
1√
a

∫
Φ(
t− b
a

)x(t)dt (1)

where b is the shifting factor and a is a scaling factor which is a function of frequency

and Φ is the Morlet function.

3. Results

3.1. Vertical and Horizontal Ocular Activity

Before the main experiment started, a short test was conducted in order to record the

eye blinks and horizontal ocular activities of the subjects. The method mentioned in

[38] is applied to the data to project out the components corresponding to the ocular

activities. These components are estimated from each epoch and each condition and

the mean and the standard deviation of both components averaged over all epochs and

all subjects are plotted in Figure 3. In the standard deviation of vertical component

as well as the mean there is a rise in the amplitude which appears gradually at around

270 ms after the stimulus onset. The peak has the largest amplitude for the standard

deviation for 3D-3 while other conditions have similar amplitude levels. 3D-2 has the

second largest amplitude and finally 3D and 2D are the smallest ones respectively.

The peak in the horizontal component is not as sharp as the vertical component

and seems to happen again at around 400 ms. Variance between conditions seems to be

smaller for the horizontal activity compared to the vertical component. We would like
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Figure 3. Grand average of the vertical EOG (on the top) and horizontal EOG (on

the bottom) are plotted in this figure for all conditions. Zero point in time represents

the stimulus onset. The vertical activity is calculated from the difference between

the EOG electrode underneath the right eye and Fp2. The horizontal component is

calculated as the difference between F7 and F8.

to point out that both of these components have been removed from the data using the

regression algorithm.

These two plots however convey an important message for the further analysis, i.e.

the brain activities before 200 ms are less probable to be affected by ocular activities as

these artifacts start to increase at around 270 ms for the vertical activity and 200 ms

for the horizontal activity considering that this component is not large compared to the

vertical one. Therefore, we can assure that the ERP components below 200 ms are not

caused or strongly affected by the phase locked blinking of the subjects as a reaction to

the stimulus e.g., due to the strong vertical disparity effect or appearance of 3D images.

3.2. Event Related Potentials (ERPs)

ERP components are estimated by averaging EEG signals over all epochs belonging to a

single condition over all subjects. The average over all subjects can be meaningful only
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if we make sure that the subjects have consistent topographies. We have evaluated this

by visualizing the topographies of single subjects and single conditions in time windows

of 50 ms and found it reasonable to study the over all subjects average.

Figure 4(a) shows four curves corresponding to the ERPs of all four conditions

averaged over all subjects in channel O2. All epochs are averaged in the interval between

-200 ms and 900 ms. The time courses in time points larger than 900 ms converged for all

conditions. The baseline in all conditions in time interval of -200 ms and 0 ms are in the

same level as the result of baseline correction and therefore a comparison between ERP

components is reasonable. Figure 4(b) shows the same results for Oz. In Figure 4(c),

the standard errors estimated for ERPs of different conditions across all subjects are

shown. The standard errors appear to be in a reasonable range which shows consistency

between the ERPs of single subjects.

In Figure 4(a) there are two very large and positive peaks, one at around 130 ms

and the other one at around 300 ms and a smaller negative-going peak at around 150

ms. The same holds for Oz however the negative-going peak has a negative and much

larger amplitude in Oz. In the first positive peak corresponding to the P1 component,

which appears before the rising point of the ocular activity at 200 ms, the 2D curve

corresponds to the condition with the lowest amplitude compared to all 3D conditions

as well as shortest latency. 3D-3 has a larger amplitude than 2D followed by 3D and

3D-2 has the largest amplitude. The next peak is the negative-going peak at around 150

ms. This peak which corresponds to N1 component is more obvious in 2D and 3D-3 for

O2. 2D has the shortest latency as well as the smallest amplitude. Then 3D-3 appears

followed by 3D and 3D-2.

The next largest peak occurs at around 300 ms after the stimuli. In this ERP

component 2D condition has significantly larger amplitude compared to other 3D

conditions. This significant difference is probably caused by the implicit oddball

characteristic of the experiment. 2D is a condition with 25% probability of appearance

and 3D conditions (all three conditions together) with 75% probability. It is known

that P300 has a larger amplitude when the stimulus is less probable [40] which explains

why P3 has significantly larger amplitude in 2D compared to all other conditions.

