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Executive Summary 

Artificial Intelligence (AI) systems are playing an ever growing role as part of decision and control 
systems in diverse applications, among them security- and safety-critical application domains such 
as mobility, biometrics and medicine. The use of AI technologies such as deep neural networks 
offers new opportunities such as a superior performance as compared to traditional IT 
technologies. At the same time, they pose new challenges with regard to aspects such as IT 
security, safety, robustness and trustworthiness. In order to meet these challenges, a generally 
agreed upon framework for auditing AI systems is required. This should comprise evaluation 
strategies, tools and standards but these are either under development or not ready for practical 
use yet. 

This whitepaper first summarizes the opportunities and challenges of AI systems and then goes on 
to present the state of the art of AI system auditability with a focus on the aspects AI life cycle, 
online learning and model maintenance in the presence of drift, adversarial and backdoor 
poisoning attacks and defenses against these attacks, verification, auditing of safety-critical AI 
systems, explaining black-box AI models and AI standardization. 

Despite substantial progress for all of these aspects, an overarching open issue is that of (often 
multi-faceted) trade-offs between desired characteristics of the system, e.g. robustness, security, 
safety and auditability, on the one hand and characteristics of the AI model, ML algorithm, data 
and further boundary conditions on the other hand. These trade-offs restrict the scalability and 
generalizability of current AI systems. 

To eventually allow leveraging the opportunities of AI technologies in a secure, safe, robust and 
trustworthy way, two strategies should be combined: 1. Taking the abovementioned trade-offs 
into account, favorable boundary conditions for the given task should be selected; 2. Available 
technologies should be advanced by substantial investments in R&D to eventually allow for secure 
and safe AI systems despite complex boundary conditions and, therefore, to improve scalability 
and generalizability. In a first step, one should focus on selected security- and safety-critical use 
cases. Available standards, guidelines and tools should be exploited and interdisciplinary exchange 
between researchers and industry should be further promoted to find the best combinations of 
available criteria and tools for achieving auditable, secure, safe and robust AI systems for each 
specific use case. Insights from these use cases should then be used, in a second step, to 
generalize the results and to build up a modular toolbox that may subsequently be applied to 
other use cases. On this basis, first technical guidelines and subsequently standards should be 
developed. In the ideal case, the outcome will be a generally applicable set of criteria and tools 
that allows making AI systems sufficiently auditable, safe and secure. 
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1 AI systems: opportunities and challenges 

Already prevalent in many applications, artificial intelligence (AI) technology1 is increasingly 
becoming an integral part of our world as it is the basis for countless applications that employ 
decision or control systems (Fig. 1). AI systems may consist of multiple subsystems, each of these 
possibly using different technologies. Technologies may be grouped into classical IT (cIT), symbolic 
AI (sAI) and connectionist AI (cAI)2. Here, a focus is put on cAI systems in the form of (deep) neural 
networks and machine learning (ML), because cAI systems exhibit qualitatively new vulnerabilities 
and can, as of now, not be sufficiently audited by means of available tools from cIT. 

AI is employed in rather harmless applications such as computer games and voice assistant 
systems as well as in safety-critical applications such as driver assistance systems, intrusion 
detection systems and in medical diagnosis [1-4]. The latter use-cases demonstrate that 
responsibilities and liabilities are transferred from humans to AI systems in safety- and security-
critical systems. Therefore, malfunctioning AI systems may lead to serious consequences resulting 
in financial loss or even affecting the health of humans. In extreme cases, this could include 
fatalities in car accidents or serious medical conditions due to inappropriate or missing medical 
treatments. In many applications, current AI systems substantially outperform cIT technology in 
terms of performance, user experience and cost. Despite these and other great opportunities 
offered by AI technology, its application comes with several challenges [5-9]: for instance, the 
inner workings of neural networks (NN) are very hard to interpret by humans due to their highly 
interconnected non-linear processing elements and their huge input and state spaces. Also, their 
performance is highly dependent on data quantity and quality since their parameters have to be 
trained by ML algorithms. NN training does not follow well-defined design processes, NNs possess 
qualitatively new vulnerabilities, there often is a lack of trust by users and NNs may be used as 
powerful tools by attackers. 

Fig. 1: AI systems are already part of decision and control systems in 
diverse applications, e.g. autonomous cars, healthcare and biometrics. 
Connectionist AI (cAI, e.g. neural networks), symbolic AI (sAI, e.g. 
decision trees) and classical IT (cIT) modules interact with each other 
and with the environment via sensors and actuators, thereby leading 
to the overall system behavior. Here we focus on single cAI modules 
(bold print) only. [Icons are released under CCO 1.0 and were 
downloaded from svgsilh.com] 

In order to address these safety and security challenges of AI, it is, therefore, mandatory to gain a 
deeper insight into how AI systems function, why they perform well in some cases but fail in 

1 AI systems are here defined as automated artificial systems that either support humans in making decisions or that autonomously 
take decisions. For an alternative definition, cf. e.g. the definition by the high level AI expert group of the EU commission: 
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines. 
2 Whereas it is hard to draw a clear border between cIT and AI systems, AI systems may be clearly classified as either symbolic AI 
(sAI) systems or as connectionist AI (cAI) systems: the former may be directly constructed by a human developer, the latter have to 
be trained with machine learning and data. 
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others and how they might be attacked and protected from attacks. In order to gain users‘ trust, 
the proper operation of an AI system has to be guaranteed under realistically defined boundary 
conditions. For “classical” technologies, such guarantees are required by law in several domains 
such as in airplane control software and need to be audited on a regular basis. A natural question 
is how to transfer the concepts and methods from the classical IT domain to the AI domain and, 
where this is not sufficient, how to complement them with new AI-specific concepts and methods. 
If proper operation cannot be guaranteed in 100 % of the cases, it should be discussed if it is 
acceptable that AI systems at least perform better than state-of-the-art non-AI systems or 
humans. Hereby, a risk-based approach should be taken by quantifying the risk for system failure, 
i.e. the cost of failure multiplied with the probability of failure. This should also hold in case of 
malicious attacks. Better average performance may not be sufficient since the performance of an 
AI system may be better on average but much worse on subgroups (e.g. skin cancer detection for 
black people, [10; 11]). If AI systems fail, the reasons for their failures have to be explainable. Since 
no generally accepted standards, evaluation criteria, methods and tools for auditing AI systems are 
currently available (but see section 2.7 for current initiatives), the following questions arise: How 
to audit AI systems? Which boundary conditions are optimal, which are acceptable? Which 
methods, tools and other resources are needed in addition to classical IT system audits or safety 
assessments? What are the limits of auditing AI systems? What is the trade-off between effort and 
audit quality? How should available resources be employed best in research and development to 
achieve AI system audit results that remain valid under a wide range of conditions?

