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Abstract

In this paper we evaluate biased random sampling as image representa-

tion for bag of words models in combination with between class information

transfer via output kernel-based multi-task learning using the ImageCLEF

PhotoAnnotation dataset. We apply the mutual information measure for

measuring correlation between kernels and labels. Biased random sampling

improves ranking performance of classifiers and mutual information between

kernels and labels. Output kernel multi-task learning (MTL)2 permits asym-

metric information transfer between tasks and scales to training sets of several

thousand images. The learned contributions of source tasks to target tasks
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are shown to be semantically consistent.

Our best visual result which used the MTL method was ranked first

according to mean average precision (mAP) within the purely visual submis-

sions in the ImageCLEF 2011 PhotoAnnotation Challenge. Our multi-modal

submission achieved the first rank by mAP among all submissions in the same

competition.

Keywords: Image Ranking, Image Classification, Multiple Kernel

Learning, Multi Task Learning, Bag-of-Words Representation, Biased

Random Sampling, ImageCLEF, Mutual Information

1. Introduction

Learning machines have been successfully employed in a variety of scien-

tific fields such as Chemistry, Physics, Neuroscience and have become stan-

dard techniques in industrial data analysis. A particularly hard learning

task is machine computer vision where the data is highly complex and even

seemingly simple questions such as image annotation are easy for humans,

but extraordinarily hard for a machine. In this paper we take a statistical

approach to image annotation and show novel algorithmic contributions that

help to push the boundaries of this problem.

We focus on two aspects, one at the early stage of image annotation

and one at a late stage. Firstly, we consider biased random sampling for

the selection of local features in a bag of words (BoW) 3 model. Secondly,

we attempt to transfer information between semantic concepts by computing

3bag of words
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kernels from classifier outputs and combining them using non-sparse multiple

kernel learning (MKL)4.

We evaluate these contributions on the 99 semantic concepts of the Im-

ageCLEF 2011 PhotoAnnotation Dataset [1] which itself was created from

the MIRFLICKR-1M dataset [2]. The methods presented here have been

used in the ImageCLEF 2011 PhotoAnnotation Challenge on 10000 images

with undisclosed concept labels. Our visual submissions using biased random

sampling and multi-task information transfer and our multi-modal submis-

sion also using biased random sampling achieved both the best results by

the mean Average Precision (mAP) measure among the purely visual and

multi-modal submissions, respectively. 5

The introduction concludes by discussing related work in Section 1.1 and

the ImageCLEF Dataset in Section 1.2. Section 2 gives an overview over

Bag-of-Word features and our particular setup. The questions addressed in

our experiments and evaluated here are

• Local feature computation: What impact does biased random sampling

have on feature properties and the ranking quality for a set of semantic

concepts? See Section 3.

• Classifier combinations : Can we transfer information between classes

to improve ranking performance? See section 4.

4multiple kernel learning
5Submissions by other groups like BPACAD (Hungarian Academy of Sciences, Bu-

dapest, Hungary), CAEN (University of Caen, France), ISIS (ISIS Group of the University

of Amsterdam, Netherlands) and LIRIS (LIRIS Group of the University of Lyon, France)

were ranked closely.
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1.1. Related Work

1.1.1. Biased Random Sampling

The detection of salient regions has attracted research efforts over the

past years. The human ability to find unspecific but striking content in a

short glimpse or specific objects in a prolonged eyeballing session serves as

the leading motivation. Saliency algorithms have been developed for various

scales: considering differences compared to sets of images, global differences

within a single image or local differences within a single image. center sur-

round differences over multiple scales and feature cues are used in [3] in order

to find parts of an image which are salient which belongs to the last kind

in the above consideration. Another approach in [4] discusses saliency based

on color edges using a multi-scale approach which resorts to first two ideas

in the above consideration. Saliency in [4] is linked to inverse frequency of

occurence and equally frequent edges are assigned the same saliency value.

This in turn is based on [5]. Saliency based on Shannon entropy has been

discussed in [6]. Outlier analysis based on clustering as a tool for defining

saliency has been used in [7].

The link between saliency maps and object categorization is introduced in

[8] by learning to sample subwindows of an image. Biased random sampling

for local features of a BoW model has been used in [9] by using a top-down

object class prior map and a bottom up visual saliency model inspired from

human visual processing.

1.1.2. Information Transfer between Classes

Relations between concepts, e.g. co-occurrence and exclusiveness, spa-

tial and functional dependencies or common features and visual similarity,
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provide an important source of information which is efficiently utilized by hu-

mans. For instance, knowing that an image contains chairs, knifes and forks

strongly suggests that there may be a table in the image, simply because

these items are functionally related and often co-occur in images. Therefore

transferring information about other classes may improve ranking perfor-

mance.

