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Abstract
We state some key properties of the recently pro-
posed Layer-wise Relevance Propagation (LRP)
method, that make it particularly suitable for
model analysis and validation. We also re-
view the capabilities and advantages of the LRP
method on empirical data, that we have observed
in several previous works.

1. Introduction
Neural networks are known to excel in many fields, such as
image recognition (Krizhevsky et al., 2012), object detec-
tion (Girshick et al., 2014), video classification (Karpathy
et al., 2014), machine translation (Sutskever et al., 2014),
reinforcement learning (Koutnı́k et al., 2013; Mnih et al.,
2015) among many others. Many published works tackle
questions such as how to design neural network architec-
tures capable of solving a particular machine learning prob-
lem. Other papers present results on improving training
procedures. For all those, performance is usually measured
in terms of scores averaged over a large dataset.

Alternatively one can ask what makes neural networks, and
predictors in general, arrive at a certain prediction. Given
their nonlinearity and deeply nested structure, such an un-
derstanding yields a non-trivial problem which has been re-
cently approached, e.g., by computing local gradients (Si-
monyan et al., 2013), performing a deconvolution (Zeiler
and Fergus, 2014), or decomposing the prediction using
layer-wise relevance propagation (LRP, Bach et al., 2015).
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In the next section we briefly introduce LRP and discuss
some of it’s key properties, that make it particularly suit-
able for model analysis and validation. In Section 3 we
empirically compare the explanations provided by the LRP
method to the ones provided by gradient-based sensitivity
analysis and the deconvolution approach. Finally, in Sec-
tion 4 we describe how the LRP method can be used for
analyzing and validating machine learning models.

2. Layer-Wise Relevance Propagation
We briefly introduce the layer-wise relevance propagation
(LRP) method of Bach et al. (2015) for explaining neural
networks predictions. LRP explains a prediction f(x) as-
sociated to an input x by decomposing it into relevance
scores [f(x)]p for each pixel p. These scores indicate how
relevant each pixel is for the neural network prediction. The
decomposition obeys a conservation principle

f(x) =
∑

p[f(x)]p (1)

that requires that the sum of relevance scores must match
the model output. Obviously this simple specification al-
lows for trivial decompositions, e.g. choosing any random
distribution over pixels and multiplying it with f(x).

LRP forces meaningful decompositions by making use of
the structure of the neural network and its parameters: It
defines for each neuron in the network a redistribution rule
that is conservative and that redistributes the relevance as-
signed to the neuron onto its input neurons based on to their
weighted activations. See (Bach et al., 2015; Montavon
et al., 2015) for a definition of these redistribution rules.

Decomposition approaches such as LRP differ from a sim-
ple visualization where one finds for a vector of pixels
(xp)p an associated vector of same dimensions, that visu-
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Figure 1. Two possible ways of aggregating the results of an LRP
analysis performed on a dataset of images. Red color indicates
relevant pixels or regions.

alizes the relevant structure in the image that caused a cer-
tain classification. Instead, decompositions favor aggregate
analysis, as relevance scores can be meaningfully pooled
spatially, or averaged over a dataset. These aggregations
produce a coarser decomposition, however they still satisfy
a conservation property. Example of possible aggregations
are given in Figure 1. For example, we can perform region-
wide pooling by considering group of pixels

∀x : [f(x)]R =
∑

p∈R[f(x)]p

for analysis, with R ∈ {top,middle, bottom} the different
regions of the image. At this coarser level of granularity,
the conservation property still holds: f(x) = [f(x)]top +
[f(x)]middle + [f(x)]bottom. We can also perform dataset
aggregation, where we compute expected pixel-wise scores
over some data distribution

[f ]p = E[[f(x)]p].

Again, a conservation property
∑

p[f ]p = E[f(x)] still
holds. These aggregate explanations are used in Section
4.1 for analyzing the use of context by different classifiers.

3. Empirical Evaluation of LRP
In this section we show empirically how the LRP method
compares to other methods for explanation, in particular,
gradient-based sensitivity analysis, and deconvolution.

In the following we like to show a prototypical difference
between methods using gradients for the visualization of
regions in an image and decomposition-based methods. A
gradient measures an infinitesimal local variation at a cer-
tain point rather than a decomposition of a total prediction
score. This has implications for the content of a visual-
ization. To see this, we consider explanations provided by
three popular techniques, the gradient-based method of (Si-
monyan et al., 2013), the explanations provided by the De-
convolution approach of (Zeiler and Fergus, 2014) and the

recently proposed LRP method for decomposition (Bach
et al., 2015).
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Figure 2. An image of a complex scene and its explanations for
the class scooter by different methods. For LRP, we use the pa-
rameter β = 1 described in (Bach et al., 2015).