Based on the presentations and discussions during the one-day workshop „Auditing AI-Systems: 
From Basics to Applications“ on October 6th, 2020 in Berlin/internet, we try to give answers to 
these questions by reviewing the current state of the art of AI system auditability, by summarizing 
open questions and by identifying the most urgently needed future work and the most promising 
approaches. In doing so, 1. the whole life cycle of AI systems will be considered and 2. a focus will 
be put on the currently most important AI technology, namely deep neural networks (DNNs) 
trained by machine learning (ML), and DNNs will be considered in terms of IT security, safety and 
robustness. Where possible, specific use cases will be given as examples. 
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2 Auditability of AI systems: state of the art 

In this section, first an overview of a generalized cAI life cycle (Fig. 2A) is given in order to then 
summarize the state of the art of some of the most important aspects of cAI system auditability, 
namely the training of AI systems via ML and data, attack and defense, verification, validation, 
interpretability and standardization. 

Further aspects were not covered in depth during the workshop and some of them are, therefore, 
only shortly summarized with respect to their possible impact on AI safety and security: 

1. Sufficient quality and quantity of training and test data are of paramount importance for the 
performance and robustness and, therefore, also for the security and safety of the AI system 
[12].

2. Data pre-processing (or feature selection) can be, on the one hand, seen as a step towards 
modularization of the AI system, possibly leading to better interpretability due to reduced 
functionality of each AI module, but, on the other hand, can be considered to open up a 
new attack target (cf. e.g. [13; 14]). Therefore, depending on the context, it may or may not 
be beneficial for increasing safety and security.

3. Regularization, such as the penalization of large weights via the error function, might serve 
to prevent overfitting and might, under certain boundary conditions, directly lead to higher 
robustness and indirectly to increased safety and security [15].

2.1 Life Cycle 

The complex life cycle of cAI systems is, at least to a large extent, responsible for new challenges 
regarding their application, especially when compared with cIT and sAI systems. Therefore, it will 
be at the focus of this whitepaper. Here, it is divided into the following 5 phases (cf. Fig. 2A): 
planning, data, training, evaluation and operation. In practice, these phases are not ordered 
sequentially but the developer rather uses these phases in a highly iterative and agile manner, e.g. 
evaluations are employed frequently during the development. Also, the operational phase 
includes the challenge of model maintenance, including the necessity of adapting the model in 
case novel data or requirements arise for a cAI system already in use. Similar in spirit to biological 
neural networks, cAI systems typically consist of a large number of simple yet highly 
interconnected processing elements (or neurons) which are organized in layers. State-of-the-art 
cAI systems, such as deep neural networks (DNNs, deep = many layers) consist of millions of 
processing elements and synapses (= connections) in between them. Assuming a fixed neural 
architecture, this means that cAI systems often have more than 100 million parameters, i.e. 
synaptic weights and unit bias values, that have to be appropriately tuned. It is, therefore, in 
almost all cases impossible to set these parameters by hand. Instead, machine learning techniques 
are employed to automatically adjust the system’s parameters based on training data, an error 
function and a learning rule. In contrast to parameters internal to cAI models that are learned 
during training, external parameters that influence the learning process and the model 
architecture are called hyperparameters and have to be fixed before training and tuned on a 
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validation set. Approaches to automate the training pipeline setup and training itself are called 
automatic machine learning or AutoML [16]. While parameters in numerous cIT and sAI models, 
such as decision trees or rule sets, are often also set by automatic methods, they can in principle 
and in contrast to most cAI models, still be intuitively inspected3,4. 

Fig. 2: A) The schematic depiction of a generalized life cycle of a connectionist AI (cAI) system underlines that many 
aspects have to be considered for a thorough audit of an AI system. Here, the life cycle is viewed from the IT-security 
perspective with vulnerabilities (red), defenses (blue) and interpretation (green + “?”). Supervised retraining or online 
learning may optionally run in parallel to and continually during operation leading to the question when and how 
frequently evaluation should take place. The whole life cycle should be considered for evaluation, verification, 
validation and standardization. B) A cAI life cycle (cAILC) may e.g. be embedded into a functional safety life cycle (fSLC, 
cf. e.g. [17; 18]). The latter may encompass several safety-relevant systems, e.g. also sAI and cIT systems (cf. Fig. 1) 
and includes an extensive analysis phase prior to the development phase and a final decommissioning phase. Note 
that both the cAILC and the fSLC are usually highly iterative (cf. the feedback connections). 

3 Note that linear models or decision trees might not be, in a practical sense, per se interpretable because of their size and 
complexity. 
4 A comparison of different AI and ML methods such as deep learning and reinforcement learning with respect to their impact on 
safety and security and their interpretability is, unfortunately, out of scope here. 
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The role of the developer is, therefore, to set the necessary boundary conditions by initializing the 
training process with a neural network, training data, a machine learning algorithm and relevant 
hyperparameters. Subsequently, the developer supervises the training process, adjusts 
hyperparameters, tests intermediate results and – if necessary – restarts the training until the 
desired performance of the AI system is achieved. This is not a standardized procedure but rather 
intuition and experience of the developer determine the training process. Due to the large amount 
of resources necessary to obtain sufficient amounts of high-quality data and to train DNNs from 
scratch, developers often take shortcuts and make use of pre-trained models and external data 
obtained from various sources. Once the development criteria (e.g. performance, robustness) are 
met, the AI system may be put into operation: after having been embedded in a specific hard- and 
software environment, the neural network is fed with pre-processed input data and outputs its 
decisions. Despite the lack of a clearly defined design process (see above), an experienced 
developer with access to the necessary resources (data, models, computing power) may quickly 
develop decision systems for many use cases that clearly outperform cIT systems. 

