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Abstract. We present the application of layer-wise relevance propaga-
tion to several deep neural networks such as the BVLC reference neural
net and googlenet trained on ImageNet and MIT Places datasets. Layer-
wise relevance propagation is a method to compute scores for image
pixels and image regions denoting the impact of the particular image re-
gion on the prediction of the classifier for one particular test image. We
demonstrate the impact of different parameter settings on the resulting
explanation.
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1 Introduction

Deep neural networks are well-known to excel in many fields including image
recognition [14, 6, 23], among other fields such as natural language processing
[7, 22] or speech recognition [26]. While their results are impressive, the under-
standing of what makes a neural network arrive at a particular decision is still
an open problem. Figure 1 gives an example. To the left, the figure shows a cor-
rectly classified image for class motor scooter by the BVLC reference classifier
of the caffe package [13]. However it is not clear whether the recognition is due
to parts of the scooters or due to the image composition as a street scene, due to
the typical sitting position of the people or due to other properties. A heatmap
computed by layer-wise relevance propagation given in the right side of Figure
1 shows that the most contributing parts are the wheels and backside views of
a few scooters.

In certain fields such as security, selection of results or medical applications an
interpretation of a decision is as important as the decision itself. Interpretation
of non-linear models has recently gained much interest. Several works have been
dedicated to the understanding of general non-linear estimators [4, 3, 12]. The
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Fig. 1: An image of motor scooters in a complex background and an explanation
computed by layer-wise relevance propagation [1] for a classification achieved by
the BVLC reference classifier of the caffe package [13].

success of deep neural networks has sparked research into the interpretation of
the predictions of deep neural networks. One outcome in this field is layer-wise
relevance propagation [1, 2]. In this paper we will present results of applying
layer-wise relevance propagation to various deep neural networks and show the
impact of parameter choices.

2 Related Work

Recently several methods have been proposed for analyzing what a deep neural
network has learned [9, 17, 18]. A large body of great ideas deals with the inter-
pretation what a neuron or a layer of neurons has learned, see for example [9,
15, 25]. Other approaches deal with inverting neural network representations [8,
16] or are about finding images with unusual properties and wrong classification
outcomes [19, 11, 24].

Much of the above work can be rephrased as the problem of understanding
what do neurons encode and which neurons are most important for the prediction
of an image. Here we focus on a different question, namely on the interpretation
which pixels of an image are most important for the prediction of an image. In
this direction, norms of gradients [21] as well as deconvolution [27] have been
proposed for marking the relevance of an image region.

3 Layer-wise Relevance Propagation

A deep neural network is an feed-forward graph of elementary computational
units (neurons), each of them realizing a simple function of type
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where j indexes a neuron at a particular layer l+1, where
∑

i runs over all lower-

layer neurons connected to neuron j, and where w
(l,l+1)
ij , b

(l+1)
j are parameters

specific to pairs of adjacent neurons and learned from the data. A deep network
derives its complexity from the interconnection of a large number of these ele-
mentary units, and from the availability of an efficient algorithm for learning the
model (error backpropagation). The output of a deep neural network is obtained
by evaluating these neurons in a feed-forward pass. Conversely, [1] have shown
that the same graph structure can be used to redistribute the relevance f(x)

at the output of the network onto pixel-wise relevance scores {R(1)
p }, by using a

local redistribution rule
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where i indexes a neuron at a particular layer l, and where
∑

j runs over all
upper-layer neurons to which neuron i contributes. Application of this rule in
a backward pass produces a relevance map (heatmap) that satisfies the desired

conservation property
∑

pR
(1)
p = f(x). This decomposition algorithm is termed

Layer-wise Relevance Propagation (LRP). See Fig. 2 for an overview.
In addition to the naive propagation rule in Eq. 2 we evaluate two other LRP

algorithms in this paper, namely the ε-variant and the β-variant. The first rule
is given by:
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Here for ε > 0 the conservation idea is relaxated in order to gain better numerical
properties. The second formula is given by:
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Here, z+ij and z−ij denote the positive and negative part of zij respectively, such

that z+ij + z−ij = zij . We enforce α + β = 1, α > 0, β ≤ 0 in order for the
relevance propagation equations to be conservative layer-wise. A comparison of
the properties of the three decomposition rules is given in Table 1.

naive (ε = 0) ε-variant β-variant

numerically stable no yes yes
consistent with linear mapping yes yes no
conserves relevance yes no yes

Table 1: Comparison of LRP variants.
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4 Experimental Results

First approaches to quantitatively compare several methods [20] for computing
region-wise scores show that LRP performs well compared to methods such as
[21, 27] which are related to norms of gradients.