Therefore this difference does not reflect any direct physiological differences caused by

the conditions.

The reason we chose these channels becomes clearer in Figure 5 when we look at

the scalp topographies. In this image two curves corresponding to the grand average of

2D and 3D in channel O2 as well as their differences are depicted. The intervals in which

the signed squared biserial correlation coefficient have positive peak are heat mapped in

red and the negative peaks in blue in the horizontal color bar beneath the ERP curves.

Three time intervals with large squared biserial correlation coefficients have been chosen

to be mapped on the scalp. As we see the brain activity in the O2 region is large in all

three time intervals which was the motivation for choosing this channel for the following

analysis. The Comparison between 3D and 2D conditions shows an increase in the

occipital activity for the 3D condition in the first interval. This interval corresponds to
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the interval in which the difference curve in blue is maximum. This amplitude increase

has proved to be statistically significant in Figure 5(b) using Student’s t-test. In this

figure, all the time points which correspond to insignificant differences are set to zero

and the ERP difference is plotted in significant intervals. The first significant interval

starts already at around P1 peak but reaches its maximum at N1.

Further comparisons are performed between 2D and 3D-2 conditions in Figure

6 which confirm the significant increase in P1 for 3D-2 and a larger negativity N1

amplitude for 2D. In Figure 7, 3D-3 is compared to 2D. There we see a significant

decrease in the negativity of N1 however the negativity decrease is detected to be

smaller than other 3D conditions. In this figure, the interval corresponding to significant

differences is much smaller and does not cover the P1 component anymore unlike

previous comparisons. 3D conditions are also compared to each other. The comparison

between 3D and 3D-2 did not show any significant differences in the amplitudes however

the comparison between 3D-3 and 3D in Figure 8 shows a significant decrease in the

amplitude of P1 and increase in the negativity of N1 in 3D-3.

In a nutshell, the analysis of the ERP amplitudes in all four conditions reveals three

large ERP components. The first one which corresponds to P1 component shows an

increase for all 3D conditions compared to the 2D condition. This increase has been

significant in all conditions except for the difference between 3D-3 and 2D. The increase

in P1 amplitude is in line with previous studies showing that the perception of depth

increases the amplitude in this component. However, the comparison within the 3D

conditions reveals an interesting effect, i.e., the P1 amplitude has decreased in 3D-3

compared to 3D. This change could be explained by a decrease in the perception of

depth by the subjects due to the large amount of vertical disparity. That also explains

why the amplitude difference is not significantly different between 3D-3 and 2D in this

interval.

Another significant difference appears between the conditions in the N1 component.

In this component larger negativity in Oz (and negative-going component in O2) appears

for 2D compared to all other conditions. Previous studies [41, 42, 43, 44, 45] show

that spatial attention is one factor which causes an increase in the negativity of N1

component. These studies have addressed several paradigms including the covert and

overt attention [46] or increased N1 in the discrimination of attended locations versus

unattended-locations. However Ritter and his colleagues in [47, 48] addressed the

hypothesis that N1 is correlated to the operation of a limited-capacity discrimination

mechanism outside the context of spatial attention experiments. They found out that

the amplitude of N1 component was larger in the discrimination tasks than the detection

tasks. Vogel and Luck in [43, 44] showed that this increase appeared in the stimuli with

color and form discrimination tasks compared to a simple detection task. Authors

also conclude that the N1 attention effect and the N1 discrimination effect are caused

by a general-purpose visual discrimination mechanism. Indeed discrimination effect

could be a very reasonable explanation for the negativity increase in the amplitude of

N1component in our results. As it was described in Section 2.1 the the fixation cross
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which is presented between the conditions is a three dimensional object. In the 2D

condition this object is followed by a two dimensional cube. In other words, here the

subjects experience a strong dimensionality switch which might explain the increase in

N1 due to the discrimination process between the cross and the 2D cube. The same

argument holds for the 3D-3 which has the largest negativity after 2D. In that case also

the level of vertical disparity is large enough to give the subject a strong contrast to the

three dimensional presentation of the fixation cross without vertical disparity. However

for 3D condition the discrimination effect between the three dimensional cross and the

3D cube is not very strong and therefore the smaller negativity appears in N1.