As a drawback of the often huge parameter and input spaces of DNNs and their non-intuitive 
relation between structure and function, it is mostly impossible for a human to interpret their 
functioning. Specialized interpretation methods that allow to do so are the subject of current 
research (for details see section 2.6). AI systems are currently tested by observing the input-
output relation for a selected set of test inputs. To test even a small subset of all possible inputs 
requires considerable resources and has to be approached systematically (cf. [19]). A formal 
verification is only possible in specific cases under very restricted boundary conditions, e.g. it does 
not scale to large networks and arbitrary inputs (cf. section 2.4). Further drawbacks of cAI systems 
are their qualitatively new vulnerabilities, namely adversarial attacks (see section 2.3.1) and 
information stealing attacks (cf. section 2.3) during operation, and backdoor poisoning and DoS 
attacks during training (cf. section 2.3.2), which, in addition to classical social attacks, operating 
system and hardware attacks, may be exploited by attackers for targeted and untargeted attacks 
(see below for details). To secure data-driven AI systems and ML in general against such attacks, 
many solutions have been proposed in addition to classical measures of IT security, amongst 
others: adversarial training, gradient masking and feature squeezing (cf. section 2.3.3 for more 
details). Unfortunately, there is, as of now, no single defense method and no combination of 
multiple ones that is able to reliably prevent adaptive attacks. Also, depending on the setting, 
improved attack prevention and robustness may come at the cost of decreased accuracy [20]. 

In practical use cases, such as in autonomous cars, a cAI life cycle is generally embedded into more 
extensive life cycles that include the development and interaction of multiple IT and AI modules. 
This is depicted for the functional safety life cycle (fSLC in Fig. 2B), where cAI modules are just 
possible components amongst others. For these cAI modules an (automotive) safety integrity level 
((A)SIL) may be determined [17; 18]. The functional safety life cycle puts emphasis on the analysis 
phase preceding the planning phase of the AI life cycle with the goal of quantifying the probability 
of failure of such systems and of determining the acceptability of these probabilities by systematic 
means including risk analysis. The fSLC analysis phase also includes conceptualization and the 
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derivation and allocation of safety requirements. As a result of the analysis, the use of AI 
technology in safety- and security-critical applications might even be completely banned for 
reasons of security and safety. In contrast, AI can be easily used in situations where no critical 
consequences occur, which has to be supported by a risk analysis. In that case, no SIL 
requirements need to be implemented in the system and safety assessment is not necessary. 
Methodological and use case specific standards, norms and technical guidelines should be used 
wherever they are applicable throughout the life cycle. For instance an extensive standard [17] 
exists for the functional safety life cycle but it does not include the cAI life cycle with cAI specific 
vulnerabilities and challenges. Around the world, multiple initiatives strive to close this gap (cf. 
Section 2.7). 

2.2 Online learning and model maintenance in the presence of non-
stationary environments 

In order to solve problems by learning from data, different paradigms can be used depending on 
the complexity of the problem and the amount of data available. For instance, deep learning 
techniques are typically used to solve complex problems when a large amount of training data is 
available, whereas classical methods from statistics can only address less complex problems, but 
require less data to do so. Independent from the paradigm, the environment of the problem at 
hand is likely not constant over time. In order to obtain robust results, such environmental 
changes must be taken into account and addressed. 

For most classical machine learning (ML) techniques, strong robustness guarantees can be derived 
from statistical learning theory under standard assumptions [21]. Another way to maintain 
prediction accuracy in the face of environmental changes and limited data availability is to allow 
the ML models to reject inputs which are too far away from known data points and where the 
models’ certainty is low [22]. It needs to be noted that identifying such inputs can be a hard 
problem in itself. This approach can also be used in online learning [23]. 

Transfer learning is a general technique that allows adapting a previously learned parent model to 
a new but related task [24]. Using the similarity of the two tasks and building on the information 
contained in the parent model, it is possible to train a new model using much fewer data points 
than training it from scratch would require. Transfer learning and also few-shot learning in a more 
general form are currently the standard way in which deep learning is used. For instance, models 
for specific image classification tasks build on pre-trained models such as VGG [25]. Transfer 
learning can be used to cope with environmental changes. However, in order to obtain theoretical 
guarantees on the accuracy of the resulting model without using a large amount of data, strong 
assumptions about the changes that can occur are necessary. Such assumptions may be valid in 
practical use cases, e. g. adapting the control unit of a limb prosthesis to slight shifts in sensor 
location [26]. 

Another method for training ML models is called online learning. In this paradigm, a model does 
not learn from discrete batches of data, but instead uses a data stream and is constantly updated 
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to take each new data point into account. Environmental changes then manifest as data drift, 
which can affect the true model itself or only the data distribution observed. In this setting, the 
challenge is to decide which information is relevant for making correct predictions at a given time 
point and future ones, and which information should be discarded. In doing so, also data poisoning 
attacks and missing data labels have to be considered. Models hence face a dilemma between 
plasticity, i. e. being able to integrate new information, and stability, i. e. maintaining previous 
knowledge that is still relevant. It has been shown for simple models that these two properties can 
be efficiently balanced to achieve high performance in the presence of drift [27-30]. The challenge 
of such models is that meta-parameters become model parameters, since model complexity might 
change. Hence, non-parametric models as well as ensemble methods are often particularly well-
suited. However, obtaining mathematical guarantees requires very strong assumptions. As a step 
towards dealing with drift in practice, first techniques to detect and understand drift provide 
interesting approaches to judge the effect of such online adaptation techniques [31; 32]. 

2.3 Attack & Defense 

AI is not secure by design and countless examples of tricking AI systems have been documented 
over the last years (for an overview cf. [33]). In this whitepaper, we focus on the two most 
important vulnerabilities of AI systems with respect to the information security goal integrity 
which strives to maintain trustworthy and consistent data throughout the entire AI life cycle. In 
this context, two main and qualitatively new threats to cAI systems have been identified: 
adversarial or evasion attacks (cf. section 2.3.1) during the operational phase and backdoor 
poisoning attacks (cf. section 2.3.2) during the training phase. These attacks and available 
defenses are discussed in detail in the following sections. 

Further vulnerabilities exist with respect to the other two main information security goals 
confidentiality and availability but are not in the focus of this whitepaper: confidentiality may be 
compromised via exploratory model stealing [34], model inversion [35] and membership inference 
attacks [36] where AI models and data used for training may be reconstructed from queries to the 
operational AI system (summarized in Fig. 2 under “model and data stealing attacks”). These 
attacks are mentioned in the context of evasion attacks (see below). Availability may be attacked 
by DoS poisoning attacks [37], which, in contrast to backdoor attacks, have the goal of minimizing 
the models performance. 

