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Abstract. Vocabulary generation is the essential step in the bag-of-
words image representation for visual concept recognition, because its
quality affects classification performance substantially. In this paper, we
propose a hybrid method for visual word generation which combines un-
supervised density-based clustering with the discriminative power of fast
support vector machines. We aim at three goals: breaking the vocabulary
generation algorithm up into two sections, with one highly parallelizable
part, reducing computation times for bag of words features and keeping
concept recognition performance at levels comparable to vanilla k-means
clustering. On the two recent data sets Pascal VOC2009 and Image-
CLEF2010 PhotoAnnotation, our proposed method either outperforms
various baseline algorithms for visual word generation with almost same
computation time or reduces training/test time with on par classification
performance.

1 Introduction

Bag of words features [1] have turned into a widely-acknowledged tool for con-
cept recognition which has shown superior performance in many recent contests
on wide-domain image collections with high background and concept variance
as well as presence of clutter [2–5]. Most prominent methods for visual vocab-
ulary generation are unsupervised techniques like the density-based k-means
algorithm, radius based clustering [6], and supervised methods like extremely
randomized clustering forests (ERCF) [7–9]. Since people have tried more and
more difficult images recently, one can observe an increase in the typical word
size. See for example the 300 words used in [10] on the seminal Caltech101
benchmark [11] which has less clutter and rather low variance versus 4000 words
[12] on Pascal VOC challenge data. Such an increase implies higher running
times during visual vocabulary creation and bag of word computation. Several
schemes have been proposed to deal with the runtime issue like hierarchical
clustering [13, 14] or ERCF. From our own experience both methods can suffer
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drawbacks in concept recognition performance compared to k-means clustering
even though hierarchical k-means (HKM) speeds up notably over k-means and
ERCF shows superb computational efficiency. In this paper, we propose a novel
algorithm which uses the hierarchical clustering idea together with linear support
vector machines (SVM) trained locally within each cluster and and has faster
computation speeds in theory compared to vanilla k-means-based bag of words
representations, while still maintaining the recognition performance of k-means
visual vocabularies.

This paper is organized as follows. In Section 2, we explain our hybrid combi-
nation approach. After describing the datasets in Section 3 and the experimental
setup in Section 4, we compare our method in Section 5 against k-means, hierar-
chical k-means and ERCF baselines on the two recent datasets Pascal VOC2009
and ImageCLEF2010 PhotoAnnotation.

2 Visual Word Generation

Bag of word features are based on three steps. At first one computes for each
image a set of base features. In the second step the base features from the train-
ing data are used for computing a discretization of the input space of the base
features into N regions. In the third step the base features extracted from one
image are used to compute a histogram of dimensionality N based on assign-
ments of the base features to the bins of the discretization obtained in the second
step.

2.1 Hybrid Supervised-Unsupervised Approach

In order to generate a vocabulary of N visual words, we start with an unsuper-
vised clustering of the base features into N/2 centers. For simplicity we relied on
k-means clustering. At each of the clusters we train one support vector machine
(SVM) in order to divide the cluster region into two parts. This gives rise to
a partition of the space of the base features into N regions. The binary labels
of the base features used for the SVM training are constructed from the image
labelling which is inherited down to the base features belonging to one image,
as we will explain in the following.

For multi-label concept recognition problems one issue remains to be solved.
Each image can belong to several concept classes. At each cluster we have to
select one partition of the set of all concept labels into two sets used for labelling
the base features for binary SVM training. Since we are not interested in a
perfect classification at a local cluster, we adopted an approximate randomized
process to obtain good candidates for partitioning of the label set to be used to
define a binary labeling.

The candidate labelling generation process was motivated by two ideas. We
want to select a binarization such that

1. balancedness: the number of base features having a label in the positive
class is approximately half of all base features within one cluster.
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2. overlap: the number of base features which have at the same time labels in
the positive as well as the negative class is low.

The second constraint comes from the fact that a base feature is assigned for
SVM training to the positive class if it has at least one image label in the set
of positive classes. We assign all image labels to the base features independent
of the position of the base features within an image. This can lead to an ad-
versary situation where a base feature is assigned to the positive class although
its position in the image belongs to an object from the negative class. Such a
problem can be avoided in an object detection scenario with bounding box or
object position information which is not available here.

