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ABSTRACT

Interpretability of deep neural networks is a recently emerging area
of machine learning research targeting a better understanding of how
models perform feature selection and derive their classification de-
cisions. In this paper, two neural network architectures are trained
on spectrogram and raw waveform data for audio classification tasks
on a newly created audio dataset. Layer-wise relevance propagation
(LRP), a previously proposed interpretability method, is applied to
investigate the models’ feature selection and decision making. It is
demonstrated that the networks are highly reliant on feature marked
as relevant by LRP through systematic manipulation of the input
data.

Index Terms— Deep learning, neural networks, interpretability,
audio classification, speech recognition.

1. INTRODUCTION

Due to their complex non-linear nested structure, deep neural net-
works are often considered to be black boxes with regard to the re-
lationship between input data and network output. This is not only
dissatisfying for scientists and engineers working with these models
but also entirely unacceptable in domains where understanding and
verification of predictions are crucial. Consequently, in health care
applications where human verification is indispensable, these com-
plex models are not in use [1]. As a response, a recently emerging
branch of machine learning research specifically targets the under-
standing of different aspects of complex models, including methods
introspecting learned features [2, 3] and methods explaining model
decisions [4, 5, 6, 7]. Latter ones were originally successfully ap-
plied to image classifiers and have more recently also been trans-
ferred to other domains such as natural language processing [8, 9],
EEG analysis [10] or physics [11].

This paper explores deep neural network interpretation in the au-
dio domain. As in the visual domain, deep neural networks have fos-
tered progress in audio processing [12, 13, 14], particularly in auto-
matic speech recognition (ASR) [15, 16]. Although large corpora of
annotated speech data are available (e.g. [17, 18, 19]), experiments
described in this paper focus on a newly gathered, simple dataset of
spoken digits in English, which will be made available to the pub-
lic and of which we hope that it will prove useful as a first sandbox
setting for testing novel model architectures and interpretation al-
gorithms. Due to its conceptual similarity to the MNIST dataset of

This work was supported by the German Ministry for Education and
Research as Berlin Big Data Center BBDC (011S14013A) and Berlin Center
for Machine Learning BZML (011S180371).

handwritten digits [20], which has taken this role in computer vision,
this dataset will be referred to as AudioMNIST. The dataset allows
for several different classification tasks of which we explore spoken
digit recognition and recognition of speakers’ gender. Specifically,
for both these tasks, two deep neural network models are trained
on the AudioMNIST dataset, one directly on the raw audio wave-
forms, the other on time-frequency spectrograms of the data. We
used layer-wise relevance propagation (LRP) [5] to investigate the
relationship between input data and network output and demonstrate
that the spectrogram-based gender classification is mainly based on
differences in lower frequency ranges and furthermore that models
trained on raw waveforms focus on a rather small fraction of the
input data.

The remaining paper is organized as follows. In Section 2 we
present the AudioMNIST dataset, describe the deep models used for
gender and digit classification, and introduce LRP as a general tech-
nique for explaining classifier’s decisions. Section 3 presents the
results on the spoken digit dataset and discusses the interpretations
obtained with LRP. Section 4 concludes the paper with a brief sum-
mary and discussion of future work.

2. INTERPRETING & EVALUATING DEEP AUDIO
CLASSIFIERS

This section presents a new dataset for audio classification, intro-
duces a spectrogram-based and a waveform-based neural network
model, and describes a general technique to investigate deep classi-
fiers.

2.1. AudioMNIST dataset

The AudioMNIST dataset' consists of 30000 audio recordings
(ca. 9.5 hours) of spoken digits (0-9) in English with 50 record-
ings per digit from each of the 60 different speakers. The audio
recordings were collected in quiet offices with a RODE NT-USB
microphone as mono channel signal with a sampling frequency of
48kHz and were saved in 16 bit integer format. In addition to audio
recordings, meta information including age (range: 22 - 61 years),
gender (12 female / 48 male), origin and accent of all speakers were
collected as well. All speakers were informed about the intend of the
data collection and gave written declaration of consent to participate
in it prior to their recording session.