Recently, several approaches were proposed to incorporate such informa-

tion into the image annotation task. One promising approach to transfer

knowledge from some classes to others is to share information between ob-

ject classes on the level of individual features [10, 11, 12, 13, 14] or entire

object class models [15, 16]. Other algorithms like [17, 18, 19] were proposed

for zero-shot learning in a large-scale setting, i.e. to learn concepts with very

little or without training examples by transferring information from other

classes. Another way to transfer information between classes is to incorpo-

rate the relations into the learning step. There exists also a large literature on

Multi-Task Learning (MTL) methods which aim at achieving better perfor-

mance by learning multiple tasks simultaneously. One principled approach

[20] is to define a kernel between tasks and treat the multi-task problem

among the lines of structured prediction [21], i.e. to represent relations be-

tween tasks by a kernel matrix and perform multi-task learning by using a

tensor product of the feature and task kernel as input for SVM. Although this

method is theoretically attractive, it has some drawbacks which reduce its

applicability in practice. For example it requires to define a kernel between

tasks even when one has no clear prior knowledge about similarities between

tasks and the interactions between tasks are symmetric. This implies that
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bad performing tasks may spoil the performance of better performing ones.

Finally, structured prediction leads to one big optimization problem work-

ing typically on a kernel of squared size number of tasks times the number

of samples. This makes the application on training data with many train-

ing samples and many tasks challenging in practice. Another kernel-based

approach for multi-task learning [22] uses projections of external cues to

weight support vectors depending on the sample to be classified. Several

other Multi-Task Learning methods have been proposed like [23] where the

authors used Gaussian Processes for learning multiple-tasks simultaneously.

1.2. The Dataset

We evaluated our methods on the data from the annotation task of the

ImageCLEF2011 Photo Annotation Challenge [1] because of its diverse large

set of semantic concepts and challenging images.

The challenge task required the annotation of 10000 images in the pro-

vided test corpus according to the 99 pre-defined semantic concepts. Note

that this year’s ImageCLEF photography-based challenge provides addition-

ally a second challenging competition [1], a concept-based retrieval task. In

the following we will focus on the firstly mentioned annotation task over the

10000 images. This dataset comes with 8000 annotated training images. The

annotation belongs to the multi-label category, i.e. each image may belong

to many concepts simultaneously. The data in the corpus is a subset of the

MIRFLICKR-1M dataset [2].

The ImageCLEF photo corpus is challenging due to its high variance in

appearance. The images are real world photographs with varying lighting

conditions and image qualities stemming from many camera models. Visual
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cues and objects have varying scales and positions. This constitutes a differ-

ence for example to the seminal Caltech101 dataset [24] which is still popular

in research today. The images in it are centered and show objects of the same

scale up to the point that for many semantic classes the class label may be

inferred from the average image of all images of one class.

Another source of complexity is the heterogeneity of semantic concepts.

It contains classes based on concrete tangible objects such as female, cat and

vehicle as well as more abstract classes such as Technical, Boring, Still Life

or Aesthetic Impression. Some of these classes could be approached using

object detectors finding bounding boxes. Others may not. This constitutes

a difference to the object-based concepts used in the Pascal VOC Challenge.

Finally, many of the concepts such as Scary, Euphoric, Still Life are highly

subjective. This implies from a statistical viewpoint an unknown but varying

amount of label noise.

2. Pipeline Description

All our experiments are based on discriminatively trained classifiers over

kernels [25] using Bag-of-Words (BoW) features. The generic Bag-of-Words

pipeline can be subsumed by Figure 1. The coarse layout of our approach is

influenced by the works of the Xerox group on Bag-of-Words in Computer

Vision [26], the challenge submissions by INRIA groups [27] and the works

on color descriptors by the University of Amsterdam [28]. It is based on com-

puting many BoW features while varying, firstly, the sets of color channels of

an image used for the computation of local features, and secondly the spatial

tilings of an image for computation of multiple concatenated BoW vectors.

7
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Figure 1: Bag-of-Words pipeline.

Table 1 shows the computed BoW features. Information about the sam-

pling methods is given in Section 3. We used color channel combinations red-

green-blue (RGB), grey (Gr), grey-opponentcolor1-opponentcolor2 (Opp) and

a grey-value normalized version of the last combination (N-Opp in Table

1). For understanding of these color descriptors see [28]. For SIFT fea-

ture computation we used the software underlying [28] available at www.

colordescriptors.com. The SIFT features are computed without orienta-

tion invariance and the grid has step size six. Another feature were nine-

dimensional vectors of quantiles corresponding to 10% to 90% percentiles

over local pixel color distributions denoted as Quantiles in Table 1.