2.3.1 Adversarial Machine Learning 

In evasion attacks an attacker plans to change the decision of an AI system during its inference (or 
operation) phase by subtle modifications of the model input. The modifications are often 
unsuspicious to the human eye and are also called adversarial examples [38; 39]. As a result, 
standard cAI systems are very brittle and inputs that are not well represented by the models’ 
training data are especially vulnerable to misclassifications. Well-known examples include e.g. 
attacks on traffic sign classification systems [40] by placing stickers on a traffic sign, attacks on 
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malware detectors by adding code that is not required for proper functionality to the malware 
[41-43] and attacks on biometric identification systems by equipping a human with a specially 
printed glasses frame [44] or patch on a hat [45]. If the attacker is able to control the decision of 
the AI system, the attack is called a targeted attack, and otherwise, if the attacker just changes the 
decision in an arbitrary way, the attack is called an untargeted attack. 

In order to prepare an evasion attack, it may be formalized as an optimization problem which has 
the goal of modifying inputs in such a way that they cause the AI system to cross at least one 
decision boundary, e.g. from a benign to a malicious region in the malware detector [38; 46]. In 
doing so, several side conditions have to be taken into account, e.g. the requirement to keep the 
modification as small or unnoticeable as possible. 

If the attacker has perfect knowledge of the model, the features and the data, the attack is called 
white-box attack. If, additionally, the output function is differentiable, which is the case for most 
of the currently used learning algorithms, then a gradient may be computed as a prerequisite for 
the optimization procedure. But also in the case in which the attacker only has limited knowledge 
of the target model, the feature and the data, called grey- or black-box setting, effective attacks 
may be crafted by the attacker using a bypass via substitute models. Substitute models may be 
derived either via model stealing attacks or via newly trained models, e.g. using data from a 
membership inference attack, which mimic the functionality of the target model. cAI systems have 
the property that attacks developed for one model can in many cases be transferred to different 
cAI models without much effort (transferability) and, accordingly, these attacks are also called 
black-box transfer attacks. Depending on the boundary conditions, even black-box query attacks 
can be successful. They do not require substitute models but instead use queries to the target 
model combined with gradient-free optimization methods such as genetic algorithms or bayesian 
optimization. Due to these black-box attacks, it is not sufficient to keep the parameters of the 
network secret to effectively protect the AI system against adversarial attacks. 

But why are cAI systems vulnerable to adversarial attacks? cAI systems are built on the assumption 
that the training data is representative of future data, i.e. that input data is independently and 
identically distributed (IID). Unless the task space is very limited, the IID assumption [47] is 
violated sooner or later, meaning that the model exhibits a lack of robustness. Hereby, the lack of 
robustness of the model with respect to random input data corruptions (noisy input data 
distributions) and specially crafted adversarial examples are two manifestations of the same 
underlying phenomenom [48]. The more complex the model becomes, the more vulnerabilities 
arise, and the easier and quicker an attacker can find adversarial examples. Intuitively, this may be 
explained by the fact that the larger the input and state space dimensions of the system get, the 
more short paths from legitimate input to malicious input regions exist that may be exploited by 
an attacker. Additionally, in order for robustness training to work for complex cAI systems, it 
needs a larger quantity of appropriate training data, i.e. defenses become more and more 
resource-intensive with the size of the cAI system. One strategy to cope with this is to consider a 
risk perspective, where for each type of attack its likelihood to occur is considered to decide how 
much resources one should allocate for defending against it. 
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2.3.2 Backdoor Attacks on DNNs 

AI models like DNNs need large quantities of data for training and testing in order to achieve good 
performance. For this reason, very often it is common practice to gather data from many sources 
without enforcing high quality standards. Indeed, a common belief among practitioners is that 
low-quality data may be of little worth but cannot significantly impair a model’s performance. 
However, numerous results from research have shown that this assumption is incorrect. Since 
current AI models are in essence pure correlation extractors, issues with data sets induce them to 
behave in unintended ways. 

Backdoor poisoning attacks and DoS poisoning attacks [49; 50] corrupt parts of the training data in 
a targeted way. On the one hand, DoS poisoning attacks aim to degrade models’ capability to 
generalize by inserting wrong data points to shift their decision boundary [49]. While these attacks 
pose a large problem in classical ML methods, they do not impact DNNs on the same scale, and 
can often be detected quite easily [51]. On the other hand, backdoor poisoning attacks only 
degrade model accuracy on some inputs [50]. To this end, attackers carefully manipulate part of 
the training data by adding special trigger patterns, which enable them to fully control the model 
behavior on these inputs during inference. In terms of the classical IT security goals, DoS poisoning 
attacks impact the availability of models, whereas backdoor poisoning attacks target their 
integrity. The fundamental idea of such attacks consists in planting fake correlations, which the 
models will then use for their decisions. For instance, this often involves changing labels in 
classification tasks. However, more subtle, so-called label-plausible attacks can avoid these rather 
tell-tale changes [52]. 

Backdoor attacks on DNNs are hard to detect afterwards. This is both due to the fact that the 
models only do what they are supposed to, namely learning correlations, and due to the lack of 
human interpretability they exhibit. Approaches to uncover backdoor attacks rely on the detection 
of outliers learned by the models [53]. This does not work well on the data set itself, but rather the 
internal model representations must be used [50; 54; 55], possibly in conjunction with XAI 
methods (cf. section 2.6). However, existing mitigation techniques are not perfect, and no 
automatic solution will likely be, since human prior knowledge may be necessary to properly 
distinguish corrupted and benign data points [56]. 

In addition to targeted attacks, data sets may contain spurious correlations, which can affect 
models in a similar, albeit less targeted way. These correlations may stem from bias in the 
selection of the data as well as the pre-processing and training pipeline. Such problems have for 
instance been uncovered in various tasks in medical image recognition [57]. 

Addressing these issues requires eliminating spurious correlations from training data. XAI methods 
may be helpful to do this, as well as techniques to randomize pipeline artefacts during training. 
Besides technical measures on the AI level, more general mitigation techniques will be necessary 
to address unintended spurious correlations and especially to thwart backdoor attacks. In 
particular, this includes protecting the integrity of models throughout their life cycle and using 
technical and organizational measures to change the ambient conditions during the training 
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phase, such as a security screening of the developers and restricted access to data storage and 
development machines, making it harder for attackers to be successful [58]. 

