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Abstract9

We propose a new method for the localization of nonlinear cross-frequency coupling in EEG and10

MEG data analysis, based on the estimation of bicoherences at the source level. While for the analysis11

of rhythmic brain activity, source directions are commonly chosen to maximize power, we suggest to12

maximize bicoherence instead. The resulting nonlinear cost function can be minimized effectively13

using a gradient approach. We argue, that bicoherence is also a generally useful tool to analyze phase-14

amplitude coupling (PAC), by deriving formal relations between PAC and bispectra. This is illustrated15

in simulated and empirical LFP data. The localization method is applied to EEG resting state data,16

where the most prominent bicoherence signatures originate from the occipital alpha rhythm and the17

mu rhythm. While the latter is hardly visible using power analysis, we observe clear bicoherence peaks18

in the high alpha range of sensorymotor areas. We additionally apply our method to resting-state data19

of subjects with schizophrenia and healthy controls and observe significant bicoherence differences in20

motor areas which could not be found from analyzing power differences.21

1. Introduction22

EEG and MEG are two non-invasive and widely used techniques, which allow for the study of brain23

activity at a high temporal resolution at the drawback of a lower spatial resolution. While many24

methodological approaches and experimental studies have focused on linear behavior of signals, i.e.25

the cross-correlation functions in the time domain or cross-spectra in the frequency domain [Nolte26

et al., 2004, Nunez et al., 1997, Ansari-Asl et al., 2006], nonlinear aspects of brain dynamics, especially27

cross-frequency coupling, have become a recent focus of interest. One of the measures to study cross-28

frequency coupling is bicoherence. Formally speaking, bicoherence is the extension of coherence to29

the next statistical order: while coherence reflects the general second order statistical properties of30

stationary multivariate data, bicoherence is constructed from third order statistical moments.31

The rather formal explanation of what bicoherence is makes it difficult to understand it intuitively.32

Like coherence, it is a measure of phase-phase coupling, where the phases of each segment or time33

point are weighted with their respective amplitudes. In contrast to coherence, phases can be taken34

from signals at different frequencies, such that bicoherence reflects a form of cross-frequency coupling.35

For this reason, it also provides a measure of the deviation of signals from linear dynamics since linear36

systems do not contain cross-frequency coupling. In fact, bicoherence in general measures the coupling37

of three different signals at three different frequencies with the dependence of bicoherence on both38

phases and amplitudes of all these signals adding to the confusion.39

Because of the rather complicated construction of bicoherence it is perhaps not surprising that it40

received little attention from the scientific community so far. Bicoherence has been used in several, but41

rather few, clinical- and research applications, including studies examining intracranial EEG in sleep,42

wakefulness and seizures [Bullock et al., 1997] and studies regarding the differentiation of anesthetic43
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levels [Watt et al., 1996]. Further examples of bicoherence analyses can be found in research of44

neurogenic pain, epilepsy and movement disorders [Sarnthein et al., 2003].45

A much more prominent measure of cross-frequency-coupling is Phase-Amplitude-Coupling (PAC)46

where the amplitude of a high frequency oscillation is related to the phase of a low frequency oscillation47

[Canolty et al., 2006, Osipova et al., 2008, Tort et al., 2010]. At first sight it seems that the concepts48

of bicoherence, being a weighted measure of phases, and phase-amplitude are very different. However,49

using instructive examples it was pointed out by Hyafil [2015] that PAC is related to bicoherence. In50

this paper, we will go beyond specific examples and show how PAC can be calculated from bicoherence51

in general terms.52

Both PAC and bicoherence are sensitive to non-sinusoidal waveshapes. This phenomenon typically53

leads to two types of approaches: While it elicits warnings and suggestions for the usage of PAC on54

how to avoid ’spurious’ phase-amplitude coupling [Jensen et al., 2016], an increasing interest emerges55

in these non-sinusoidal properties of waveshapes, also known as higher harmonics, as a potentially56

informative signature of brain dynamics [Cole and Voytek, 2017, Cole et al., 2017]. In human EEG57

resting-state recordings, higher harmonics of alpha oscillations are a strong neural source of bico-58

herence, and rather than dismissing this as uninteresting, we study this phenomenon. Like other59

measures of coupling between different neural sites or sensors, bicoherence is prone to artifacts of60

volume conduction. In such cases, neuronal coupling between different brain areas is confused with61

phenomena caused by an incomplete demixing of source signals. This problem was tackled by Chella62

et al. [2014], who introduced the antisymmetric part of bicoherence as a measure insensitive to these63

artifacts. A corresponding modification for PAC doesn’t exist, which we consider as a conceptual64

advantage of bicoherence.65

The main goal of this paper is to localize bicoherence in the brain. In particular, the proposed66

method estimates the dipole direction at each voxel, such as to maximize the resulting univariate67

bicoherence magnitude. In section 2, the mathematical details of this method are presented. After68

recalling the definition of bicoherence in section 2.1 we will derive general relations between PAC and69

bicoherence in section 2.2. In section 2.3 we will present the mathematical details of the localiza-70

tion. In section 3 we present results for various applications: we show typical results for univariate71

bicoherence in EEG resting state data, we illustrate bicoherence for simulated higher harmonics, for72

simulated phase amplitude coupling and for empirical LFP data containing phase amplitude coupling,73

we demonstrate the idea of the maximization procedure in simulations, we add empirical evidence to74

justify some technical details, we localize the first harmonic of alpha rhythms in EEG resting state75