For mapping the local features onto visual words we used either the usual

hard mapping denoted as Hard in Table 1 or rank-based soft mapping which

works as follows. The mapping of local features onto visual words is shown in

Figure 1. See [29] for an introduction to soft mappings. Be RKd(l) the rank

8



Sampling Local Color BoW No. of BoW

Feature Channels Mapping Features Dimensions

grid Quantiles RGB, Opp, Gr,

weighted Hue Rank 12 900

grid SIFT RGB, Opp, Gr,

N-Opp Hard 12 4000

grid SIFT RGB, Opp, Gr,

N-Opp Rank 12 4000

bias1 SIFT RGB, Opp, Gr Rank 9 4000

bias2 SIFT RGB, Opp, Gr,

N-Opp, N-RGB Rank 15 4000

bias3 SIFT RGB, Opp Rank 6 4000

bias4 SIFT RGB, Opp, Gr Rank 9 4000

Table 1: Bag-of-Words Feature Sets. See text for explanation.

of the distances between the local feature l and the visual word corresponding

to BoW dimension d, sorted in increasing order along all visual words. Then

the BoW mapping md for dimension d is defined as 6:

md(l) =

2.4−RKd(l) if RKd(l) ≤ 8

0 else

(1)

For all visual Bag-of-Words features we computed χ2-Kernels. The kernel

width has been set as the mean of the χ2-distances on the training data. All

kernels have been normalized to standard deviation one as this allows to

6for understanding of the constant: 2.48 ≈ 1000
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Submission Modality mAP Submission Modality mAP

BPACAD 3 T 34.56 TUBFI 1 V 38.27

IDMT 1 T 32.57 TUBFI 2 V 37.15

MLKD 1 T 32.56 TUBFI 5 V 38.33

TUBFI 3 V+T 44.34 TUBFI 4 V 38.85

LIRIS 5 V+T 43.70 CAEN 2 V 38.24

BPACAD 5 V+T 43.63 ISIS 3 V 37.52

Table 2: Results by mAP on test data with undisclosed labels for the best three

and our own submissions (10000 images, 99 concepts). T:Textual task, V:Visual,

V+T:Multimodal. See footnote in Section 1 for the full names of the groups

mentioned here.

search for optimal regularization constants in the vicinity of 1 in practice.

For the detailed results of all submissions we refer to the overview given

in [1]. A small excerpt can be seen in Table 2.

We will discuss the random biased sampling and the output kernel Multi-

Task Learning (MTL) in more detail as the improvements from these techiques

are generic and have value beyond the submissions to ImageCLEF.

3. Biased random Sampling

Humans are able to capture the most salient regions an image within a

short time. The detection of salient regions has attracted research interest

over the past years.

The application of salient region detectors to object categorization has

been made in [8] for the selection of image subwindows. [9] uses saliency
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detection for BoW models. Random biased sampling in the context of BoW

models is based on drawing centers of computation regions for local features

from a probability distribution over pixels of the image.

However the BoW model seems to be different from many models of

human visual processing. Therefore we argue that the saliency detectors for

usage with the BoW model need to be adapted to its specific properties,

particularly taking the local features into consideration. Given that the best

local features for bag of word models are gradient-based ones like SIFT [30]

or SURF [31] we aim at extracting extract gradient-based features centered

on gradient-rich regions.

Furthermore it might be useful to adapt the scale of the detectors to the

scale of the local features whereas the usual way is based on the opposite

idea of extracting local features on a scale predicted by the saliency detec-

tor. Since the saliency detectors are not adapted to BoW models their scale

predictions might be not optimal for usage with BoW features. This consti-

tutes a difference to approaches using across scale differences and multi-scale

analysis.

Finally, given the variety of concepts in the ImageCLEF 2011 PhotoAnno-

tation dataset which contains global impression concepts like Calm or back-

ground concepts like Sky it seems reasonable not to suppress feature extrac-

tion from larger parts of the image completely as done with some salient

region approaches. For the same reason we refrained from early decisions

like object detection as in [5].

[9] uses a bottom-up attention bias model and top-down object class

prior maps. The latter made sense for the data sets used in the original
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publication but seemed to have no good justification for many of the more

abstract ImageCLEF concepts which do not rely on the presence of a single

object such as e.g. Natural, PartyLife. Therefore we also used only the model

for an attention based bias [3] named bias3 in the following and introduced

gradient-based biases for probabilistic sampling of local features.

Such probabilistic sampling approaches offer two potential advantages

over Harris Laplace detectors: Firstly, we get key points located on edges

rather than corners. A motivating example can be seen in Figure 3 – the

bridge contains corner points but the essential structures are lines. Similar

examples are smooth borders of buildings, borders between mountains and

sky, or simply a part of circle with low curvature. In that sense our approach

can be compared to using the absolute value of the Harris corner measure.

Secondly, we did adjust the number of local features to be extracted per

image as a function of the image size instead of using the typical corner

detection thresholds. The reference is half of the number of local features

extracted by grid sampling, in our case six pixels. This comes from the idea

that some images e.g. showing large portions of sky can be more smooth

in general which may lead to a very low number of extracted key points.

However too sparse sampling of key points may hurt the recognition and

ranking performance substantially as shown in [32] and also supported by

the good results of per pixel dense sampling in [33]. Given such results we

think that forcing the number of key points to be extracted to be proportional

to the image size rather than fixed thresholds is the second key to the good

performance of our key points.