We implemented the first constraint as follows. At first, starting from an
empty set for positive classes, we randomly draw a class from the set of all
concepts and add to the positive set. Then, we iterate this procedure, i.e. we
add a class selected randomly from the set of the remaining categories. This
gives a series of growing sets of positive classes. For each of these sets within
the series we can count how many of the base features will be labeled positive,
because they have at least one label belonging to the set of positive classes. Let
S be the set of all base features and l(S) be its original multi-label vector, then
we count

bal(positives) := | |S|/2− |{s ∈ S | l(s) ∩ positives 6= ∅}| |, (1)

where |S| denotes the cardinality of the set S, i.e. the number of its elements.
We select the set from this series which has the number of base features without
the labels in the positive sets being closest to half of the total number of base
features.

This procedure can be repeated M times to obtain M candidates which get
subsequently checked for their overlap constraint. For the overlap constraint we
count directly

ol := {s ∈ S | l(s) ∩ positives 6= ∅, l(s) ∩ negatives 6= ∅}, (2)

which is the number of the base features labeled with concepts in positive and
negative sets simultaneously and select the best T candidates to be used to define
a binary labelling for SVM training.

Each of the T candidates was evaluated using five-fold cross validation in
order to select one final classifier used at a local cluster node. This is admittably
inspired by the ERCF algorithm which also uses a randomized generation of
candidate partitions. On the other hand, ERCF chooses local dichotomies along
one axis and deploys an entropy criterion. The pseudo-code for the two-class
labeling procedure is summarized at the next page.

2.2 Relation to the Baseline Procedures

Figure 1 illustrates the proposed method in comparison with the three baselines
with a synthetic example of two class data marked with red and blue. The
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Generation of Candidates for Two-Class Labeling for SVM Training

choose M = number of random trials,

T = number of candidates for SVM training

input: S = set of base features, l(S) their multi-labels

input: num_concepts= number of concepts in multi-label problem

output: Candidates = T partitions of the set of all concepts into two

for m=1:M

positives(m,0) = {}

for index=1:num_concepts

class = random_select( concepts\positives(m,index-1) )

positives(m,index) = {positives(m,index-1),class}

end for

i = argmin_{index} bal( positives(m,index) )

mid(m) = positives(m,i)

compute ol( mid(m) )

end for

Candidates = the T elements from mid with smallest overlap ol

proposed procedure is comparable to hierarchical k-means (HKM) with N/2
clusters at the top level and 2 clusters at the second level. Because we deploy
a supervised technique instead of k-means with 2 centers at each cluster, the
proposed method can capture the class information correctly. On the other hand,
k-means and HKM fail to separate the red and the blue classes. ERCF uses image
labels as well, however its appealing speed gains come from restriction of the
partition process to axis-parallel splits of the input space. The class boundary in
Figure 1 is however not aligned to the axes, thus the proposed procedure works
best in Figure 1.

Compared to vanilla k-means we have practical speed-ups of visual vocabu-
lary generation with the proposed method, because our method requires a smaller
number of clusters in the initial step. The local classifier training step consists
of N/2 independent jobs which can be run separately on a vanilla CPU cluster,
thus computation time of the extra step is negligible.

Another advantage comes at the step of computing the bag of words his-
tograms: k-means requires for each base feature to compute N distances. This
can however be speeded up empirically by computing a distance matrix between
cluster centers and employing the triangle inequality to exclude certain candidate
centers. The proposed method uses N/2 distance computations and one SVM
function evaluation. For the linear SVMs we used here this amounts to comput-
ing one inner product. Note that for normalized base features ‖f‖2 = const the
distance computation is equivalent to an inner product

‖f − g‖2 = 2c− 2〈f, g〉 (3)
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Fig. 1. An example of two blobs of two class data, marked red and blue and the results
of different clustering algorithms with 4 clusters: Upper Left: k-means, Upper Right:
Hierarchical k-means, Lower Left: ERCF, Lower Right: The proposed method.