data, and we show differences between patients with schizophrenia and healthy controls. Finally,76

section 4 covers the discussion and conclusions of the study.77

2. Methods78

2.1. Definition of bicoherence79

Cross-bispectra are the general third order statistical moments of data in the frequency domain,80

defined as81

Dijk(f1, f2) = 〈zi(f1)zj(f2)z∗k(f1 + f2)〉 , (1)

where zi(f) is the Fourier coefficient of the data in channel (or source) i at frequency f during82

some time segment, and 〈·〉 denotes the expectation value, which is approximated by an average over83

segments. The frequency of the third signal, zk in the above formula, is constrained to be the sum of84

the first two frequencies, because for stationary data, i.e. data like resting state data without intrinsic85

clock as given e.g. by a stimulus, all other choices for the third frequency result in vanishing cross-86

bispectra. Analogous to coherence, which is the normalized version of a cross-spectrum, bicoherence87

is the normalized version of a cross-bispectrum88

Bijk(f1, f2) =
Dijk(f1, f2)

Nijk(f1, f2)
(2)
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While the appropriate normalization for coherence, taken as the square root of the product of powers,89

is undebated, the situation is less clear for bicoherence. For this paper, two normalizations are relevant:90

The ’classical normalization’, essentially constructed from 2-norms, reads91

N two
ijk (f1, f2) =

〈
|zi(f1)|2

〉1/2 〈|zj(f2)|2
〉1/2 〈|zk(f1 + f2)|2

〉1/2
. (3)

Including the power of the third signal in the normalization appears to be the natural generalization92

from second- to third order statistics. On the other hand it has the drawback that in this case the93

absolute value of bicoherence is not constrained by one, and the interpretation of bicoherence is rather94

difficult. A different normalization was suggested by Shahbazi et al. [2014] as95

N three
ijk (f1, f2) =

〈
|zi(f1)|3

〉1/3 〈|zj(f2)|3
〉1/3 〈|zk(f1 + f2)|3

〉1/3
, (4)

which bounds the absolute value of bicoherence by one. In the context of this paper, a drawback of96

the latter normalization in Eq. 4 is that it cannot be calculated in source space from corresponding97

low order statistical moments in sensor space. (In contrast, e.g. using a linear inverse method, a98

cross-spectrum in source space can be calculated easily by applying the spatial filter on the cross-99

spectrum in sensor space. This includes the normalization, constructed from the diagonal elements of100

the cross-spectrum, to arrive at coherence.) This normalization must therefore always be calculated101

using the entire raw data in source space which would be extremely slow. As will be explained in102

more detail below, we will use both normalization. For technical reasons we will use Eq. 3 to find a103

source direction and then we will recalculate bicoherence using Eq. 4. To avoind confusion, we recall104

that in this paper we only calculate univariate bicoherence.105

2.2. Bicoherence versus Phase-Amplitude Coupling106

Bicoherence is a measure of phase coupling between signals at three different frequencies, for107

which the phases are weighted with their respective amplitudes. Conceptually, this appears to be very108

different from the frequently used phase-amplitude coupling (PAC), which is constructed to measure109

the relationship between the amplitude of a high frequency signal and the phase of a low frequency110

signal.111

As pointed out by Hyafil [2015], the strong relation between the two measures can be illustrated112

by the phenomenon of ’beating’ in acoustics: the superposition of two high frequency sinusoids with a113

small frequency difference, leads to a slow variation of amplitudes depending on the phase difference114

at a specific time point. If this phase difference is coupled to the phase of a low frequency signal, we115

observe both, phase-amplitude coupling and coupling between all three phases as measured by bicoher-116

ence. Following this line of reasoning, we derive a formal relation between the two coupling measures,117

showing that the described relation between PAC and bicoherence is generally valid. Furthermore,118

we will give arguments for the superiority of bicoherence.119

Formal definitions of PAC vary in the literature, but the principal goal is the same. In [Canolty120

et al., 2006] the essential quantity is121

P =
∣∣∣〈|xH(t)| eiΦL(t)〉t

∣∣∣ =

∣∣∣∣〈|xH(t)| xL(t)

|xL(t)|
〉t
∣∣∣∣ , (5)

where xL(t) and xH(t) are the (complex1) Hilbert transforms of a signal filtered in a low and high122

frequency band. The corresponding phases and magnitudes at time t are denoted by ΦL/H(t) and123 ∣∣xL/H(t)
∣∣, and 〈·〉 denotes average over time. From P and corresponding values of that quantity for124

surrogate data, Ps , where the low and a high frequency parts are shifted relative to each other by a125

random delay, PAC can be expressed as a z-score126

PAC =
P −mean(Ps)

std(Ps)
(6)