'Published at: https://github.com/soerenab/AudioMNIST



2.2. Audio classification

The AudioMNIST dataset offers several machine learning tasks in
the audio domain of which classification of digits and classification
of the gender of the speaker are reported on here. Audio classifica-
tion is often based on spectrogram representations of the data [21]
but successful classification based on raw waveform data has been
reported as well [14]. Using a spectrogram representation enables
employment of neural network architectures such as AlexNet [22] or
VGG [23] that were originally designed for image classification. We
implemented versions of both approaches: one model uses a spec-
trogram representation as input data, the other the raw waveform.

2.2.1. Classification based on spectrograms

Audio recordings were downsampled to 8kHz, zero-padded to a
fixed signal dimensionality of 8000 and transformed to a spec-
trogram representation via short-time Fourier transform (STFT).
During zero-padding, the audio recording was placed in random
positions within the zero-padding, which can be regarded as a form
of data-augmentation. The parameters of the short-term Fourier
transform were set to yield spectrograms of dimensions 228 x 230
which were cropped to 227 x 227 by discarding the highest fre-
quency bin and the last two time bins. The amplitude of the cropped
spectrograms was converted to decibels and used as input to the
network. The network architecture was a slight modification of the
implementation of AlexNet [22] where the number of input channels
was changed to 1 and the dimensions of fully-connected layers were
changed to 1024, 1024 and 10 (digits) or 2 (gender).

In case of digit classification, the dataset was split into five dis-
joint subsets each containing 6000 spectrograms where samples of
any speaker appeared only in one of the five subsets. In a five-fold
cross-validation, three of the subsets were merged to a training set
while the other two subsets served as validation and test sets. The
final, fold-dependent preprocessing step consisted of subtraction of
the element-wise mean of the respective training set from all spec-
trograms. The model was trained with stochastic gradient descent
with a batch size of 100 spectrograms for 10000 epochs. The ini-
tial learning rate of 0.001 was reduced by a factor of 0.5 every 2500
epochs, momentum was kept constant at 0.9 throughout training and
gradients were clipped at a magnitude of 5.

For gender classification, dataset preparation differed in that the
dataset was initially reduced to the 12 female speakers and 12 ran-
domly selected male speakers. These 24 speakers were split into four
disjoint subsets each containing a total of 3000 spectrograms from
three female and three male speakers where again, samples of any
speaker appeared only in one of the four subsets. In a four-fold cross-
validation, two of the subsets were merged to a training set while the
other two subsets served as validation and test set. All other prepro-
cessing steps and network training parameters were identical to the
task of digit classification.

2.2.2. Classification based on raw waveforms

For classification based on raw waveforms, downsampled and zero-
padded samples described in section 2.2.1 were used as neural
network input directly. In this case, the neural network consists of
9 weight layers that are organized in series as follows>: conv3-100,
maxpool, conv3-64, maxpool, conv3-128, maxpool, conv3-128,

2By conv3-100 we refer to a convolutional layer with kernel size 3x1 and
100 output channels.

maxpool, conv3-128, maxpool, conv3-128, maxpool, FC-1024 FC-
512, FC-10 (digit classification) or FC-2 (gender classification). All
convolutional layers employ a stride of 1 are activated via ReLU
activation functions. Maxpooling layers employ stride 2. For clarity,
this model will be refered to as AudioNet. In case of digit classi-
fication, the network was trained with stochastic gradient descent
with a batch size of 100 and constant momentum of 0.9 for 50000
epochs with an initial learning rate of 0.0001 which was lowered
every 10000 steps by a factor of 0.5. In case of gender classification,
training consisted of only 10000 epochs with the learning rate being
reduced after 5000.

2.3. Layer-wise relevance propagation

In some fields and domains where interpretability is a key property,
linear models are still widely used as the de-facto method for learn-
ing and inference due to the inherent explainability of the predictions
made, even though this may mean sacrificing potential prediction
performance on more complex problems. In [5], a technique called
Layer-wise Relevance Propagation (LRP) was introduced which al-
lows for a decomposition of a learned non-linear predictor output
f(x) via the interaction of f with the components ¢ of x as rel-
evance values R;, closing the gap between highly performing but
non-linear and interpretable learning machines. An implementation
of the algorithm is available in the LRP toolbox [24].

LRP performs in a top-down manner from the model output to
its inputs by iterating over the layers of the network, propagating rel-
evance scores R; from neurons of hidden layers step-by-step towards
the input. Each R; describes the contribution an input or hidden vari-
able x; has made to the final prediction. The core of the method is
the redistribution of a relevance value R; of an upper layer neuron
— provided as an input for one computational step of the algorithm
— towards the layer inputs ¢, in proportion the contribution of each
input to the activation of the output neuron j in the forward pass.