Thus, our method requires a computational amount of N/2 + 1 inner products
compared to N inner products for vanilla k-means.

The advantage in computational speed enables us to double the word sizes
of the standard k-means vocabularies with tiny extra runtime. Although the
proposed method requires the same amount of time for feature computation as
a k-means-based visual vocabulary, it increases the time to constructing kernels
by a factor of two. We remark that this is still acceptable, because vocabulary
generation is the bottle-neck in the entire process.

We have pursued a hybrid algorithm for visual word generation, where an un-
supervised clustering method is done prior to the local supervised classification.
This is because we do not expect to find a reasonable linear separation on the
global input set of all base features. We conjectured that pure supervised proce-
dures on entire base features such as ERCF can potentially suffer from degraded
performance due to this problem. Furthermore, they also may have computa-
tional difficulties. The large cardinality in the order of hundred thousands or
millions of input features necessary for visual word generation algorithms slows
down linear SVMs and is still prohibitive for non-linear SVMs.

In this paper, we presented one special instance of an interpolation between
unsupervised clustering and local classification. In general one can generate N
visual words by using unsupervised clustering to obtain N ·2−k base clusters and
train k supervised classifiers at each cell which generates 2k additional words at
the N · 2−k clusters.
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Fig. 2. Pascal VOC2009 example images.

Fig. 3. ImageCLEF2010 example images.

3 Datasets

Pascal VOC2009 data set has been used for the Pascal Visual Object Classifi-
cation Challenge [4]. The part with disclosed labels is comprised of 7054 images
falling into twenty object classes. The objects typically have highly varying sizes,
positions and backgrounds.

ImageCLEF2010 PhotoAnnotation data set has in its labeled part 8000 im-
ages from flickr with 93 concept classes with highly variable concepts containing
well defined objects as well as many rather ambiguously defined concepts like
Citylife, Cute or Visual Arts which makes it highly challenging for any recogni-
tion system.

4 Experimental Setup

As the base features, we computed for each image grey and rgb SIFT features [15]
on a dense grid of pitch size six. Our choice is a reduced set inspired by the win-
ners’ procedures of ImageCLEF2009 PhotoAnnotation and Pascal VOC2009 [4].
The base features are clustered with the proposed method, and three baselines,
i.e. vanilla k-means, hierarchical k-means (HKM) and ERCF. HKM extracts
N/2 clusters at the top and 2 clusters at the lowest level which is close to the
proposed method. Due to huge number of all base features, we used randomly
drawn SIFT features for clustering: 2.4 millions for the grey color channel and
800000 for rgb-SIFT which has the triple dimensionality of grey SIFT. We have
chosen these two color channels exemplarily for their different dimensionality as
it is known that the quality of density estimation which is implicitly performed
by k-means may deteriorate in higher dimensions.
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The local SVMs were trained with five-fold cross validation over regulariza-
tion constants 0.25, 1 and 4. For each cluster, the best SVM was selected from
10 candidates generated by our procedure based on the cross validation scores.
Due to computational costs, we limited for SVM training the number of base
features to 5000 by random selection from all base features in each local cluster.

For visual concept classification, we deployed the χ2-kernel based on bag-of-
word features whose width is set to the average χ2-distance. Then, all kernels
were normalized to standard deviation one in Hilbert space, which allows to use
the regularization constant 1 as a good approximative rule of thumb for SVM
training, where we employ the shogun toolbox [16]. The performance is mea-
sured with average precision (AP) and area under curve (AUC) which are both
threshold-invariant ranking measures. We evaluate all settings with 10 random
splits to see statistical significance.

In order to advantages of proposed method in performance and runtime, we
considered the following two settings.

Experiment 1. Comparison between the vocabularies with the same size of
500 words.

Experiment 2. Comparison of vanilla k-means with 4000 words and the other
vocabularies with 8000 words.