1In mathematics only the imaginary part is called Hilbert transform.
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where mean(Ps) and std(Ps) are the mean and standard deviations of Ps calculated of N surrogate127

data sets.128

One cannot relate P of Eq. 5 exactly to a bispectrum because P is not a third order statistical129

moment. To formulate an exact relation a slight modification is necessary:130

P̃ =
∣∣〈xL(t)|xH(t)|2〉t

∣∣ , (7)

where the phase of xL(t) is now weighted with the corresponding amplitude, and the amplitude of131

xH(t) is squared.132

For ease of notation we derive the relation for the univariate case. The bivariate case is completely133

analogous. Let x(t) be the original data for integer times −T ≤ t ≤ T with x̂(f) being its Fourier134

transform, and let FL(f) and FH(f) be the low and high pass filters in the frequency domain. Then135

we can write the Hilbert transform of the filtered data136

xL,H(t) = 2

fN−1∑
f=1

FL,H(f)x̂(f) exp

(
i2πft

2T + 1

)
(8)

with fN being the Nyquist frequency. For simplicity of notation we assumed that the data is zero mean137

and that the amplitude vanishes at the Nyquist frequency. The Hilbert transform is then just the138

inverse Fourier transformation omitting half of the frequencies (negative or above Nyquist frequency139

depending on convention) and multiplying the signal of the other frequencies by a factor 2 such that140

the real part of the Hilbert transform is identical to the original filtered data. These factors of 2 cancel141

with any normalization and will be omitted in the following. In the derivation below, we will make142

use of the relation143

T∑
t=−T

exp

(
i2πft

2T + 1

)
= (2T + 1)δf,0, (9)

where δi,j is the Kronecker delta symbol.144

In addition, we will assume an infinite number of time points, i.e. the limit T →∞, and ergodicity,145

i.e. that infinite time averages are identical to ensemble averages. In this case, any such time average146

can trivially also be written as an ensemble average of that time average, i.e. we not only have one147

time series of infinite length, but we have an infinite number of them taken from an ensemble. This148

can be formally written as 〈·〉t = 〈〈·〉t〉. This simplifies the derivation because now we can calculate149

expectation values of the quantities in the Fourier domain. Recalling that |x|2 = xx∗, we can put150

things together:151

P̃ =
∣∣〈xL(t)|xH(t)|2〉t

∣∣ =
∣∣∣〈〈xL(t) |xH(t)|2〉t〉

∣∣∣
=

∣∣∣∣∣∣
∑

f1,f2,f3

FL(f1)FH(f2)FH(f3)〈x̂(f1)x̂(f2)x̂∗(f3)〉 1

2T + 1

∑
t

exp

{
i2πt(f1 + f2 − f3)

2T + 1

}∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

f1,f2,f3

FL(f1)FH(f2)FH(f3)〈x̂(f1)x̂(f2)x̂∗(f3)〉δf1+f2,f3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
f1,f2

FL(f1)FH(f2)FH(f1 + f2)〈x̂(f1)x̂(f2)x̂∗(f1 + f2)〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
f1,f2

FL(f1)FH(f2)FH(f1 + f2)D(f1, f2)

∣∣∣∣∣∣ (10)

Note, that P̃ is calculated from the bispectrum D(f1, f2) = 〈x̂(f1)x̂(f2)x̂∗(f1 + f2)〉 using the152

filters FL and FH . In general, such filters cause smearing across frequencies with details depending on153
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the width of filters, such that narrow band features, like the alpha rhythm and its higher harmonics,154

might be difficult to be identified in PAC.155

In [Hyafil, 2015] it is argued, that bicoherence should not be used because it lacks specificity as156

it depends not only on the phases of the low frequency signal but also on the amplitudes. However,157

also measures of PAC based on coherence between low frequency signal and high frequency amplitude158

[Osipova et al., 2008] contain a weighted phase. In fact, the difference of these coupling measures using159

weighted or unweighted phases is analogous to the difference between coherence and phase locking160

value (PLV). While there are theoretical differences between these measures, in practice these differ-161

ences are very small [Nolte et al., 2004]. Even though phases and amplitudes are more intuitive than162

complex numbers that doesn’t mean that the separation of phases and amplitudes accurately reflects163

brain dynamics. E.g., formulating brain dynamics as dynamics of phases is an effective simplification164

and approximation of weakly coupled nonlinear systems, but we do not see a reason why the brain165

should completely ignore an amplitude of a signal even if its phase is more relevant. We would hence166

question the need to be specific, and we see a couple of advantages of bicoherence over PAC:167

1. Bicoherence can be calculated in principle with an arbitrary frequency resolution, whereas PAC168

requires wide band filters for the high frequency signal [Aru et al., 2015], in general leading to169

smearing across frequencies as was shown here formally. This makes it more difficult to detect170

higher harmonics of narrow band signals as such, whether or not those higher harmonics are the171

objective of the study (as is done here) or are considered as a confounder.172

2. Even though bicoherence was studied as a univariate measure in this paper, the full multivariate173

formulation allows to use it as a coupling measure of brain interactions between different brain174

regions. For EEG and MEG, such measures are prone to ’artifacts of volume conduction’, where175

incomplete demixing of independent source is falsely interpreted as brain interaction. This176

problem can be solved using antisymmetric combinations of cross-bispectra [Chella et al., 2014],177

but a corresponding solution for PAC does (so far) not exist.178

3. Bicoherence is much faster to calculate because the PAC requires filtering of the raw data not179

only for each high frequency but in addition this filter should depend on the low frequency [Aru180

et al., 2015] and the data need to be refiltered many times. Also, our approach to calculate181

the cross-bispectrum only once in sensor space and then to map it into source space using a182

linear inverse method was only possible because the cross-bispectrum is of low statistical order.183