Figure 3 shows that LRP is not a mere gradient detector. All the images in
Figure 3 have relatively strong background gradients. A gradient detector would
have assigned high scores to the background of the bunny, to the edges of the
yellow flowers in the rooster picture and to the strong gradient from mountain
to sky in the cat pic. Unlike a gradient detector, LRP picks up only a few
edges which are mostly relevant to the object to be predicted. As for the edge
artifacts, note that the receptive field of the deep neural networks is quadratic,
thus we resorted to padding an image with the nearest pixel in order to process
non-quadratic images.

4.1 Impact of Parameter Settings

The two types of formulas presented in the preceding section have two major
parameters, ε and β. Here we will explore their effects on examples for two
classifier for the 1000 classes of the ImageNet dataset. The classifiers are the
BVLC reference and the googlenet model from Caffe [13]. For ε = 0 the relevance
is perfectly conserved from a neuron to its inputs, however due to canceling out
positive and negative inputs, the denominator can become small. In such a case,
each of the inputs receives a high weight due to the small size of the denominator.
As a consequence, the explanation can become sensitive to noise. Figure 4 shows
this effect for a relatively small ε set to 0.01. Comparing this against a larger
stabilizer such as ε = 100 shows an explanation which appears denoised for the
larger choice ε = 100. This effect holds for various tested classifiers, however the
size of ε yielding a good description is varying. For BVLC reference and for VGG
CNN S model from [5] ε = 100 is a good choice, whereas for the googlenet model
from [13] ε = 100 is too sparse. Note that the googlenet model has substantially
more layers, so that a smaller ε makes sense to avoid too strong dampening.

The effect of parameter β is demonstrated in Figure 5. β controls how much
fraction of the relevance a neuron is assigned to distributed onto inputs with
negative weighted activations. In a neural network such inputs can be inter-
preted as inhibitors. One can see from Figure 5 that increasing the value of β
and thus putting more weight onto inhibitors reduces the amount of positive
evidence and keeps only the strongest regions. Figure 5 reveals that the opti-
mal value of β depends on the classifier. For the less deep-layered VGG CNN S
classifier used in Figure 5, a higher value of β yields better explanations, while
for googlenet a smaller value of beta resulting in less suppression retains more
structure, consistent with the large number of layers in the googlenet classifier.

4.2 Examples on other datasets - Pascal VOC 2012

For this experiment a neural network was retrained starting from the BVLC
reference classifier. The main difference to previous approaches is that PASCAL
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VOC2012 [10] is a multi-label dataset and objects of multiple classes can be
present in one image. Consequently, we performed a multi-label training, using
a hinge-loss summed over all classes, resulting in 20 binary classifiers. Figure 6
shows that the resulting explanations depend on which class is used.

4.3 Examples on other datasets - MIT Places

Here we used the classifier provided by [28]. Note that in Figure 7 the explanation
for the images showing abbeys picks up the characteristic peaked shape of gothic
bows and not the road in the foreground of the second pic. Similarly, for the
windmill the explanation identifies the wind blades but not strong gradients
from the horizon or the road.

5 Conclusion

In this paper we analyzed the impact of network architecture and different
parameter setting on the resulting explanation. Although the noisiness of a
heatmap can be easily controlled by changing parameters ε or β, for different
architectures these parameters may have different effects. In future work we will
investigate how to chose those parameters in order to obtain an optimal trade-off
between numerical stability of the decomposition and sparsity / meaningfullness
of the heatmap.
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Fig. 2: Overview of LRP. First, the input image is processed by the network and a
network output is computed. Then, the output value is backprojected layer to layer
onto the pixel by using the LRP formula in the box. The pixel relevances {Rp} are
visualized as heatmap.
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Fig. 3: Layer-wise Relevance propagation does not fall for strong irrelevant gra-
dients: heatmaps are computed for backgrounds with strong gradients. Expla-
nations are computed by layer-wise relevance propagation [1] for a classification
achieved by the BVLC reference classifier of the caffe package [13].

Fig. 4: The impact of small (middle row) and large (bottom row) stabilizer ε.
Here set to ε = 0.01 and ε = 100. Explanations are computed by layer-wise
relevance propagation [1] for a classification achieved by the BVLC reference
classifier of the caffe package [13].
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Fig. 5: The impact of small and large suppression control β. Here set to β = 0
and β = −1. Explanations are computed by layer-wise relevance propagation [1]
for a classification achieved by the googlenet classifier of the caffe package [13]
and by the VGG CNN S classifier in [5].



10

class 'horse' class 'person'

Fig. 6: Explanations are computed by layer-wise relevance propagation [1] for
a classification achieved by a classifier trained for multi-label recognition on
PASCAL VOC2012. Middle column shows explanation for class horse. Right
column shows explanation for class person. Note the shift of focus depending on
which object class is to be explained.

Fig. 7: Explanations are computed by layer-wise relevance propagation [1] for a
classification achieved by a classifier trained the MIT Places dataset [28].