In the first case, the vocabularies except for k-means can be computed much
faster. Therefore, it is still OK, if the alternatives perform at least on par with
k-means. In the second case, the larger 8000 vocabularies can be generated eas-
ily from the 4000 k-means prototypes by our algorithm and HKM with small
computational costs, while ERCF can construct 8000 words quickly. Here, we
are interested in performance gains over the standard bag-of-words procedure
based on k-means.

5 Results

5.1 Concept Recognition Performance

The recognition performances using rgb SIFTs are summarized in Table 1 and 2
for VOC2009, and 3 and 4 for ImageCLEF2010. Results using grey SIFTs with
qualitatively the same outcome are given in Appendix.

In Experiment 1, we compared vocabularies with 500 word in total. For both
data sets (Table 1 & 3, the proposed method achieved slightly higher scores
than k-means within shorter runtime, while the other faster variants degraded
their performances to some extent. We further tried variants of our method with
early-stopped clusters, where we reduced the number of k-means iterations to
five. The performance did not drop much, because the clustering served only
as a rough initialization for local classifications. This suggests that an exact
density based clustering does not play a too large role and sheds an interesting
light on claims that density-based clustering is inferior to alternatives such as
radius-based clustering [17, 6].
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In Experiment 2, we compared vocabularies whose sizes are closer to the ones
used in recent competitions (k-means with 4000 words and the faster methods
with 8000 words). Note that we did not compute vanilla k-means 8000 as cluster-
ing would take almost two weeks and is deemed too slow given the used setting.
This is another way of fair comparisons, i.e. under equal time limitations. For
VOC2009, our approach achieved notable gain over the k-means baseline, while
HKM improved only slightly or ERCF even lost against the baseline. On the
other hand, on ImageCLEF2010, all larger vocabularies of size 8000 did not im-
prove the 4000 k-means significantly. We will see that for some of the abstract
concepts in ImageCLEF2010 our algorithm degraded recognition performances.
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Fig. 4. Class-wise differences by AUC for VOC2009, rgb channel between proposed
method, 8000 words and vanilla k-means 4000 words (left), hierarchical k-means 8000
words (mid), ERCF 8192 words (right).

Table 1. Recognition performances of the baselines with 500 words versus those by our
approach with 250 clusters and local SVMs (Experiment 1) on VOC2009 (summary
from 10 repetitions).

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM250x2 43.87 ± 5.15 85.83 ± 1.71
baseline: rgb-SIFT, ERCF4x128 42.19 ± 5.33 85.39 ± 1.53
baseline: rgb-SIFT, KM500 44.46 ± 5.58 86.14 ± 1.78
proposed: rgb-SIFT, KM250, 5 iters+250 lin SVM 45.16 ± 5.28 86.19 ± 1.70
proposed: rgb-SIFT, KM250+250 lin SVM 44.99 ± 5.25 86.50 ± 1.45
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Table 2. Recognition performances of the baselines with 4000/8000 words versus those
by our approach with 4000 clusters and local SVMs (Experiment 2) on VOC2009
(summary from 10 repetitions).

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM4000x2 50.04 ± 5.18 88.04 ± 1.62
baseline: rgb-SIFT, ERCF16x512 47.54 ± 5.11 87.32 ± 1.54
baseline: rgb-SIFT, KM4000 48.94 ± 5.08 87.54 ± 1.73
proposed: rgb-SIFT, KM4000+4000 lin SVM 52.70 ± 5.41 89.11 ± 1.64

By inspecting the differences between the proposed method and vanilla k-
means in Figure 4 (left) and 5, we see some gains on most classes and a small
fraction of setbacks For VOC2009 data we observe larger gains for classes bot-
tle(5), cow(10) and pottedplant(16) which belonged to the rather difficult classes
according to their performance on test data results for the winners’ submis-
sion. For ImageCLEF2010 data the trends are more diverse. For the rgb chan-
nel we lose performance with the proposed method in 15 concepts out of 93
like birthday(65),grafitti(67),abstract(72),cat(76) and bicycle(82), while having
many gains across a variety of narrow and broad concepts like in Partylife(1),
River(14), Motion Blur(39), Architecture(53), Visual Arts(66), Train(84), Skate-
board(86) and Child(90). We assume that it is harder to create a meaningful
binarization of all concepts into two classes when the number of concepts in-
creases from 20 in VOC2009 to 93 in ImageCLEF2010. Here using a multi-class
classification with several classes of approximately equal size could turn out to
be beneficial.