3.3. Time Frequency Analysis of Induced Potentials

Wavelet transformation is applied to each epoch and each subject in the time interval

between -1000 ms and 1000 ms as described in Section 2.5. These time frequency

signals include the activities from the evoked potentials as well as the induced potentials.

However, we are particularly interested in the induced potentials since we have already

studied the evoked potentials in the ERP analysis. For this reason we have subtracted

the ERPs corresponding to the average of all epochs of each single subject from single

epoch activities of that subject in each specific condition before applying wavelet

transformation. The absolute values of wavelet transformations is then averaged over

all epochs and all subjects. A large amount of the activity disappears after the

subtraction of ERPs. In Figure 9 the differences between the absolute values of wavelet

transformations for different conditions are plotted. The main difference happens

between 25 Hz and 30 Hz at around 400 ms after the stimulus onset. Comparisons

show a decrease in the power for 3D conditions compared to 2D (therefore blue in

the heat-map figures). 3D-2 shows an increase compared to 3D however this increase

does not hold in the comparison between 3D-3 and 3D. To verify the significance of the

comparisons a permutation test is applied to the differences according to the description

in Section 2.5. The wavelet transformed values from 17 subjects are mixed into one single

group of data sets including 34 sets (17 subjects and two conditions). Two data sets

are pulled out of this data set randomly each set containing 17 data sets. This selection

is repeated in a bootstrap of 1000 iterations. The null hypothesis is that the original

difference is a coincidence and the real difference is equal to zero, i.e. the new data set is

a random selection of the conditions and therefore the differences between two data sets

should be smaller than the original differences. To verify that p-values are estimated as

one minus the number of iterations in which the bootstrap set shows a larger difference

between absolute values compared to the original absolute value of difference divided by

1000. The subtraction of one is to avoid a p-value equal to zero in an infinite number of

iterations, i.e. even if all the bootstrap values are smaller than the original values still

the p-value will not be exactly zero but it will be 0.001. The p-values for a one sided

test are estimated and it becomes obvious that there is no significant difference between

conditions caused by induced potentials.
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(c) Standard error across all subjects estimated for each condition on O2.

Figure 4. ERPs corresponding to different conditions averaged over 17 subjects for

four conditions.
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(a) Comparison of ERP between 2D and 3D. The intervals corresponding to significant differences are shown in a

horizontal heat map underneath the time courses and topographies corresponding to selected areas with significant

differences are plotted beneath.

(b) Statistical test on the significance of the differences between ERPs of 2D and 3D.

Figure 5. Comparison between the grand averaged ERP over 17 subjects for 2D and

3D.

4. Summary and Conclusion

We have studied the neurophysiological correlates of vertical disparity in an objective

approach using EEG signals. In this study subjects were presented by a simple cube in

four different conditions randomly: 2D, 3D without vertical disparity, 3D with a medium

level of vertical disparity, i.e., 3D-2 and 3D with the maximum vertical disparity, i.e.,
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(a) Comparison of ERP between 2D and 3D-2. The intervals corresponding to significant differences are shown in a

horizontal heat map underneath the time courses and topographies corresponding to selected areas with significant

differences are plotted beneath.

(b) Statistical test on the significance of the differences between ERPs of 2D and 3D-2.

Figure 6. Comparison between the grand averaged ERP over 17 subjects for 2D and

3D-2.

3D-3. Event related potentials have been compared between these conditions in order to

extract a feature which correlates with the level of vertical disparity in 3D images. The

comparisons between 2D and two 3D conditions, i.e. 3D and 3D-2 show a significant

increase in the amplitude of P1 component in the 3D conditions. These results are in-line

with previous studies [49, 50, 51, 52, 53] which confirmed that P1 increases due to the

depth perception. These studies however consider non-stereoscopic depth perception
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(a) Comparison of ERP between 2D and 3D-3. The intervals corresponding to significant differences are shown in a

horizontal heat map underneath the time courses and topographies corresponding to selected areas with significant

differences are plotted beneath.