The usage of random biased sampling over thresholded keypoint detectors

12



has a further qualitative justification. The BoW feature can be represented as

an expectation over the extracted local features. Consider the BoW mapping

over local features l computed from regions defined by points p on an image

drawn from a probability distribution P . Be m the vector-valued mapping of

local features onto visual words. The mapping of local features onto visual

words is shown in Figure 1. One example is the hard mapping which adds

for each local feature a constant to the nearest visual word in the resulting

BoW feature. Then the BoW feature v can be represented as in equation 2.

Biased random sampling corresponds to a choice of a probability measure P

in this framework.

v =

∫
p

m(l(p))dP (p) . (2)

3.1. Biased Sampling Methods

In the following we describe four detectors bias1 to bias4 which have been

used in our experiments. Their probability maps for one composite image

depicting many natural scenes in one are shown in Figure 2.

bias3 is a simplified version of an attention based detector [3]. However

this detector requires to set scale parameters for across scale differences. The

highly varying scales of motifs in the ImageCLEF dataset makes it difficult

to find a globally optimal set of scales without expensive optimizations. This

inspired us to try detectors which depend to a lesser degree on scale param-

eters:

bias1 computes an average of gradient responses over pixel-wise images

of the following color channels: grey, red minus green, green minus blue and

13



Figure 2: An image and its probability maps from biased random sampling. Upper

Left: bias3, Upper Right: bias1, Lower Left: bias2, Lower Right: bias4.
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blue minus red. The probability map is given as

P (x, y) ∝

(
exp

(∑
c

B1 ◦ ‖∇Ic(x, y)‖2

)
− 1

)
exp (B2 ◦ Ig(x, y)) (3)

where Ig(x, y) is the grey channel of the original image at pixel (x, y), Ic(x, y)

is one of the above color difference channels, Bσ is a Gaussian blur operator

using width σ. ∇ denotes an image gradient operator. The product of

exponentials achieves a weak weighting using image brightness Ig(x, y) and

a stronger weighting based on the gradients over the grey and the color

difference channels Ic(x, y).

bias2 is like bias1 except for dropping the grey channel and using a max-

imum instead of the sum over color channels. The probability map is given

as using the same definitions as for equation 3

P (x, y) ∝
(

exp
(

max
c
B1 ◦ ‖∇Ic(x, y)‖2

)
− 1
)

exp (B2 ◦ Ig(x, y)) (4)

Thus it will fail on grey images but detects strong local color variations.

On the other hand such differences between RGB color channels are more

prominent on bright regions. This allows to use features over normalized

color channels more safely on color images.

bias4 takes the same set of color channels as the underlying SIFT de-

scriptor and computes the entropy of the gradient orientation histogram on

the same support as the SIFT descriptor would use. We normalize the nega-

tive entropy to lie in [0, 1] and take the pixel-wise product with the gradient

norm. These products are averaged over all used color channels and scales.

P (x, y) ∝
∑
s

∑
c

(1− E (supps[Ic(x, y)])) (B1 ◦ ‖∇Ic(x, y)‖2) (5)
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Be supps[Ic(x, y)] the region mask to be used for the computation of a local

feature at scale s centered on pixel (x, y). The region mask is applied to

the color channel Ic. E is the Shannon entropy normalized to [0, 1]. Regions

with low entropy are preferred in the probability map used for biased random

sampling. This detector is adapted more closely to the SIFT feature by

computing a score on its support and color channel. The question behind

this detector is whether the focus on regions with low entropies in gradient

orientation distributions constitutes an advantage. The usage of the entropy

as measure is reminiscent of the salient region detector from [6] but it is

adapted to the color channels and scale of the local feature instead of using

differences across scales as in [6]. A comparison of the extracted key points

to a Harris Laplace detector is shown in Figure 3.

Figure 3: The essential structures of the bridge are lines rather than corners. Left:

bias4 key points. Right: Harris Laplace using the same number of key points.

3.2. Insights from Random Biased Sampling

Here we evaluate the performance of our BoW features which were based

on biased random sampling.

16



sampling type grid bias1 bias4

mAP 36.71 ± 6.469 36.75 ± 6.686 36.85 ± 6.696

sampling type bias2 bias3 all

mAP 36.49 ± 6.471 35.04 ± 6.423 38.31 ± 6.792

Table 3: Mean Average Precisions for varying sampling types, computed

over averages kernel based on six kernels: RGB- and Opponent-SIFT and

all three spatial tilings. Results were computed on training data via 12-fold

cross-validation.

3.2.1. Ranking Performance Evaluation

In Table 3 we see that biased sampling is more or less equally strong

in mAP ranking performance, however, it uses at most half of the local

features as dense sampling; this implies that it is at least two times faster

during BoW feature computation. Since bias3 suffers from our suboptimal

manual selection of scale parameters for the across-scale differences from

[3], it performs worse than the other methods. On the other hand using

bias4 gives best results. Importantly note that a combination of all sampling

strategies greatly improves performance.