5.2 Runtime Considerations

For 8000 visual words the classifier training required merely about 10 minutes
on a 128 CPU cluster when using liblinear [18]. The linear SVMs are compa-
rably fast despite the involved optimization problem, because they run on a

Table 3. Recognition performances of the baselines with 500 words versus those by
our approach with 250 clusters and local SVMs (Experiment 1) on ImageCLEF2010
(summary from 10 repetitions).

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM250x2 32.53 ± 0.86 73.55 ± 1.30
baseline: rgb-SIFT, ERCF4x128 32.50 ± 1.40 73.62 ± 1.56
baseline: rgb-SIFT, KM500 33.07 ± 1.03 73.91 ± 1.44
proposed: rgb-SIFT, KM250, 5 iters+250 lin SVM 33.45 ± 0.94 74.38 ± 1.51
proposed: rgb-SIFT, KM250+250 lin SVM 33.58 ± 0.92 74.40 ± 1.41
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Table 4. Recognition performances of the baselines with 4000/8000 words versus those
by our approach with 4000 clusters and local SVMs (Experiment 2) on ImageCLEF2010
(summary from 10 repetitions).

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM4000x2, 36.29 ± 1.28 76.20 ± 1.50
baseline: rgb-SIFT, ERCF16x512 36.48 ± 1.19 76.04 ± 1.48
baseline: rgb-SIFT, KM4000, 36.16 ± 1.18 75.97 ± 1.40
proposed: rgb-SIFT, KM4000+4000 lin SVM 36.78 ± 1.19 76.60 ± 1.44
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Fig. 5. Class-wise differences by AUC for CLEF2010, rgb channel between proposed
method, 8000 words and vanilla k-means, 4000 words (other 2 omitted for readability).

small local set of features only. The k-means distance computation step is a
simpler algorithm but gets executed globally on the set of all features (800000
for rgb SIFT, 2.4 Mio for grey SIFT). A single core k-means implementation
required two hours for each iteration of k-means in order to generate 4000 visual
words. For 8000 words the time would roughly be doubled. Typically multi-core
implementations of k-means can be used to speed up this process as well as
the unsupervised part in our proposed method, however they tend to end at
parallelizations to 8 CPUs or require specialized hardware to use more cores.
The proposed approach allows the distribution of the supervised classification
part to independent CPUs. It has been already mentioned in Section 2 that
our algorithm requires during bag of word computation time for N visual words
N/2 + 1 inner product evaluations compared N such steps for vanilla k-means.
This theoretical claim is consistent with the average feature computation times
we observed per image for rgb-SIFT: KM4000 takes 58.73 s, ERCF16x512 takes
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7.8 s, hierarchical KM4000x2 requires 64.09, a bag of words feature based on
KM8000 based on a prematurely terminated clustering needs 128.43 s. The run-
ning times for bag of words computation using such kind of clustering are fully
comparable, whereas classification performance might be slightly degraded. The
proposed method KM4000 + 4000 linear SVMs takes 68.28 s which is in the
range of the other k-means based methods which include a vocabulary of size
4000.

In practice running times are affected by many additional factors. Our system
for example stores sift features in bzip2-ed form for keeping disk space within
reasonable bounds. This requires to uncompress them in memory which adds a
certain offset to each bag of words computation step.

5.3 Label Distribution Statistics across Visual Words

We have seen in Section 5.1 that the proposed method performs better in terms
of error measures. The performance was examined class-wise in the aforemen-
tioned section. Now we would like to assume the word-wise viewpoint. For sanity
checking we examine whether the usage of local classifiers leads to a difference
in base feature assignments to visual words. To this end, we computed for each
visual word the entropy of label distribution given by all base features which
are assigned to the visual word in question. Consider a visual vocabulary V
and a set of K base features with {0, 1}-valued multi-labels from C concepts
{(bi, yji), j = 1, . . . , C, i = 1, . . . ,K}. Define using proper normalization

p(yc, v) ∝
∑

i|v=arg minw∈V d(bi,w)

yci (4)

We can compute the corresponding entropy τ(v) of the label distribution for
a fixed word [19].