Figure 2 shows the qualitative difference between norms
of backpropagated gradients on the one side and Decon-
volution and LRP-type decomposition on the other side. In
terms of gradients it is a valid explanation to put high norms
on the empty street parts - there exist a direction in parame-
ter space in which the classifier prediction can be increased
by putting motor-bike like structures in there. By linearity
of the gradient, it implies that the negative direction would
decrease the classifier prediction equally strong. As a con-
sequence, regions consisting of pure background may have
a notable sensitivity. Deconvolution and LRP on the other
side point to real scooter-like structures present in the im-
age. Another aspect can be demonstrated using the noise
images from (Nguyen et al., 2014). All methods are able to
identify the spurious structures that lead to a prediction of
a certain class, as can be seen in Figure 3.

An important question is whether one can measure quan-
titatively the meaningfulness of visualizations in terms of
performance measures over data sets. The work in (Samek
et al., 2015) employed perturbation analysis in order to
compare visualizations. This is based on three key ideas.
Firstly, if we modify a region, that is highly important for
the prediction by a classifier, then we expect a steeper de-
cline of the prediction score, compared to the modification
of a lesser important, e.g. background region. Secondly,
any pixel-wise or region-wise score computed by a visu-
alization method implies an ordering of regions in an im-
age. Thirdly, one can modify or perturb regions in the order
implied by a score, measure the decline of the prediction
score, and repeat this process with many random perturba-
tions. The average decline over many repetitions can be



Image FV DNN

average
heatmaps

Image FV DNN

average
heatmaps

Figure 4. Top: Images of the classes “boat” and “horse”, processed by the FV and DNN models and heatmapped using LRP. Bottom:
Average heatmap scores over a random sample (of size between 47 and 177) of the distribution for each class and model. On the
second image of class “horse”, the copyright tag (marked by the red ellipse) has been removed. See (Lapuschkin et al., 2016) for more
information.
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Figure 3. Image from Nguyen et al. (2014) explained by different
methods.

reported as a measure of how well a pixel- or region-wise
score identifies regions important for a prediction. (Samek
et al., 2015) employed simple random draws from a uni-
form distribution found that deconvolution and LRP is al-
ways better than random orderings of regions, which how-
ever does not always holds for norms of gradients. This
approach can be combined with more advanced region per-
turbations, e.g. using the seamless image fusion as used in
(Zhou et al., 2014) for the image and a proposed perturba-
tion, or (Zintgraf et al., 2016).

4. Model Analysis and Validation
Having introduced the LRP method and demonstrated em-
pirically its advantageous properties, we finally describe
how the method can be used for analyzing and validating
machine learning models.

4.1. Usage of Context and Artefacts

The usage of explanation methods is not limited to deep
neural networks. The work of Lapuschkin et al. (2016)
has used LRP to highlight differences between Fisher Vec-
tor (FV) based classifiers and deep neural nets. A gen-
eral observation made in (Lapuschkin et al., 2016) was that
the pixel-wise scores can be used together with bounding
box ground truth, and measuring the relevance inside the
bounding box and the total relevance. The ratio of these
pooled relevance scores can be considered as a measure of
context usage in classifiers. Deploying this measure of con-
text usage helped to identify a bias in the prediction of boats
and horses made by the FV classifier.

Figure 4 is taken from Lapuschkin et al. (2016) and sup-
ports two observations. The first observation is the insight
that Fisher vectors identify boats primarily by the water. A
similarly anomalous second observation was made for the
class horses, as shown in Figure 4. The FV classifier per-
formed almost on par with the neural net, however it used
for many images a copyright tag as cue to identify horse im-
ages. While these two correlations yield a good accuracy
on the test set, they are not plausible. This analysis opens
up opportunities for building better classifiers by augment-
ing training data in a more informed manner. Data augmen-
tation schemes, either through artificial transformations, or
active sampling, are especially useful when training data is



not an abundant resource.

4.2. Comparing Different Neural Networks

The methods above can also be employed to highlight dif-
ferences between different architectures. As an example,
we noticed was that when comparing BVLC CaffeNet (Jia
et al., 2014) to GoogleNet (Szegedy et al., 2014), the latter
tends to focus more on faces with animals than the former.
Figure 5 gives examples for this phenomenon.

Image BVLC CaffeNet GoogleNet

Figure 5. Images of animals with explained predictions of differ-
ent neural networks (see also Lapuschkin et al. (2016)).
While this seems to be a trivial observation at the first sight,
this usage of human understanding can be employed to ei-
ther augment architectures, or, usually easier, to augment
training data for the aim of improving predictions. Note
that for animals, their faces are usually more discrimina-
tive than their body shapes or furs.
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