Already a generalization to a fourth order moment would not be practical and an analogous184

approach using PAC would not be possible.185

4. As a multivariate measure, bicoherence is more general than PAC as it quantifies interactions186

in general at three different sites. PAC appears to be a special case by setting two of the three187

sites to be equal.188

2.3. Localization of bicoherence in source space189

The proposed method aims at the localization of cross-frequency interaction from EEG/MEG data,190

by determining dipole directions of single voxels as the directions which maximize the absolute value191

of bicoherence. For this case we omit the voxel index j and only consider one source direction denoted192

by αk for k = 1, 2, 3. Source activity is then estimated from the activity at channel i i.e. xi193

z(f) =
∑
k

αkyk(f) =
∑
k,i

αkAikxi(f), (11)

where Aik is the weight matrix, constructed from an inverse method such as eLORETA, to project194

the channel data to a voxel at a specific direction k.195

For the univariate bispectrum196

D(f1, f2) =< z(f1)z(f2)z(f1 + f2)∗ > (12)
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we then get197

D(f1, f2) =
∑
pqr

αpαqαrEpqr(f1, f2) (13)

where198

Epqr(f1, f2) =
∑
lmn

AlpAmqAnrGlmn(f1, f2) (14)

and199

Glmn(f1, f2) = E[xl(f1)xm(f2)x∗n(f1 + f2)]. (15)

Here, G is the cross-bispectrum in sensor space and E is the cross-bispectrum in source space for200

a given voxel for all three orthogonal dipole directions. The strategy here is to calculate G from the201

raw data once in sensor space for a given pair of frequencies, and then calculate E for a given voxel.202

Such an approach is not possible for the normalization using the 3-norms, and therefore we use the203

2-norms arriving at204

B(f1, f2) =
D(f1, f2)

(P (f1)P (f2)P (f1 + f2))1/2
(16)

where205

P (f1) = αT Ĉ(f1)α (17)

with Ĉ(f1) being the 3× 3 cross-spectrum at the specific voxel. Let C(f) be the cross-spectral matrix206

in sensor space, i.e., C(f) = E[x(f)x†(f)] in CN×N with N being the number of channels and †207

denoting transposition and complex conjugation. Then208

Ĉ(f1) = ATC(f1)A (18)

and we maximize the square of the absolute value of B(f1, f2), i.e., L(f1, f2, α)209

L(f1, f2, α) =
|D(f1, f2)| 2

P (f1)P (f2)P (f1 + f2)
=

∣∣∣∑pqr αpαqαrEpqr(f1, f2)
∣∣∣2

αT Ĉ(f1)ααT Ĉ(f2)ααT Ĉ(f1 + f2)α
(19)

with respect to the orientation α. This optimization cannot be solved analytically. We employ a210

gradient approach for which the gradient can be calculated analytically with details presented in the211

appendix.212

Once a source direction was found using the 2-norms for normalization, bicoherence can be recal-213

culated using the 3-norms. In principle it is conceivable, that optimization with respect to the 3-norm214

leads to a different direction. However, such optimization is computationally too costly and we found215

in many examples, which will partly be shown below, that the choice of norm has almost no effect on216

the orientation.217

3. Applications and Results218

3.1. Data219

We apply our method to EEG recordings provided by the Department of Psychiatry of the Univer-220

sity Medical Center Hamburg-Eppendorf, and we recall the description of the data from Andreou et al.221

[2015a,b]. The data comprises continuous resting-state recordings (5-10 minutes, sampled at 1kHz,222

eyes closed) of 22 patients with first-episode schizophrenia and 24 healthy controls. Patients were223

recruited through the Psychosis Center of the Department of Psychiatry, while controls were taken224

from the general public according to predefined inclusion/exclusion criteria regarding their medical225

history[Leicht et al., 2015]. The data was recorded using 64 Ag/AgCl electrodes positioned according226

to the 10-20 system with additional electrode positions AF7,AF3, AF4, AF8, F5, F1, F2, F6, F10,227

FT9, FT7, FC3, FC4, FT8, FT10, C5, C1,C2, C6, TP7, CPz, TP8, P5, P1, P2, P6, PO3, POz and228

PO4 mounted on an EEG cap (ActiCaps, Brain Products, Munich, Germany), Impedance was kept229
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below 5 k throughout the experiments and EEG data was recorded using the Brain Vision Recorder230

software version 1.10 ( Brain Products, Munich, Germany). Postprocessing involved ICA decomposi-231

tion, artefact-removal by visual inspection and application of a 0.1-70 Hz bandpass filter. Furthermore,232

the data was down-sampled to 256Hz and re-referenced to the common average reference.233

3.2. Illustrative results for empirical and simulated data234

3.2.1. EEG data235

In Fig.1 we show typical bicoherence patterns from selected single EEG channels. The most236

dominant patterns of bicoherence (upper row)) are sharp peaks at a base frequency (around 10 Hz)237

and higher harmonics. Note, that the peak at f1=11 Hz and f2=11 Hz corresponds to a coupling of238

11 Hz and f1 + f2=22 Hz, and represents a coupling between the base frequency and its first higher239

harmonic. This peak can be observed in essentially all subjects, while even higher harmonics (e.g.240

atf1=11 Hz and f2=22 Hz) are more prominent in motor alpha as shown in this example. These241

bicoherence patterns are clearly caused by non-sinusoidal properties of alpha rhythms in visual and242

sensorimotor areas, as we will show in more detail below.243

The most relevant confounder for bicoherence are heart artifacts, as shown in the second row which244

can easily be confused with theta-gamma or theta-beta coupling. The heart beat itself can be seen245

in the raw data shown in the left panel. These are sensor data, which do not isolate the effects, and246

this channel also contains alpha rhythm, but this alpha rhythm does not dominate the bicoherence247

pattern.248

Also, muscles produce bicoherence patterns as shown in the third row which can typically be249