2.3.3 Detection of and Defenses against attacks on DNNs 

In the recent past, a large amount of methods have been proposed in order to protect deep neural 
networks from attacks [59] or to detect such attacks [60]. However, it has turned out to be very 
difficult to detect adversarial attacks and to reliably defend against them, because it has been 
shown that an adaptive attacker can circumvent most proposed defenses, and even multiple 
defenses applied in parallel might not always increase the adversarial robustness compared to a 
system that only applies the strongest defense [61-63]. Nonetheless, defenses can increase the 
effort for an attacker to launch a successful attack. Moreover, recent work on certifiable detection 
of adversarial attacks is promising because it guarantees robustness against certain adaptive 
attackers [64]. 

One important drawback of many defense methods stems from the fact that they can significantly 
affect the model’s performance on benign inputs. For this reason, a suitable metric to evaluate a 
defense method should account both for the model’s performance to a) benign inputs and b) 
adversarial inputs. 

When defending against adversarial attacks, it is always necessary to consider the ambient 
conditions of the AI system. For example, if an attacker can only apply the attack in the physical 
world and not in the digital domain (e.g. when attacking a computer vision system, the attack 
needs to be robust under different perspective, rotations or similar transformations), the bar for 
successful attacks is much higher. Additionally, it needs to be kept in mind that the robustness of 
such a system does not only depend on the robustness of its AI-related parts, but also on other 
components, such as cIT, which can both increase and decrease the system’s robustness and also 
constitute an additional target for attacks. For instance, the system’s robustness might be 
increased by the inclusion of a redundant method based on non-cAI technology which acts as a 
sanity check or by hampering the crafting of adversarial examples via cIT query limits to the cAI 
components. 

One of the most promising defenses against adversarial attacks is adversarial training [59], where 
adversarial examples are included into the training phase in order to increase the adversarial 
robustness of such a system. One drawback of this method is that it can significantly affect the 
training runtime, especially when including examples constructed using strong attacks. 
Adversarial training will only confer robustness to attacks seen during training, and as a 
consequence, if only weak attacks are considered for performance reasons, the system will 
remain vulnerable to stronger ones. As a result, it is necessary to improve the efficiency of 
adversarial training, especially via the process of creating strong adversarial examples during 
training as done in Shared Adversarial Training [65] and Meta Adversarial Training [66] but also 
other extensions of the training strategy are promising (cf. e.g. [67]). 



14 Whitepaper | Towards Auditable AI Systems 

Another drawback of adversarial training is that it does not give any formal guarantees regarding 
the model’s robustness. Therefore, it cannot be formally proven that no attack exists which 
circumvents this defense5. This problem might be solved in threat models such as adversarial 
patches [68] by certified defenses such as e.g. [69] and [70], which can prove robustness to 
adversarial attacks for the patch threat model. However, for other threat models such certified 
defenses would severely affect the model’s performance on benign inputs. Additionally, some of 
these defenses impose restrictions on the model’s architecture. 

Further classes of defenses against adversarial attacks are often prone to circumvention by 
attackers and might, depending on the use case and the boundary conditions, give a false sense of 
security. This is e.g. the case for gradient obfuscation [71], a kind of gradient masking which is 
supposed to make the attack optimization step harder. 

When it comes to defending against backdoor attacks, the major problem stems from the fact that 
the AI model does not have a prior knowledge of its target domain and learns this knowledge from 
the (possibly malicious) training data. One promising way in defending against such attacks is to 
detect malicious data by looking at the inner workings of a deep neural network trained with this 
data [54] and identifying samples on which the network behaves differently from other data 
samples of the same category. This might indicate that the network uses different features in 
order to make its predictions as compared to normal data samples. So far, this approach only 
works in part of the cases. To solve the problem of the missing prior of the model, it might be 
necessary to include this prior via human expert knowledge in an interactive process that also uses 
XAI methods. 

2.4 Verification of AI systems 

The area of verification of AI systems deals with proving the absence of unintended output 
behavior in the presence of a range of input perturbations, which can be due to natural variations 
or be induced on purpose by an attacker. Verification can hence be used to reason about the 
safety and security of AI systems. However, rigorous proofs face significant obstacles. Due to the 
large input space, the number of perturbations to consider is potentially unlimited, which makes 
brute-force approaches infeasible. In addition, standard solvers for checking logical constraints 
(e.g. SMT, [72; 73]) do not scale well to DNNs due to their non-linearity, although they may be 
useful to some extent. 

A prominent approach to tackle these problems is based on the technique of abstract 
interpretation, which has been widely used in automated reasoning for years [74]. Its main idea is 
to represent a possibly infinite number of states in a bounded, finite way, which allows storing it in 
memory and performing symbolic computations. 

More precisely, abstract interpretation can be applied to DNNs by encoding all possible input 

5 This is not unique to AI systems and also the case for any connected IT system. 
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perturbations via symbolic constraints, for instance giving rise to a polytope6. Subsequently, the 
abstract effects of the network layers on this polytope can be computed. The resulting shape 
encodes all possible outputs corresponding to the input set and may be used to check the 
guarantees to be verified. In practice, in order to make computations feasible, the symbolic 
constraints encoding the inputs are approximations (convex relaxations) of the true data manifold. 
Therefore, there exists a trade-off between the precision of the approximations and the 
computing complexity. 

The verification techniques developed so far have several shortcomings, leading to the following 
suggestions of improvements to be made: 

1. Verification has been mostly carried out with respect to random variations of each element 
of an input vector within given bounds7, and only recently has work on geometric 
perturbations (e.g. rotation, translation) started. This scope will need to be extended to more 
semantic perturbations.

2. The relaxations used need to be improved to achieve a better trade-off between precision 
and complexity. Custom relaxations may be needed when extending the set of perturbations 
and tasks.

3. The techniques have mostly been applied to classification tasks with feedforward neural 
networks and need to be generalised to cover other model types (e.g. RNNs) and other tasks 
(e.g. segmentation).

4. The biggest issue is the scalability of the approaches. If one aims to provide 100% 
deterministic guarantees, the techniques only work for small to medium networks (in terms 
of the number of ReLU units), falling short of large-scale networks used in practice.

In order to benefit from the full potential of these techniques, they can also be used beyond ex-
post verification. In particular, an approach called certifiable training [75] combines them with the 
training procedure to obtain certifiable defenses. This can also help to address the scalability issue 
of the technique, as new network architectures become amenable to certification. 

It has also been shown that adversarial training facilitates verification, and adversarial and 
certifiable training can be related and differ mostly in the information they use to improve a 
model’s robustness. Recent research has proposed a way to combine the two approaches [76; 77]. 