3.2.2. Mutual Information Analysis

Biased random sampling increases mutual information (MI) and kernel

target alignment [34] (KTA) between kernels and labels compared to dense

sampling on average over the concepts. This finding is remarkable because

these methods use different setups to measure informativeness with respect

to labels: Kernel target alignment is based on similarities from Hilbert space
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geometry whereas the mutual information criterion relies on co-occurrence

probabilities between kernel values and labels. The observed increase in

MI and KTA may serve as a theory-driven quantitative validation for our

qualitative argument that gradient based local features like SIFT should be

sampled over gradient rich regions.

The mutual information I(K,Y ) between the kernel K and the labels Y

for a concept class has been computed by discretizing the kernel values Kij

into F Intervals Vf bounded by equidistant quantiles. Using quantiles ensures

that each interval contains the same number of kernel values. We studied

several values for F = 26, . . . , 215 but the comparison of mutual information

between kernels yielded the same qualitative results.

I(K,Y ) =
F∑
f=1

∑
Y Y >=+1,−1

p(Kij ∈ Vf , Y Y >) log

(
p(Kij ∈ Vf , Y Y >)

p(Kij ∈ Vf )p(Y Y >)

)
(6)

For kernel target alignment we center the kernel and the labels and computed

the quantity

A(K,Y ) =
〈K,Y Y >〉F
‖K‖F‖Y Y >‖F

(7)

where 〈·, ·〉F is the Frobenius norm. SVMs are invariant to centering due to

their dual constraint
∑

i αiyi = 0. It was argued in [35] that centering is

required in order to correctly reflect the test errors from SVMs via kernel

alignment.

The centered kernel which achieves a perfect separation of two classes is

proportional to ỹỹ>, where

ỹ = (ỹi), ỹi :=

 1
n+

yi = +1

− 1
n−

yi = −1
(8)
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and n+ and n− are the sizes of the positive and negative classes.

Table 4 shows the mutual information averaged over all concepts and the

average kernel target alignment for dense sampling and our three biasedly

sampled kernels bias 1, bias 2 and bias 4. The absolute values of the mu-

tual information score are small which underlines the difficulty of the task

in average but the relative increase for bias 4 amounts to 9%, for bias 2 to

10% . This proves our claim about increased mutual information and kernel

target alignment under biased random sampling. The mutual information

is increased for bias 4 in 62 concepts and for bias 2 in 69 concepts out of

99. Apart from considering the average over all classes we can check sin-

gle concept classes with particularly conspicuous differences under MI and

KTA. When considering the classes where dense sampling yields better MI

and KTA than biased sampling, the same concepts fill the top four ranks for

both methods: NoBlur, PartlyBlurred, Sky and Clouds. This is semantically

consistent: Sky and Clouds are lowly textured concepts. Capturing them

requires to look at weaker gradients whereas our biased sampling prefers

stronger gradients (see the sampling in Figure 3 for an example). Similarly

blur is per definition the absence of strong gradients. Thus is is difficult to

classify various amounts blur with gradient based sampling methods alone.

This shows also the limitations of our biased sampling methods. Another

leading concept is Underexposed which also shows low gradients because un-

derexposed scenes are overall dark.

On the other end of differences, when considering the classes where bi-

ased sampling yields better MI and KTA than dense sampling, eight classes

are in the top ten rank for both methods: Male, ParkGarden, NoPersons,

19



kernel dense bias 1 bias 4 bias 2 average

MI (×104) 7.183 7.637 7.838 7.902 7.922

KTA (×103) 23.08 23.00 23.86 23.37 24.19

Table 4: Mutual information and kernel target alignment for average kernels

of various sampling types and the average kernel from all types, averaged

over all concepts. Same kernels used as in Table 3. Results were computed

on training data.

SinglePerson, Portrait, Trees, Plants, LandscapeNature. All are related to

vegetation or depictions of humans. For the former we expect texture-rich

scenes. For the latter we assume that many person shots have a high contrast

to the background and well visible facial features. Both can be captured well

using gradient-based biased random sampling. Remarkably, this is semanti-

cally consistent as well.

In conclusion it is apparent how differences between dense and biased

sampling for single concepts in mutual information and kernel target align-

ment correspond to our own intuition about the concepts and are consistent

between both measures. This demonstrates the sanity of usage of these mea-

sures for comparison of kernels.

This analysis has one drawback however: the increase in kernel target

alignment and mutual information is not reflected by the SVM results in

Table 3. Our hypothesis is that the overfitting property of SVMs may limit

the advantage of biasedly sampled kernels with respect to mutual informa-

tion and kernel target alignment. The key difference between kernel target

alignment and the AP score over an SVM output function is that the latter
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uses an output computed as a kernel weighted by learned support vectors.