(b) Statistical test on the significance of the differences between ERPs of 2D and 3D-3.

Figure 7. Comparison between the grand averaged ERP over 17 subjects for 2D and

3D-3.
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(a) Comparison of ERP between 3D and 3D-3. The intervals corresponding to significant differences are shown in a

horizontal heat map underneath the time courses and topographies corresponding to selected areas with significant

differences are plotted beneath.

(b) Statistical test on the significance of the differences between ERPs of 3D and 3D-3.

Figure 8. Comparison between the grand averaged ERP over 17 subjects for 3D and

3D-3.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Difference between absolute values of wavelet transformed data after the

removal of ERP components between all couples of conditions is plotted.

with concave/convex stimuli although, we here confirm the same results in the case

of stereoscopic images. Further comparisons between 3D and 3D-3 however shows a

significant decrease in this component for 3D-3. We interpreted this phenomenon as a

decrease in the depth perception due to the large amount of vertical disparity in 3D-3.

In other words, we have successfully extracted a neurophysiological feature from the

EEG data which is correlated with the increase in vertical disparity. This feature can

be used in crucial applications of 3D technology in which the visual discomfort caused

by vertical disparity are desired to be predicted and avoided in advance such as in the

medical applications of 3D imaging.

Significant differences are also observed in the amplitude of N1 component in

the occipital electrodes specially in the Oz channel. In several studies N1 amplitude

modulations have been linked to the engagement of attention either in the context of

spatial attention or non-spatial attention [41, 42, 43, 44, 45]. In these reports different

paradigms have been studied including (c)overt attention and discrimination between

subjects of different color and form compared to simple detection tasks. Several studies

show that the N1 negativity has increased in the case of spatial attention when the

targets have been attended compared to the ignored target. However Ritter et. al in

[47, 48] have studied the attention effect in the context of non-spatial attention which is

more relevant for our paradigm. They showed that discrimination between conditions

increased the N1 component compared to the simple detection cases. Vogel and Luck in

[43] also showed that this discrimination appears to be larger when the difference appears

in color as well as form compared to the simple detection task. This phenomenon can
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explain large N1 component in 2D due to a switch happening in the dimensionality of

the presentation from the fixation cross (three dimensional) to the two dimensional cube

in 2D condition. This switch introduces an implicit discrimination effect causing the

larger increase in the N1 component compared to other conditions. The next largest

N1 negativity occurs in 3D-3 condition. This is also explainable by the same theory

because the vertical disparity in 3D-3 which is missing in the fixation cross causes a

strong discrimination effect. However in two other conditions, i.e., 3D and 3D-2 lack of

vertical disparity or small amount of it causes smaller discrimination effects and therefore

smaller N1 amplitudes. Although the argument seems reasonable but we would like to

point out that this result needs to be studied more closely in the future work in which

the discrimination effect of the dimensionality switch is measured precisely through a

behavioral subjective feedback.

We have also observed that the P1 and N1 components tended to have

predominantly larger power in the right hemisphere than the left one which has

been reported in the previous study in [49] as well. This results are consistent with

neurophysiological studies using fMRI, PET and MEG that showed right hemisphere is

associated with visual attentional activity pertaining to letters and figures [54, 55, 56]

as well as in the recognition of faces [57, 58]. We also compared the induced potentials

between all conditions but no significant differences were observed. In future work we

will investigate these effects with more advanced data fusion schemes [59] and more

powerful methods such as deep neural networks [60]. Furthermore we will estimate

and analyze cognitive properties in neurophysiological data from quality assessment

experiments [61].

Another aspect which is of interest in the future work is the analysis of underlying

sources generating the ongoing brain activities either at a single frequency or in an

inter-frequency approach [62, 63] as well as the event related potentials using inverse

methods [64, 65]. It is interesting to know if different brain regions are active for different

conditions and if these regions have different connectivity patterns in their interactions

[66].
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