2.5 Auditing safety-critical AI systems 

A safety-critical AI system is a system whose decisions are influenced by an AI subsystem and 
whose failure or malfunction may result in the following outcomes: death or serious injury to 
people, loss or severe damage to equipment or property, and environmental harm. For example 
safety-critical systems can be found in the areas of aviation, nuclear energy, automotive & rail, 
medical and autonomous systems. For these systems, it is necessary to show that they meet the 

6 When using the convex hull of a finite set of points 
7 e.g. with respect to lp-norms, cf. [22] for details. 
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needed requirements, like for example certain predictable robustness and reliability, and their 
assurance often relies on a standards-based justification. Unfortunately, in the case of ML-based 
systems, this is a serious problem: validated standards, policies and guidance for such novel 
technologies are lacking, e.g. prescriptive software standards for safety such as IEC 61508 [17] are 
not fully applicable to AI systems. 

As in other systems where existing methodologies cannot be applied, an argument-based 
approach, which uses formal structured argumentation for justification of some specified claims, 
may be used as a structured way for AI system assurance [78; 79]. The key advantage of an 
argument-based approach is that there is considerable flexibility in how the safety claims are 
demonstrated. Such a flexible approach is necessary when identifying gaps and challenges in 
uncharted territory. One of these approaches is the CAE (Claims, Arguments, Evidence) 
framework, which is based on applied natural language deductivism approaches. The CAE 
framework consists of three components: 
> Claims which are assertions put forward for general acceptance (e.g. claims about the system

being secure/safe).
> Arguments which link evidence to a claim.
> Evidence which serves as justification of a claim. Sources of evidence can for example include

development processes, prior experience, testing and formal methods.

Using the CAE framework, a given claim can be examined using classical and AI specific methods in 
a structured way. Classical software analysis approaches are for example necessary in analyzing 
the software code in which the AI system is implemented. On the other hand, classical approaches 
cannot be applied when it comes to qualitatively new AI-related aspects, such as adversarial 
attacks. CAE may be further extended to include a promising variant of the argument-based 
approach, defeasible reasoning [80], by using counterclaims and confirmation theory [78]. It 
reduces the likelihood of confirmation bias by prompting the assessors to repeatedly ask the 
question of why something may not be safe instead of solely looking for supporting evidence. 

For some AI system key properties, like for example the system’s robustness, a clear formal 
definition as a pre-requisite for any kind of formal verification is missing. CAE may help to clarify 
this open research issue and to make an effort in defining these properties. 

The most common formal property of AI systems which can somehow be proven is the property of 
pointwise robustness. However, a major limitation of this property stems from the fact that it does 
not imply the system robustness property: pointwise robustness only proves a given property for a 
specific data sample, but in order to show the system robustness it would be necessary to show 
this for all future inputs, which is infeasible in most of the practical applications where AI systems 
are used [72]. 

As a result of this, it is currently not possible to fully audit AI systems on the level of formal 
verification. Static analysis tools can, however, be used to prevent propagation of errors from the 
training code into the ML algorithm and help to provide a baseline for the security of the system. 
Existing good practices in AI auditing include [81-84]. 
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2.6 Explaining Black Box AI Models 

Complex AI models such as deep neural networks (DNNs) learn functions by training on large data 
sets (see section 2.1). The inner workings of these models, which mathematically encode the 
functions learned, do not usually lend themselves to human interpretation [85]. However, being 
able to explain and interpret the decisions of an AI model can be important for a number of 
reasons. These reasons range from finding faults, weaknesses and limitations of a model (and the 
HW/SW-platform where it is implemented), which may serve to improve its performance and 
robustness to attacks, to fulfilling requirements for transparency, as for instance mandated by the 
EU General Data Protection Regulation, and to gaining new insights from large data sets in science 
and in the economy. Therefore, new methods are required for explaining complex AI models like 
neural networks. The corresponding research field is called XAI (explainable AI) [86; 87]. 

Various explanation methods have been proposed in the literature to provide insights into 
different aspects of an AI model. One class of methods aims at global interpretations of the model, 
e.g., by analysing the extremal points of the encoded function through the construction of
maximum activation inputs [88] or by investigating the role of individual neurons in the deep
neural network [89]. While these explanations certainly provide valuable information about the
model and its learned representation, they are of little use to understand individual predictions,
i.e., to identify the input features which contributed positively or negatively to the model's
decision. Local XAI methods fill this gap by attributing relevance scores to the input feature.
Different approaches exist, which can roughly be assigned to three categories:

1. Perturbation-based methods evaluate the model output after applying perturbations on the
input data and derive explanations from the changes occurring. These perturbations can be
infinitesimal (e.g., gradients) or rather coarse [90], moreover, they can be expressed as
optimization problem [91]. Although being straight-forward to apply, these methods have
several drawbacks such as intense requirements in terms of computation (not the case for
gradients), since the model output has to be evaluated a large number of times, and limited
reliability, because results are highly sensitive to the applied perturbations (e.g., perturbed
input may not lie on the input manifold or gradient shattering problem [92]).

2. Surrogate-based methods (e.g. LIME, [93]) query the model in question for a large number of
inputs and approximate it by a simpler model which is intrinsically interpretable. Explanations
for the original model’s behavior can then be inferred. The problems that come with this
approach are, on the one hand, the dependence of the explanations on the way the input
queries are sampled and the simpler model is fitted and, on the other hand, the computational
effort for querying the original model a large number of times.

3. Structure-based methods (e.g. LRP, [94]) use the internal structure of the network to
propagate information on relevance between network layers from the output up to the input
data. The main specific drawback of these methods is that they require access to the internal
structure of the model and thus are not model-agnostic. However, they are much less
computationally intense than others and the explanations they provide score better under a
range of criteria (c.f. [95]).
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In order to obtain a more complete picture of the prediction strategies implemented by the 
model, one can aggregate or cluster multiple local explanations [96]. Other methods act on the 
latent space instead of on the input features, and thereby provide explanations with higher-level 
concepts such as color, shape and object part [97]. 

Some of these explanation methods, e.g. LRP, have already been used to uncover unintended 
biases in large image data sets. For instance, they unmasked so-called Clever Hans classifiers [98], 
i.e., models that (seemingly) arrive at the correct decisions but for the wrong reason, that 
identified horses based on copyright tags or pneumonia x-rays based on the presence of a
“portable” label. In a more general setting, this approach can be applied to detect biases in the 
data and improve the generalization ability of the model.