observed in electrodes near the neck. The fourth row shows a structered bicoherence pattern, which250

we believe to originate also from muscles. It is typically observable in temporal and central channels251

in around 20% of the subjects. We also found such a signal in EEG measurements using different EEG252

devices and, to a lower extent, also in MEG data. We therefore do not believe that this is a technical253

artifact. However, we were not able to produce this signal by teeth clenching, and addressing this254

signal to muscle artifacts might be premature.255

3.2.2. LFP snd simulated data256

To our opinion, the only neuronal origins of non-vanishing bicoherence observable in EEG resting257

state data are higher harmonics of the alpha rhythm. Such a pattern can be produced qualitatively258

using an artifical non-sinusoidal wave shape. As en example we used a sawtooth signal with a period259

od 50 ms, i.e. a linear decreasing signal which is repeated every 50 ms, with additional white noise260

such that the sawtooth and the noise have equal variances. We simulated 10 minutes of data with a261

sampling rate of 500 Hz. For this case we used a high frequency resolution of 0.5 Hz. An illustrative262

portion of the original time series and the resulting absolute value of bicoherence are shown in the263

left panels of Fig.2. In the bicoherence plots we can observe the higher harmonics as sharp peaks at264

20 Hz and multiples of it.265

To illustrate phase amplitude coupling, we simulated a coupling between the phase of a theta266

oscillation and the amplitude of a broad band gamma activity. To get the low-frequency signal, we267

narrowly filtered white noise at 7 Hz with a band width of 1 Hz. From this signal, x(t), we calculated268

its phase, Φ(t), using the Hilbert transform. The high frequency signal, y(t), was constructed as white269

noise filtered between 40 Hz and 80 Hz. The phase-modulated high frequency signal was constructed270

as271

z(t) = (1− cos(Φ(t))y(t) (20)

and the final signal was constructed as272

u(t) = 2
x(t)

σx
+
z(t)

σz
+ η(t) (21)

with η(t) being white noise with unit standard deviation and σx and σz being the standard deviations273

of x and z, respectively. White noise was added to avoid leakage artifacts at frequencies containing274
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Figure 1: Typical pattern of selected channels and subjects of resting state data. We show raw data of selected time
segments (left column), power (middle column) and absolute value of bicoherence (right column). Only the upper row
panel, showing a bicoherence pattern of an alpha rhythm, is clearly of neural origin. The origin of the structure shown
in the fourth row is not entirely clear to us but we assume that it is a muscle artifact. The name of the EEG sensor
and the origin, to which we address the patterns, are noted in the power plots.

Figure 2: Raw data (top row) and absolute value of bicoherence (bottom row) of simulated and empirical LFP data.
Left column: artifical sawtooth signal with a period of 50 ms and additive white noise. Middle column: Simulated
Theta-Gamma phase amplitude coupling. Right column. LFP data of a rat.
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no signal, and the factor 2 in front of the low frequency signal was included only to better visualize275

the raw data. Results are shown in the middle panels of Fig.2. For bicoherence we observe a narrow276

strip corresponding to the coupling between the narrow band theta rhythm and the wide band gamma277

rhythm.278

We finally present results for empirical data. Scheffer-Teixeira and Tort [2016b] reported a coupling279

between the amplitude of the gamma rhythm and the phase of the theta rhythm in LFP data of280

the hippocampus of rats during maze exploration and REM sleep (and also analyzed phase-phase281

coupling). The data for REM sleep is publicily available [Scheffer-Teixeira and Tort, 2016a], and we282

reanalyzed these data with bicoherence. An illustrative example is shown in the right column of Fig.2.283

The theta-gamma coupling can be recovered with bicoherence as a thin line at around f1=7 Hz going284

from around f2=50 Hz up to 100 Hz (and vice versa). We only show results up to 100 Hz, but in285

fact, this line goes up to around 150 Hz. A similar structure can be observed for around half of the286

sensors of all rats. In contrast to the previous simulation we can also observe separated peaks at low287

frequencies corrsponding to higher harmonics of the empirical theta rhythm.288

3.3. Power Maximization versus Bicoherence Maximization289

Figure 3: Top row: Estimate of univariate bicoherence for a simulated single source with strong bicoherence plus additive
noise found by maximizing bicoherence (left) and by maximizing power (right). Bottom row: an additional strong source
having vanishing bicoherence was placed in the vicinity of the first source with orthogonal dipole direction.

Before applying the method to the empirical EEG data we evaluated the performance on simulated290

data. The goal of this simulation is to illustrate the idea of the proposed method by constructing a291

case where optimization of source orientation with respect to power misses the bicoherence in source292

space. For this, a single source with strong bicoherence between 10 Hz and 20 Hz is simulated and293

projected to the sensors. The source activity was constructed from white noise narrow band filtered294

at 10 Hz. The filtered noise, f(t), was squared with mean subtracted, g(t) = f2(t)− < f2(t) >, and295

then the bicoherent source was taken as296

h(t) =
f(t)

std(f(t))
+

g(t)

std(g(t))
(22)

with std(·) denoting standard deviation. This construction is rather trivial and serves only the purpose297

to illustrate the reasoning behind the proposed method. For a source without bicoherence we simply298

omitted the second term on the right hand side of the last equation.299
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Figure 4: Each row is an example from empirical data where univariate bicoherence was estimated with dipole direction
chosen to maximize bicoherence (left column) and power (middle column). The difference is shown in the right column.
In all these cases we setf1 = f2 and f1 was chosen from the alpha band.