However it is known that the SVMs overfit strongly on training data rela-

tive to testing splits in a cross-validation setup. For many classes we had

AP scores on training data of 100 implying perfect separation. Such over-

fitting may imply a suboptimal selection of support vectors for densely and

biasedly sampled kernels which can reduce the advantage of the biasedly

sampled kernels compared to the densely sampled kernel. The overfitting

may be stronger for the biasedly sampled kernels because we had used less

local features per image. This view can be qualitatively supported by the

interpretation of the BoW feature as an expectation: the densely sampled

kernel used more local features per image, thus the expectation defining a

BoW feature has a lower variance and learning might be more stable. This

variance reduction effect can be observed experimentally in Table 3: with

the exception of the non-gradient based sampling bias 3 the densely sampled

kernel had a lower variance in AP scores over the cross-validation batches

than the biasedly sampled kernels.

Despite that averaging the biasedly sampled kernels with the densely

sampled kernel improved AP scores significantly as seen in Table 3 and our

challenge results.

4. Output Kernel Multi-Task Learning

Utilizing relations between concepts is crucial for human image under-

standing as integration of information from other classes reduces the uncer-

tainty and ambiguity about the presence of the target class. Incorporating

the information about other concepts as an additional cue into the ranking
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process is the main goal of our Output Kernel Multi-Task Learning method.

4.1. Output Kernel MTL Method

A general approach to utilize information from other classes is to use ex-

isting trained classifiers and combine their outputs using generic methods.

Boosting or Multiple Kernel Learning (MKL) [36] would be a natural can-

didate. The idea of incorporating information from the classifier outputs of

other tasks via MKL has been termed Output Kernel Multi-Task Learning

and recently published [37]. Note that the Output Kernel MTL idea is, in

philosophy, close to Lampert and Blaschko [38], however, their procedure

cannot be used for image categorization where there are no bounding boxes

for most of the concepts.

In our method we tackle the MTL problem by constructing a classifier

which incorporates information from the other categories via MKL for each

class separately. Our procedure consists of two steps. It is shown in Figure

4. In the first step, shown as 1 in Figure 4, we construct a kernel (called

output kernel) from the SVM outputs of each task, whereas in the second step

denoted by 2 in Figure 4 we combine the information contained in the visual

features and the information contained in the output kernel by applying

non-sparse MKL. In more formal terms, we compute the output kernels by

measuring similarities between the SVM outputs by using the exponential

kernel

Kc(xi,xj) = exp
(
− [sc(xi)− sc(xj)]2

)
, (9)

where sc(xi) is the score of SVM for the c-th category for the i-th ex-

ample xi. The output kernels from other tasks are combined with the
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feature kernels by MKL which learns the optimal weights {βj}mj=1 of the

combined kernel
∑m

j=1 βjKj(x, x̄) and the parameters of support vector ma-

chine (SVM) simultaneously by employing a generalized p-norm constraint

‖β‖p =
(∑

j β
p
j

)1/p
≤ 1. The kernelized form of non-sparse MKL is given as

min
β

max
α

n∑
i=1

αi −
1

2

n∑
i,l=1

αiαlyiyl

m∑
j=1

βjkj(xi, xl) (10)

s.t. ∀ni=1 : 0 ≤ αi ≤ C;
n∑
i=1

yiαi = 0;

∀mj=1 : βj ≥ 0; ‖β‖p ≤ 1.

For details on the solution of this optimization problem and its primal form

we refer to [36] and the SHOGUN package [39]. The parameter C in equa-

tion 10 controls the regularization for SVM parameters αi. The parameter

p in the `p-Norm in equation 10 controls the regularization for the kernel

weights. It expresses the degree of trust in the differences in utility between

kernels. The boundary case p = 1 results in the known sparse MKL which

selects only a few kernels and suppresses most others. Choosing p = 1 im-

plies the assumption that utility differences between kernels are large and

many kernels should be supressed by giving them zero or small weights. The

opposite boundary case p → ∞ leads to the summed average kernel SVM

which implies that utility differences between kernels are small, thus omit-

ting many kernels would drop information and most kernels should be kept in

the mixture with approximately equal weights. Note that the amount of the

information which is being transferred between classes is controlled by the

weights β and does not need to be set a priori and the interactions between

tasks do not need to be symmetric.
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Figure 4: Flow diagram of output kernel MTL method.

As seen in Figure 4 we used in our experiments for computation of output

kernels the SVM outputs sc(xi) obtained from cross-validation because SVMs

overfit strongly on training data up to the point of perfect predictions which

distorts outputs on training data. The Gaussian kernels have been prepared

in the same way as described in Section 2. In order to save computation time

we did not compute output kernels from all 99 classes, but picked 12 con-

cepts under the constraints to use general concepts and to have rather high

mAP values under cross-validation (Animals, Vehicle, No Persons, Outdoor,

Indoor, Building Sights, Landscape Nature, Single Person, Sky, Water, Sea,

Trees). The classifier outputs have been computed from the average kernel

from all kernels in Table 1 which has been also used as the kernel in the

TUBFI 1 submission to the imageCLEF challenge.