Recently, XAI methods have been applied to other model structures beyond DNNs, and also for 
purposes beyond visualisation (e.g. network pruning). Yet many challenges still exist to leverage 
the full potential of XAI in helping researchers to arrive at robust and trustworthy models. One 
factor limiting the benefits of XAI in many applications is an interpretation gap if input features 
themselves are not readily interpretable for humans. Another open issue of the explanation 
methods mentioned above is that they are not specifically designed to uncover possible interplays 
between multiple input areas, e.g. to answer which combinations of pixels in multiple areas in an 
image contribute to specific decisions. Finally, it is also unclear how to optimally and without 
human intervention integrate XAI into the model training (e.g. into the loss function) in order to 
improve the model. 

2.7 Overview of AI standardization activities worldwide 

Standards are a proven way to describe uniform technical requirements for AI systems and to 
support the implementation of legal frameworks. They also facilitate market access for AI 
innovations and give AI system marketers a clear framework for the development and operation 
of AI systems. In Germany, for example, DIN and DKE are the main standardization bodies and 
represent national interests at the EU level in standardization organizations such as CEN, CENELEC 
and ETSI, and at the international level in organizations such as ISO, IEC and ITU. 

With regard to the topic of testing and auditing AI systems discussed in this whitepaper, the 
question arises which AI quality standards require independent testing and which standards need 
to be developed for such testing procedures themselves. To address this lack of standards, in 
Germany, for instance, a comprehensive analysis of the existing situation and the need for 
standards and norms in the field of artificial intelligence has been presented in the form of the 
“Normungsroadmap KI” [99]. The most important quality dimensions, which should be addressed 
by standardization, are shown in Fig. 3. 
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Fig. 3: Classification of the categories of the AI quality 
criteria into the compliance test according to [99] (cf. also 
[100; 101]). 

The first standards that are currently emerging in the field of AI, especially for the topics of 
reliability, robustness, safety and security are listed in table 1 (cf. [99] for a complete overview). 

Topic Document 
Reliability & 
Robustness 

› ISO/IEC NP 24029: Assessment of robustness of neural networks [102]
› ITU-T F.AI-DLFE & F.AI-DLPB: deep learning software framework evaluation methodology & metrics and

evaluation methods for DNN processor benchmark [103]
› ETSI DTR INT 008 (TR 103 821): AI in test systems and testing AI models, definitions of quality metrics [104]
› DIN SPEC 92001-2: AI life cycle processes and quality requirements, Part2 robustness [105]
› ITU Focus Group on "Artificial Intelligence for Health”, e.g. [106] and [107]

Safety › ISO/CD TR 22100-5: safety of machinery, Part 5: implications of embedded AI – ML [108]
› ISO 26262: road vehicles – functional safety ([18], see also IEC 61508-1:2010 [17], ISO 21448 [109])
› IEEE P2802: standard for performance and safety evaluation of AI medical devices – terminology [110]
› ISO/IEC AWI TR 5469: AI – functional safety and AI systems [111]

Security › ISO/SAE 21434: road vehicles – cybersecurity engineering ([112],s.a. ISO/CD 24089 [113], ISO/IEC 23894
[114])

› ETSI ISG SAI: Several documents covering problem statement, threat ontology, security testing and mitigation 
strategies for general AI systems, e.g. [115]

› NISTIR 8269: a taxonomy and terminology of adversarial ML [116]

Table 1: Emerging standards in the field of AI for selected topics covered by this whitepaper. For a more complete 
overview cf. [99] and [117]. 

It is apparent, however, that there is still a considerable need for development in the area of 
technical testing (“product testing”), particularly with regard to the validation and verification of 
neural networks, reliable safety arguments for safety-critical systems, and testing tools for 
carrying out these tests. Thus, extensive standardization activities will continue in the coming 
years. A prominent example of how this need is being addressed for the topic of autonomous 
driving is represented by the German project “KI-Absicherung” [118]. It is managed by a 
consortium comprising research institutions, automotive manufacturers, suppliers, 
standardization organizations and relevant public authorities (such as the German BSI), and is 
developing a general industry consensus with regard to verification strategies for the safety of AI-
based modules of highly automated driving. 

It is expected that further technical test procedures will emerge in the coming period via further 
comparable lighthouse projects and pilot tests, and that corresponding standardization needs can 
be addressed. 
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3 Open Issues and Promising Approaches 

At least for safety- and security-relevant cAI applications, a sufficient level of robustness, security, 
safety and auditability needs to be achieved and corresponding technical guidelines and standards 
need to be developed. When reviewing the state of the art in this area (cf. previous sections of the 
whitepaper), it becomes apparent that, on the one hand, many open issues remain but that, on 
the other hand, many promising solutions and approaches exist to either resolve or reduce the 
impact of these issues. Hereafter, both open issues and promising approaches will be summarized 
along a modified depiction of the cAI life cycle (cf. Fig. 4): 

Fig. 4: cAI life cycle (cf. Fig. 2) depicted with a focus on open questions in the context of auditability, IT security and 
safety. 

A cAI life cycle is usually embedded in a whole system life cycle that, depending on the specific use 
case, includes multiple cIT and sAI systems as well as e.g. hardware devices such as sensors and 
actuators. From this point of view, a machine that operates autonomously in a complex and 
changing environment (drift) is never fully and finally specified and, therefore, uncertainty and the 
risk of errors remain just like for humans. First approaches to deal with the risk assessment of an 
embedded cAI life cycle come from the area of functional safety ([119; 120],cf. sections 2.1 and 
2.7). In order to define suitable approaches for analyszing, verifying and validating AI systems, it is 
first necessary to identify and understand their intended use, the task, and the environment they 
operate in. Each specific use case is characterized by a number of essential properties which are 
expected by a user or a regulatory authority to be implemented as essential characteristics of the 
system, e.g. robustness, security and safety. In most cases, formal definitions and relevant metrics 
of task and environment are missing or incomplete. This has several undesirable consequences, 
e.g. the acceptable risk must take the perception and opinions of affected users into account.
Users and developers in turn need to have a solid basis in terms of education, training and
communication with each other to take informed decisions regarding the use of specific AI
models, ML algorithms, data sets and analysis approaches as well as regarding further boundary
conditions for specific use cases.
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An overarching open issue is that of (often multi-faceted) trade-offs between desired 
characteristics of the system, e.g. robustness, security, safety and auditability, on the one hand 
and characteristics of the AI model, ML algorithm, data and boundary conditions, such as model 
complexity, task space, plasticity, cost and performance, on the other hand. These trade-offs 
restrict the scalability and generalizability of current AI systems. To give examples: 1. increasing 
model complexity e.g. may negatively impact interpretability and defense; 2. increasing task space 
size leads to the need for larger training and test data sets, which will complicate verification and 
makes it harder to fulfill the IID requirement which is an important pre-requisite for training 
robust AI systems; 3. strengthening defenses often leads to reduced performance; 4. maintaining 
invariant characteristics of the AI system in the presence of drift requires frequent re-trainings and 
testing and, therefore, creates increased costs; 5. white-box model and life cycle access for 
improved auditability conflicts with intellectual property interests; 6. the use of external data sets 
and pre-trained models reduces costs but opens up new vulnerabilities, especially for hard to 
detect backdoor attacks. 