The forward model estimation is based on the method described in [Nolte and Dassios, 2005]. The300

sampling frequency is 200 Hz and the total duration was 300 seconds. Small independent and equally301

distributed random noise was simulated on all voxels and mapped into sensor space. Bicoherence is302

estimated once by the dipole directions set to maximize power and once to maximize bicoherence. To303

avoid confusion, we emphasize that in both cases bicoherence is calculated. The difference is only the304

criterion to find the source direction. The results are shown in Fig.3. In the first row we simulated two305

sources each with large bicoherence. In the second row a second source with vanishing bicoherence306

but strong power at 10 Hz is added to the simulations and the bicoherence is again estimated using307

the two methods. Apparently, the maximization of bicoherence gives a proper estimation of the source308

with strong bicoherence. However, the localization using the maximization of power fails to localize309

the bicoherent source. The reason can be attributed to the non-uniqueness of the inverse solution.310

The activity of the strong source has a large impact at the location of the weak nonlinear source.311

Optimization with respect to power then leads to a source orientation corresponding to the strong312

source also at the location of the weak source.313

To illustrate differences for real data, we have compared the case in which the dipole directions,314

α in Eq.11, are estimated by the maximization of the local power in each grid point instead of the315

maximization of bicoherence. Bicoherence is then estimated in each grid point and plotted in Fig.4.316

The column on the left shows the magnitude of bicoherence for dipole directions obtained from the317

maximization of bicoherence and the figures in the middle are the bicoherence values obtained from318

the dipole directions maximizing the power. The differences between these two are plotted in the right319

column. Each row is an example calculated from empirical data from a single subject where f1=f2=11320

Hz. We observe a large difference between the two columns. These results suggest that the dipole321

directions corresponding to the largest power do not necessarily correspond to the directions of the322

maximum bicoherence. We emphasize that we picked these examples for illustration. In most cases,323
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we found similar results for the two optimization strategies when applied to alpha-beta coupling.324

3.4. Comparison of norms325
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Figure 5: Absolute value of univariate Bicoherence as a function of source direction for illustrative cases using 2-norm
and 3-norm normalization for 8 random voxels of one subject. In all examples we set f1 = f2 = 10 Hz. The first and the
third column show results for bicoherence using the 3-norm, and the second and fourth column show the corresponding
results calculated with the 2-norm. As we see, the patterns are almost identical apart from a global scale.

As was mentioned before, the optimization of bicoherence was computationally too costly using326

the 3-norm for normalization and therefore we replaced it by a 2-norm. To see how this modification327

affects the maximum values of bicoherence we estimated this value for 8 randomly chosen voxels both328

for the 2-norm and 3-norm for f1=f2=10 Hz on the empirical data set from a single subject. For each329

voxel, we discretized the angles in an orientation vector α = (sin(Θ) cos(Φ), sin(Θ) sin(Φ), cos(Θ))T330

with 21 values between 0 and π for each polar angle. For each orientation we calculated bicoherence331

with either normalization. Results are plotted in Figure 5. There is a strong similarity between332

patterns for the same voxel and maxima occur at similar angles even though the amplitudes are333

different for the two nomalizations. That illustrates that the 2-norm does not change optimization334

results for bicoherence beyond a negligible amount.335

To analyze this in a statistically systematic way, we calculated bicoherence at 20 random voxels336

for each of the 24 healthy controls at the frequency pair corresponding to dominant peak of alpha-337

beta coupling. First, for each voxel we calculated and maximized the absolute value of bicoherence338

using 3-norm normalization across the 441 orientations. Second, we maximized the absolute value of339

bicoherence with 2-norm normalization across the same 441 orientations and calculated the absolute340

value of bicoherence with 3-norm normalization for that orientation. Third, we calculated analytically341

the orientation which maximized source power and calculated the absolute value of bicoherence with342
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Figure 6: Absolute value of univariate bicoherence with 3-norm normalization for random voxels using three differ-
ent choices for source orientation. Left: orientation chosen to maximize absolute value of bicoherence with 3-norm
normalization versus orientation chosen to maximize absolute value of bicoherence with 2-norm normalization. Right:
orientation chosen to maximize absolute value of bicoherence with 3-norm normalization versus orientation chosen to
maximize power.

3-norm normalization for this orientation. Note, that the final quantity is always the absolute of343

bicoherence with 3-norm normalization, and it is only the chosen orientation which varied across344

these three approaches. Results are shown in Fig.6. We see that optimization with respect to 2-345

norm normalization results in almost identical values for the absolute value of bicoherence whereas346

maximizing power can result in substantially lower values.347

3.5. Bicoherence of the alpha rhythm across all subjects348

In the following analysis, all 24 healthy subjects were combined and bicoherence between a fre-349

quency f and 2f and power at frequencies f and 2f were estimated for all frequencies between 8 and350