Ric; = 22R, (1)
Zj
The variable z;; describes the forward contribution (or activation
energy) sent from input ¢ to output j and z; is the aggregation of all
forward messages z;; over ¢ at j. The relevance score R; at neuron ¢
is then obtained by pooling all incoming relevance quantities R;;
from neurons j to which ¢ contributes:

R; = Z Ri; 2)
J

Exact definitions of attributions depend on a layer’s type and position
in the pipeline [25].

We visualize the results using a color map centered at zero, since
Ry =~ 0 indicates neutral or no contribution to the global prediction.
Positive relevance scores will be shown in red colors while negative
scores are displayed in blue.

3. RESULTS

3.1. Classifier performance

Model performances are summarized in Table 1 in terms of means
and standard deviations across test splits. Comparisons of model per-
formances may be difficult due to the differences in training param-
eters and is also not the primary goal of this paper, yet, we note that
AlexNet performs consistently superior to AudioNet for both tasks.
However, both networks show test set performances well above the
respective chance level, i.e. for both tasks the networks discovered



discriminant features within the data. The considerably high stan-
dard deviation for gender classification of AudioNet results mainly
from a rather consistent misclassification of recordings of a single
speaker in one of the test splits.

Input Digits Gender
AlexNet | spectrogram | 95.82% + 1.49% | 95.87% + 2.85%
AudioNet waveform 92.53% £ 2.04% | 91.74% + 8.60%

Table 1: Mean accuracy =+ standard deviation over splits.

3.2. Relating network output to input data
3.2.1. Relevance maps for AlexNet

As described in section 2, LRP computes relevance scores that link
input data to a network’s output, i.e. classification decision. Exem-
plary input data for AlexNet is displayed in fig. 1, where spectro-
grams are overlayed with relevance scores for each input position in
the (frequency x time) STFT spectrograms.

Spectrograms in figures 1(a) and 1(b) correspond to spoken dig-
its zero and one from the same female speaker. AlexNet correctly
classifies both spoken digits and the LRP scores reveal that different
areas of the input data appear to be relevant for its decision although
it is difficult to link the features to higher concepts such as for in-
stance phonemes.

The input spectrogram in fig. 1(c) is identical to that in fig. 1(a)
and the spectrogram in fig. 1(d) corresponds to a spoken zero by
a male speaker. AlexNet correctly classified both speaker’s gender
with most of the relevance distributed in the lower frequency range.
Based on the relevance scores it may be hypothesized that gender
classification is based on the fundamental frequency and its imme-
diate harmonics which are in fact a known discriminant feature for
gender [26].

Comparing the differences between the relevance scores in fig-
ures 1(a) and 1(c) given identical network input implies that the neu-
ral network performs task-dependent feature selection.

3.2.2. Relevance maps for AudioNet

In case of AudioNet relevance scores are obtained in form of an 8000
dimensional vector. An exemplary waveform input of a spoken zero
from a male speaker for which the network correctly classifies the
gender is presented in fig. 2(a). The relevance scores associated
with the classification are depicted in fig. 2(b),of which time frame
from second 0.5 to 0.55 is closer inspected in fig. 2(c). Intuitively
plausible, zero relevance falls onto the zero-embedding at the left
and right side of the recorded data. Furthermore, from fig. 2(c) it
appears that mainly samples of large magnitude are relevant for the
network’s classification decision.

3.3. Manipulations of relevant input features
3.3.1. Manipulations for AlexNet

The relevance maps of the AlexNet-like gender classifier suggest the
hypothesis that the network focuses on differences in the fundamen-
tal frequency and subsequent harmonics for feature selection. To test
this hypothesis the test set was manipulated by up- and down-scaling
the y-axis of the spectrograms of male and female speakers by a fac-
tor of 1.5 and 0.66 respectively such that both fundamental frequency
and spacing between harmonics approximately matched the original
spectrograms of the respective opposite gender. The trained network
reaches an accuracy of only 20.3% + 12.6% across test splits on

0 0.5 1
seconds seconds

(a) female speaker, zero (b) female speaker, one

0 0.5 1 0 0.5
seconds seconds
(c) female speaker, zero (d) male speaker, zero
Fig. 1: Spectrograms as input to AlexNet with relevance maps over-
layed. Top row: Gender classification. Bottom row: Digit classifica-
tion. Data in (a) and (c) is identical.

data manipulated in this fashion, which is well-below chance level
for this task, confirming the hypothesis. In other words, targeting
the gender features identified via LRP allows to perform transforma-
tions on the inputs, targeting the identified features specifically, such
that the classifier is &~ 80% accurate in predicting the opposite gen-
der. Examples of manipulated spectrograms and audio signals can
be found in the supplementary material.