We used the 12 output kernels together with the one average kernel from

all kernels in Table 1 as inputs for the non-sparse MKL algorithm resulting
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in 13 kernels. Please note the line from feature kernel to MKL Training

in Figure 4 symbolizing the fact that the visual feature kernel which was

computed in an unsupervised manner is part of the MKL kernel set for each

concept class.We relied on the MKL implementation from the shogun toolbox

[39]. We applied due to an expected lack of time a MKL heuristic. We used

one run of MKL using kernel weight regularization parameter p = 1.125

and SVM regularization constant C = 0.75. The obtained kernel weights

were used to compute for each class one weighted sum kernel. This kernel

served as input for ordinary SVMs which were trained using a large range of

regularization constants {10−1, 10−1/2, 1, 10+1/2, 10+1, 0.75, 2}.

4.2. Insights from Output Kernel MTL

Here we show the results of our Output Kernel MTL experiments and

analyse the reasons of the performance gain. Furthermore we show that

our method benefits from using asymmetric relations and visualize the most

prominent relations which turn out to be semantically meaningful.

4.2.1. Learning and Asymmetry as Key Features

There are two key features in the Output kernel MTL method – asymme-

try and learning of between concept transfer strength. We argue that both

properties are essential for a practically useful multi-task method in visual

concept ranking when the number of tasks is medium to large. Our argu-

ment is rarely seen in the classical application fields of multi-task methods

because they are based on different assumptions. Classical application fields

of multi-task methods deal typically with data coming with a small number

of tasks and small sample sizes where larger sample sizes are often inavailable
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or very expensive to obtain e.g. in chemistry or genetics. However in many

problems in computer vision data samples and concepts are easier to obtain

in larger quantities.

The asymmetry point is obvious for two reasons. We have no desire for

a symmetric method. Firstly, given a large number of concepts it is not

desirable by computational time considerations to allow every concept to be

used as sourceip17probmap2crop.pdf for information transfer. This implies

to learn a number of weights between source and target concepts which is

quadratic in the number of concepts. Secondly, when a large set of concepts

contains highly varying members, some concepts will have bad recognition

rates and low ranking scores. The bad recognition rate of such concepts

either will likely spoil the recognition rates of other concepts or the learning

method will be robust enough to suppress them. However, bad recognition

rates can be identified already during training of single-task base classifiers,

so that corresponding concepts can be omitted prior to using them in more

complex multi-task learning approaches.

The learning point is less obvious but can be demonstrated on the Image-

CLEF dataset. When having 12 source and 87 target concepts – how can we

set the 13 times 87 kernel weights? Does class-wise learning matter at all?

To see this we tried two alternative ways to set the kernel weights as shown

in Table 5. The first way is simply taking the weight for output kernels to be

10% of the weight for the visual kernel. Such a choice expresses the prior as-

sumption that the visual feature kernel is the most informative. The second

way uses our MKL weights to obtain the right scale for a kernel mixture: we

compute for each source concept class the median weight over all remaining
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weights 10% of visual kernel median of MKL weights MKL p = 1.2

mAP 35.25 ± 7.38 36.16 ± 7.30 36.36 ± 7.35

Table 5: mAP scores for various methods to set weights for output kernels.

Results were computed on Training data via 12-fold crossvalidation. The 12

source concept classes are omitted from the mean.

87 target classes and average these medians to assign each output kernel the

same weight. Of course, this uses already the results from the MKL learning

of kernel weights. Table 5 shows that still the MKL result which learns for

each class a separate weight is best. This underlines the variability in the

semantic concepts. The MKL weights outperform the second best choice in

62 out of the 87 concepts. The mean average precision is low because we

omitted the 12 source classes from the mean computation which have above

average mAP scores by crossvalidation on training data.

4.2.2. Ranking Performance Evaluation

We have used the Output Kernel MTL only in submission TUBFI 4

shown in Table 2. For each task we performed cross-validation on the training

data in order to decide whether using Output Kernel MTL is advantageous

over the standard approach. By this 42 classes were selected. The first

conclusion from Table 2 is that the output MKL gives the biggest gain within

all our purely visual submissions. It does not overfit on test data in the sense

that relative comparison of performance to other methods has the same sign

during the final evaluation test data and from cross-validation on training

data. We can see from Figure 5 that using the Output Kernel MTL improves
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test performance on most classes over the original visual kernel. Note that

the visual kernel is the average from all kernels in Table 1. It has been used

as the visual feature kernel in the output kernel MKL and for the TUBFI

1 submission. Thus transfer of information between classes seems to give

additional information and improve ranking performance.
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Figure 5: Differences in average precision between output kernel MKL results

and the visual baseline kernel which has also been used in output kernel MTL as

one kernel. Shown on 42 classes where it has been selected via cross-validation

on training data against the visual kernel baseline. Results shown on testing data

from the ImageCLEF2011 challenge submission.