Research has come up with a multitude of promising approaches to resolve the open issues on 
multiple levels, e.g. 1. re-training is made more efficient by using transfer and few-shot learning 
and, to account for the need for tuning meta-parameters, by using non-parametric and ensemble 
methods. Plasticity and stability may, hereby, be balanced well at least for models of low 
complexity; 2. optimizing defense methods with respect to a suitable metric that accounts for the 
performance in the face of natural and adversarial inputs helps to diminish the usual performance 
drop when employing strong defense methods; 3. shared and meta adversarial training reduce the 
cost for dealing with universal perturbations; 4. the systematic use of synthetic and/or augmented 
data and simulations allows identifying failure modes and robustifying AI systems despite large 
task spaces; 5. to some extent abstract interpretation and certifiable training permit the 
verification of AI systems with larger task spaces; 6. arguments-based approaches such as CAE and 
defeasible reasoning allow to audit AI-systems where existing methodologies cannot be applied; 7. 
exploiting human priors allows improving the interpretability of AI systems and, via hybrid models, 
making AI systems more robust; 8. defending against backdoor attacks by data sanitization via 
either the detection of outliers in data sets using interpretation methods, by reject on negative 
impact and related approaches during training (RONI, [121]), or by using bagging ensembles [122]; 
9. if whitebox access is not possible, substitute models and substitute data sets might, at least in 
some cases, be used to improve audit quality, e.g. by generating high-quality attacks; 10. 
Cryptographic methods and chains of trust may be used to ensure the integrity of data and models 
in the supply chain. In addition, combinations of these approaches can be used.

Despite all of these and other promising approaches it has to be kept in mind, that in the future 
the complexity of tasks, models and data sets will most likely increase, necessitating even more 
powerful approaches. 
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4 Setting Priorities for Work Towards Auditable AI Systems 

To date no generally applicable set of criteria and tools is available to secure AI systems such that 
a sufficiently low probability of errors can be demonstrated by rigorous means. Considering the 
results of this whitepaper, two general strategies exist to obtain auditable, secure and safe AI 
systems (cf. Fig. 5): 

 

Fig. 5: Schematic plot of the multifaceted trade-
offs that have to be considered when trying to 
achieve acceptable levels of IT security, safety, 
audit quality, robustness and verifiability. The 
achievable levels depend on multiple boundary 
conditions such as task complexity and model 
complexity. For a given boundary condition, 
advances in technology via R&D may allow e.g. 
to achieve higher IT security levels and/or 
improved auditability but so far this only works 
to a limited extent (cf. “??”). 

 
1. Create favorable boundary conditions for the given task: proper education of developers and 

users as well as sufficient information exchange between both parties allows clearly defining 
the task and acceptable boundary conditions. In combination with a subsequent risk analysis 
that takes into account the embedding of the AI system in a larger IT and/or robotic system, 
this forms the basis for informed choices during the development process and the deployment 
and operation of the AI system. In an extreme case, the developer or user might reach the 
conclusion that the use of AI technology has to be completely banned for the specific use case, 
e.g. due to security concerns. Otherwise, depending on the use case, constraining the task 
space and limiting the AI model complexity may allow for better auditability and a more secure 
and safe AI system [123]8. Furthermore, the combination of multiple technical and 
organizational measures as well as, depending on intellectual property considerations, white-
box access to cAI model and data throughout the life cycle for evaluation purposes will most 
probably improve the auditability and contribute to security and safety. 

2. Invest in R&D to advance available technologies to eventually allow for secure and safe AI 
systems despite complex boundary conditions and, therefore, to improve scalability and 
generalizability. Examples include: a) the development of appropriate metrics across all 
security- and safety-relevant aspects of AI systems. They help to minimize the impact of trade-
offs such as the one between performance and defense strength; b) the combination of robust 
models and detection algorithms to reject possibly malicious inputs while maintaining high 

 
8 Furthermore, one could think of modular AI-systems consisting of rather simple, interpretable and verifiable modules. Here, one 
would have to balance if the complexity of the monolithic AI system or the network complexity of the modular system is better 
suited for the task at hand. 
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performance; c) the inclusion of human priors via e.g. hybrid models to improve 
interpretability; d) the efficient generation of a high number of high-quality attacks as a basis 
for the development of efficient defense methods such as adversarial training; e) the 
generation of a large amount of high-quality realistic synthetic data to contribute to an IID data 
set as a basis for the training of robust AI systems; f) the combination of realistic simulations 
with real-world evaluations and g) the use of multiple redundant but qualitatively different 
systems, e.g. the combination of cAI, cIT and sAI systems via e.g. averaging, majority vote or 
winner takes it all. 

Both strategies should be followed with high priority while, in a first step, focussing on selected 
security- and safety critical use cases. Available standards, guidelines and tools should be exploited 
(cf. the remainder of this whitepaper) and interdisciplinary exchange between researchers and 
industry should be further promoted [124] to find the best combinations of available criteria and 
tools for achieving auditable, secure, safe and robust AI systems for the specific use case. These 
criteria and tools have to be evaluated with respect to their practical benefit and feasibility within 
the respective use cases. Insights from these use cases should then be used, in a second step, to 
generalize the results and to build up a modular toolbox that may subsequently be applied to 
other use cases. On this basis, first technical guidelines and subsequently standards should be 
developed. In the ideal case the outcome will be a generally applicable set of criteria and tools 
that allows making AI systems sufficiently auditable, safe and secure. 
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