13 Hz. As an inverse method we chose eLORETA. In Fig.7, the logarithm of power in the source space351

after estimating the dipole directions at each voxel by the maximization of power is averaged over 24352

subjects and plotted in the alpha band for 6 different frequencies between 8 Hz and 13 Hz. We see a353

strong activity in the occipital region which is almost identical in all frequencies. In Fig.8 the same354

results are shown in the beta band. In the beta band the major activity appears to be in the frontal355

region and fairly consistent across all frequencies similar to the alpha band. However, Fig.9 shows the356

absolute value of bicoherence estimated by the maximization of local bicoherence at each voxel after357

the eLORETA step and averaged across 24 subjects for the same frequency band. This figure shows358

varying activity regions for the 6 frequencies. While the activities at 9 Hz and 10 Hz are larger in the359

occipital region, at 11 Hz the inter-frequency interaction between 11 Hz and 22 Hz in the motor region360

has increased and at 12 Hz the right and left hemispheres in the motor region are dominant while361

the occipital region has a smaller activity. This effect is also noticeable at 13 Hz where the occipital362

region is even less active than in 12 Hz. We recall that here the activity at frequency f reflects the363

bicoherence at f1 = f2 = f and f3 = 2f .364

3.6. Difference between patients with schizophrenia and healthy controls365

As was seen in the previous section, bicoherence results are qualitatively different in high and low366

alpha bands. To compare between patients and controls we performed separate averages in the low367
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Figure 7: Logarithm of the power averaged across 24 healthy subjects for all frequencies in the alpha band.

alpha band from 8 Hz to 10 Hz and in the high alpha band between 11 Hz and 13 Hz. We found368

significant differences between the groups (healthy controls minus patients) only in the high alpha369

band and in the motor areas as shown in Figure 10. Significance was estimated using a permutation370

test: bicoherence for all 46 subjects were randomly assigned to 24 controls and 22 patients, and the371

difference of respective group averages was calculated. For N = 10.000 permutations for each voxel372

the number M of permutations was calculated for which the randomized data have a larger difference373

of the group averaged absolute values of bicoherence than the original data, and the p-value was set to374

p = (M+1)/N . We used the false discovery rate (FDR) to correct for multiple comparison at a q-level375

of .05. The result with non-significant results set to 0 are shown in Fig.11. We observe significant376

differences mostly in left and right motor areas. We also corrected for multiple comparisons using377

the maximum statistics: for each permuted data set we calculated the maximum of the differences378

across all voxels. A threshold for bicoherence was then set such that 95% of these maxima were lower379

than this threshold. Not shown as a figure, we found that only a focal spot in the left motor area,380

coinciding with the apparent local maximum of the FDR-corrected result, survived this correction.381

Also not shown are corresponding results for power differences. None of the power differences382

reached significance and the non-significant differences were not maximal in motor areas but rather383

in parietal areas.384
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Figure 8: Logarithm of the power averaged across 24 healthy subjects for all frequencies in the beta band.

4. Conclusion and Discussion385

We have proposed to estimate univariate bicoherence from EEG/MEG data in source space by386

optimizing the source direction to maximize the absolute value of bicoherence rather than commonly387

used power. First, bicoherence is a nonlinear measure of brain dynamics, thus it can better capture388

the weak nonlinear effects in EEG and MEG data. Additionally, inverse methods to estimate ac-389

tivity in source space have a poor spatial resolution: the estimated activity in a specified voxel in390

general originates from sources from a relatively large area centered at the specified voxel. Hence,391

the estimated activity in one voxel in general represents activity from sources with many different392

orientations. Choosing the orientation according to power bares the risk to miss the nonlinearity.393

As shown in our experiments, bicoherence is not affected by this problem. Also, power maximiza-394

tion is conceptually ambiguous in this context: for cross-frequency coupling it is unclear at which395

frequency power should be maximized or how various frequencies should be combined. Whether or396

not specifying the orientation by maximizing power could still be reasonable, depends on the case.397

We presented cases from empirical data where the results from power maximization missed major398

bicoherence of the alpha rhythms and its higher harmonics in source space. However, we found that399

those were exceptions when studying alpha-beta coupling in resting state. We also identified clearer400

signals from heart artifacts very deep in the brain using our method. While that can be considered401

a drawback, it also shows that in general bicoherence is missed when maximizing power even though402

in this particular case that source is uninteresting. We leave it as an open question whether for the403

detection of other sources of cross-frequency coupling (probably not measured during rest with eyes404
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Figure 9: Absolute value of univariate bicoherence averaged across 24 healthy subjects for all frequencies f1 in the alpha
band with f1 = f2.

closed) the optimization with respect to bicoherence, which we believe to be conceptually convincing,405

is also necessary practically.406

The proposed technique exploits that cross-bispectra are low order statistical moments such that407

one can first calculate those moments in sensor space and, using a linear inverse method, map them408

into source space with reasonable computational effort. Although counterintuitive, bicoherence, which409

is a measure of phase-phase coupling, is strongly related to phase-amplitude coupling which was410

demonstrated by Hyafil [2015] in examples. The question then is to what extent those findings411

generalize to arbitrary signals. If they do not, phase amplitude coupling, which became a major focus412

of research in this area, can be missed when using bicoherence. To find exact and generally valid413

relations between PAC and cross-bispectra for hypothetical infinite averages we slightly modified the414

definition of PAC by weighting the phases of the low frequency signal and squaring the amplitude.415

The former is actually also done in the definition of PAC given by Osipova et al. [2008]. With the416

limitation of this modification, which to our opinion is essentially irrelevant in practice, we come to417

the conclusion that bicoherence covers phase amplitude coupling completely: if bicoherence vanishes418

so does PAC. We also showed for simulated data and empirical LFP data of rats, containing coupling419

between the phase of the theta rhythm and the amplitude of gamma activity, that this coupling is420

well detectable with bicoherence. However, it is an open question which of the methods is preferable421

in a statistical sense for which case.422

We analyzed EEG of 24 healthy subjects and 22 subjects with schizophrenia. We observed that the423

most relevant signals containing bicoherence originate in the presence of higher harmonics of motor424
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Figure 10: Difference of absolute values of univariate bicoherence with f1 in the high alpha band and with f1 = f2
averaged across 24 subjects and 22 patients, respectively.