4.2.3. Semantic Meaning of Kernel Weights

Another conclusion from our experiments is that the learned semantic

relations are intuitively accessible. To see this consider Figure 6 which shows
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the fifteen strongest relations between classes as learned by the output ker-

nel MTL in the form of kernel weightd. Note firstly that all these relations

are asymmetric which could not have been learned using kernel-based MTL

methods (e.g. Evgeniou et al. [20]). Each of these relations makes semanti-

cally sense. This is a sanity-check for the output kernel MTL and the used

BoW features simultaneously. The semantic consistency is in line with the

analysis in [37] where we also analysed the relations learned from the 20

PASCAL VOC classes.

We conjecture from Figure 6 that most of the improvement by output

kernel MTL can be explained by transfer of affirmative information as the

Water or Sky concepts and eliminative information depending on the target

concept as observed with No Persons source concepts, however, more com-

plex relationships like visual similarity between concepts (or backgrounds)

and higher order correlations may also play a role (see [37]).

4.2.4. Mutual Information Analysis

Here we apply the mutual information and kernel target alignment mea-

sure in the same manner as done in Section 3.2.2 to assess the information

content in our kernels relative to the labels. We compare the visual baseline

kernel (see Section 4.1) against the kernel mixtures obtained by the output

kernel MTL for each visual concept.

We observe from Table 6 a clear increase in mutual information and kernel

target alignment when using the output kernel MTL. The semantic sanity of

the underlying relations has been already validated in the Section 4.2.3.

Figure 7 shows the relative differences in mutual information between the

baseline kernel and weighted kernel from output kernel MTL for all classes.
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Figure 6: 15 most prominent semantic concept relations obtained using output

kernel MKL.

We see an improvement for many concepts. Like in Section 3.2.2, we observe a

divergence between the SVM results in Figure 5 and the mutual information,

for which we had formulated a conjecture about its cause in Section 3.2.2.

Finally, we would like to show some images which benefit most from

the Output Kernel MTL. In Figure 8 we show the images with the largest

improvement in rank for the task Family Friends (up left) with old rank:
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Figure 7: Relative differences in mutual information between the baseline kernel

and weighted kernel from output kernel MTL for all classes. Source classes set to

zero. Results were computed on training data.
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kernel baseline output kernel MTL

MI (×104) 8.42 10.79

KTA (×103) 19.99 25.74

Table 6: Mutual information and kernel target alignment for the baseline

kernel and weighted kernel from output kernel MTL averaged over all con-

cepts. Source classes excluded from the average. Scores were computed on

training data.

443 and new rank: 236, Church (up right) with old rank: 390 and new rank:

236, Small Group (down left) with old rank: 551 and new rank: 346 and

Lake (down right) with old rank: 324 and new rank: 57. We clearly see

that these images benefit from output kernel MTL. Note that three of them

are subjectively rather difficult, the church could be a museum as well, the

family scene is blurred and the small group is actually a drawing of persons.

As shown in Figure 5, in the first case the No Persons classifier helps to

identify that there are persons in the image, therefore the Family Friends

task becomes easier. In the second case, the fact that there is a building in

the image facilitates the ranking for the Church concept. According to Figure

6 the Small Group task uses the information of the Single Person classifier

and the Lake utilizes information from the Water classifier. These transfers

of information intuitively explain the improvement in ranking in Figure 8.

5. Conclusions

We systematically investigated the impact of two most novel modifica-

tions in our successful submissions to the ImageCLEF PhotoAnnotation
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Figure 8: Images with largest improvement in rank for certain concepts when

using Output Kernel MTL. Upper left: Family Friends. Upper right: Church.

Lower Left: Small Group. Lower right: Lake. Results were computed on training

data.

Challenge performed on a part of the MIRFLICKR-1M dataset, namely bi-

ased random sampling and output kernel multi-task learning. Biased ran-

dom sampling based on gradients improves mutual information and kernel

target alignment between kernels and labels compared to dense sampling.

The differences in mutual information and kernel target alignment between

dense sampling and biased sampling across concepts correspond well to the

semantics of the pre-defined concepts. Biased random sampling enhances

ranking performance. Output kernel multi-task learning yielded the best

purely visual submission in the ImageCLEF PhotoAnnotation Challenge.
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This method works reliably out of sample and it permits to perform asym-

metric information transfer between tasks. It learns the relative importance

of source tasks for each target task and scales to training sets of several

thousand images. As it is based on multiple kernel learning it is in principle

scalable up to datasets with several hundred thousands of training samples as

shown in [40] with nonlinear kernels being dealt with e.g. [41]. The learned

contributions of source tasks to target tasks are shown to be semantically

consistent. The apparent gap between raw mutual information and average

precision scores obtained from SVMs may hold interesting future insights on

dependencies between representations and learning.

Future work will study a holistic learning procedure where representations

and transfer between tasks are part of an overall integrated optimization as

well as the impact of both ideas to more complex semantic ranking measures

like the ones in [42].
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