τ(v) = −
C∑

j=1

p(yj |v) log(p(yj |v)) (5)

A lower entropy suggests a better separation of base features assigned to different
labels for a given word. To compare a visual vocabulary as a whole we consider
the cumulative sums of distribution of these entropies over the set of all visual
words in a vocabulary. Figure 6 compares this distribution between the proposed
method and hierarchical k-means with 4000x2 clusters, which is structurally the
closest baseline, both using 8000 words. We observe that the proposed method
has a higher mass of visual words at lower values of the label distribution entropy,
which indicates that more informative words about some visual concepts were
selected.

6 Conclusion

In this paper, we proposed a hybrid algorithm of unsupervised clustering and
supervised linear SVMs for visual codebook generation. On VOC2009 and Im-
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Fig. 6. Cumulative distribution functions of the label entropy across all visual words,
rgb channel for the proposed method, 8000 words and hierarchical k-means, 8000 words,
Upper: CLEF2010, Lower: VOC2009.

ageCLEF data sets, we showed clear advantages either in recognition perfor-
mance or in computation speed over purely unsupervised (e.g. k-means, HKM)
and purely supervised (e.g. ERCF) procedures. In particular, our approach can
reduce runtime of word generation and assignment almost half without losing
performance, while the fastest choice ERCF often loses unignorable amounts
in performance scores. Furthermore, we can double the standard k-means vo-
cabularies with small extra costs, which brought substantial improvements in
VOC2009 and for majority of concepts in ImageCLEF2010. Further research
should be done to incorporate fast linear multi-class classifiers or to find better
binarization procedures used for the SVM training.
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7 Appendix

7.1 Results for Grey SIFT Features

Table 5. Results for VOC2009 dataset with grey SIFT , 10-fold cross-validation.

Method / Score AP AUC

baseline: SIFT, hierarch KM250x2 words 43.27 ± 5.23 85.48 ± 1.93
baseline: SIFT, ERCF4x128 words 41.11 ± 5.21 84.84 ± 1.54
baseline: SIFT, KM500 44.03 ± 5.74 85.81 ± 1.90
proposed: SIFT, KM250, 5 iter+250 lin SVM 44.28 ± 5.75 85.94 ± 1.91
proposed: SIFT, KM250 +250 lin SVM 44.60 ± 5.18 85.93 ± 1.86

baseline: SIFT, hierarch KM4000x2 49.49 ± 5.03 87.71 ± 1.67
baseline: SIFT, ERCF16x512 52.04 ± 5.14 88.60 ± 1.71
baseline: SIFT, KM4000 51.28 ± 5.59 88.47 ± 1.47
proposed: SIFT, KM4000+4000 lin SVM 52.07 ± 5.08 88.85 ± 1.63

Table 6. Results for CLEF2010 PhotoAnnotation dataset with grey SIFT, 10-fold
cross-validation.

Method / Score AP AUC

baseline: SIFT, hierarch KM250x2 32.37 ± 1.04 73.49 ± 1.28
baseline: SIFT, ERCF4x128 31.48 ± 1.28 72.57 ± 1.84
baseline: SIFT, KM500 words 32.62 ± 0.96 73.57 ± 1.40
proposed: SIFT, KM250, 5 iters+250 lin SVM 32.31 ± 1.08 73.49 ± 1.41
proposed: SIFT, KM250, 120 iters+250 lin SVM 32.78 ± 1.16 73.82 ± 1.39

baseline: SIFT, hierarch KM4000x2 35.42 ± 1.09 75.78 ± 1.36
baseline: SIFT, ERCF16x512 34.82 ± 1.05 75.00 ± 1.50
baseline: SIFT, KM4000 35.13 ± 1.32 75.30 ± 1.32
proposed: SIFT, KM4000+4000 lin SVM 35.74 ± 1.26 76.04 ± 1.25