and occipital alpha rhythms. The motor alpha is barely visible in power analysis which is obscured by425

the dominant occipital alpha rhythm. These higher harmonics are clearly visible as such because of426

the high frequency resolution of bicoherence and could potentially be misinterpreted using PAC after427

the inherent smearing in the frequency domain. In resting state, we do not see other relevant neural428

sources of bicoherence. However, when applying our method we observed (partly strange) apparent429

muscle artifacts and heart artifacts. We emphasize that these data were carefully cleaned of artifacts,430

but the cleaning just may not be perfect, and bicoherence is very sensitive to nonlinear activities431

produced by the heart and muscles. In particular the heart signal shows a very complicated structure432

in the bicoherence plots, which could easily be confused with neural cross-frequency coupling.433

Localization of the alpha-beta coupling, i.e. the first two harmonics of the alpha rhythms, showed434

that in the high alpha range between 11 Hz and 13 Hz, bicoherence becomes increasingly strong in left435

and right motor areas whereas bicoherence of the low alpha range is mainly located in parietal and436

occipital regions. We compared patients and healthy controls in both bands, and found a significant437

difference of bicoherence in motor areas in the high alpha band. These results might reflect the well-438

known phenomenon of genuine (i.e., medication-independent) motor abnormalities in patients with439

schizophrenia, thought to be due to dysfunctions across a cortico-subcortical circuit involving the440

motor cortex [Hirjak et al., 2015]. We found no significant power differences in either of the bands and441

no significant difference of bicoherence in the low alpha band. We conclude that bicoherence is not442

only conceptually a useful measure to study cross-frequency coupling, but also differentiates between443

subjects groups and might be useful as a biomarker or as feature to study brain diseases or effects of444
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Figure 11: Same as Figure 10 with non-significant values set to zero.

medical treatment.445

In our statistical testing of differences in bicoherence between patients and healthy controls we446

made corrections for multiple comparisons across voxels but not across pairs of frequencies. Rather,447

the frequencies were fixed to reflect alpha-beta coupling. This was based on the general observation448

that this phenomenon is extremely stable across all subjects. It was not picked to find a large449

difference. In fact, with a multiple comparison across all frequency pairs it would be difficult to find450

significant results also with the rather tolerant false discovery rate because the phenomenon is sparse451

as a function of two frequencies. It is tempting to select frequencies according to power within bands,452

but that could also be misleading. E.g., power in the alpha band is dominated by occipital alpha, but453

motor alpha has typically larger bicoherence values. We leave it is an open question, how to generally454

address this problem.455
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5. Appendix460

In this appendix we derive the gradient of the cost function, i.e. the squared absolute value of461

coherence, given in Eq. 19. The numerator reads462

|D|2 =
∣∣∣∑αiαjαkEijk

∣∣∣ 2 =
∑

ijklmn

αiαjαkαlαmαnEijkE
∗
lmn (23)

where α is the dipole direction to be estimated and E is the cross-bispectrum in Eq. 14 in source463

space for a given voxel. Then464

∂|D| 2

∂αp
=
∑

jklmn

αjαkαlαmαnEpjkE
∗
lmn︸ ︷︷ ︸

=:A1

+
∑

ijkmn

αiαjαkαmαnEijkE
∗
pmn︸ ︷︷ ︸

=:A2

+

∑
iklmn

αiαkαlαmαnEipkE
∗
lmn︸ ︷︷ ︸

=:B1

+
∑
ijkln

αiαjαkαlαnEijkE
∗
lpn︸ ︷︷ ︸

=:B2

+

∑
ijlmn

αiαjαlαmαnEijpE
∗
lmn︸ ︷︷ ︸

=:C1

+
∑

ijklmp

αiαjαkαlαmEijkE
∗
lmp︸ ︷︷ ︸

=:C2

(24)

After renaming the indices we have465

A2 = A∗1

B2 = B∗1

C2 = C∗1 (25)

On the other hand466

A1 =
∑
jk

αjαkEpjkD
∗

B1 =
∑
ik

αiαkEipkD
∗

C1 =
∑
ij

αiαjEijpD
∗ (26)

(27)

Let’s define vectors up, vp and wp as467

up =
∑
jk

αjαkEpjkD
∗

vp =
∑
jk

αjαkEjpkD
∗

wp =
∑
jk

αjαkEjkpD
∗

Then468

∂|D|2

∂αp
= 2Re((up + vp + wp)D∗) (28)
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where Re(x) stands for the real part of the complex value of x.469

The derivative of the squared denominator in Eq.16, after some simplification steps reads470

∂N2

∂αp
= N2(

1

P1

∂P1

∂αp
+

1

P2

∂P2

∂αp
+

1

P3

∂P3

∂αp
)

= 2N2 Re

(
C1

P1
+
C2

P2
+
C3

P3

)
α

(29)

with and Ci ≡ C(fi) and Pi = αTCiα.471

Putting the derivatives together we get with |B|2 = |D|2/N2
472

∂|B|2

∂α
=

2

N2
Re

(
(u+ v + w)D∗ − |D|2

(
C1

P1
+
C2

P2
+
C3

P3

)
α

)
(30)

We use the formula in the compter code to minimize bicoherence by steepest descent approach.473
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