3.3.2. Manipulations for AudioNet

Manipulations of a network’s original input data allow to assess its
reliance on relevant features as proposed by LRP. This is achieved
by an analysis similar to the pixel-flipping (or input perturbation)
method introduced from [5, 27]. This analysis verifies that manipula-
tions of relevant features according to LRP cause larger performance
deterioration than manipulations of randomly selected features. We
restricted this analysis to AudioNet and manipulated the waveform
signals in three different ways. The amount of changed features is
the same for all manipulations and determined as a fraction of the
non-zero features.

For the first two manipulations only non-zero features are taken
into consideration, so that only the actual signal is perturbed. In
the first manipulation, a fraction of randomly selected features is
set to zero. The second manupulation method, sets features to zero
based on highest absolute amplitudes. We do this to test if relevance
falls mainly onto samples of high absolute amplitude as suggested
by fig. 2(c).

For the third manipulation type we set to zero those features
with the highest relevance as attributed via LRP. Notice that LRP-
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Fig. 2: AudioNet correctly classifies the gender of the raw waveform in (a) of a spoken zero. The heatmap in (b) shows the relevance of
each sample of the waveform, where positive relevance in favor of class male is colored in red and negative relevance, i.e., relevance in favor
of class female, is colored in blue. A selected range of the waveform from (a) is again visualized in (c) where single samples are colored

according to their relevance. Note the different scaling of the x-axis.

based selection is not constrained to avoid samples within the zero-
embedding. Network performance on manipulated test sets in rela-
tion to the fraction of manipulated samples are displayed in fig. 3 for
both digit and gender classification. For both gender and digit clas-
sification, network performance deteriorates substantially earlier for
LRP-based manipulations compared to random manipulations and
slightly earlier than for amplitude based manipulations. This be-
comes most apparent for digit classification where a manipulation
of 1% of the data leads to a deterioration of model accuracy from
92.53% to 92% for random, 85% for amplitude-based and 77% for
LRP-based manipulations respectively.

In case of gender classification, the network furthermore shows
a remarkable robustness towards random manipulations with classi-
fication accuracy only starting to decrease when 60% of the signal
has been set to zero, as shown in fig. 3(b).

4. CONCLUSION

For an increasing number of machine learning tasks being able to
interpret the decision of a model becomes inevitable. So far most
research has focused on explaining image classifiers. To foster
research of interpreting audio classification models we provide a
dataset of spoken digits in the English language as raw waveform
features. We demonstrated that layer-wise relevance propagation
is a suitable interpretability method for explaining deep neural net-
works for audio classification. In the case of gender classification
based on spectrograms, LRP allowed us to form a hypothesis about
features employed by the network. In case of digit classification,
LRP reveals distinctive patterns for different classes. However, the
derivation of higher-order concepts such as phonemes or certain
frequency ranges proved to be more difficult than for gender classi-
fication. Classification on raw waveforms showed that the network
bases its decision on a relatively small fraction of highly relevant
samples. A possible explanation for this effect that the network
focuses mainly on the “global” shape of the input — and subject for
future work — could be: Randomly selected samples are uniformly
distributed over the time course of the signal such that — as long as
the fraction of manipulated samples is not too large — there remain
samples with the original amplitude in each local neighborhood of

the signal retaining the original shape of the signal. On the other
hand, amplitude- and LRP-based selection may corrupt the signal in
a way such that the global shape can no longer be recognized.
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Fig. 3: Assessment of networks’ reliance on relevant samples: Signal samples are either selected randomly (blue line), based on their absolute
amplitude (orange line) or their relevance according to LRP (green line). The dashed black line shows the chance level for the respective label

set. For any fraction of selected signal samples and for both digit (a) and gender (b), classification deteriorates most quickly if samples are
selected via LRP, confirming the networks’ reliance on samples that receive high relevance.



