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Abstract

Many modern applications from the domain of image
classification, such as natural photo categorization, come
with highly variable concepts; to this end, state-of-the-
art solutions employ a large number of heterogeneous im-
age features, leaving a demand for combining information
across many descriptors. In the paradigm of kernel-based
learning, the multiple kernel learning (MKL) framework of-
fers a principled way for learning linear combinations of
feature groups / kernels — but the classical formulation
is known to have limits in practice. We compare regu-
lar MKL with the recent `p-norm multiple kernel learning
methodology and the SVM using uniform kernel combina-
tion on VOC2009 and ImageCLEF2010 datasets using Bag-
of-Words and simpler features. In our experiments we find
advantages and shortcomings.

1. Introduction
Combining different image representations to capture

relevant traits of an image represents the state of the art in
image classification. To this end, practitioners often resort
to a uniform combination of kernels, which has been proven

to work well [4]. An alternative approach is multiple kernel
learning (MKL) [6] that has been applied to image classifi-
cation tasks using various image descriptors [3].

In this contribution, we study the limits and benefits of
classical, sparse MKL and the recent `p MKL [5], which
outputs non-sparse kernel combinations, in object recogni-
tion tasks; we also compare our results to a simple SVM
baseline using a uniform combination of kernels. We report
on empirical results on image data sets from the PASCAL
visual object classes (VOC) 2009 [2] and ImageCLEF2010
PhotoAnnotation [8] challenges. We remark that our fo-
cus is on a relative comparison of the methods so that we
expect our analysis yielding similar conclusions when ap-
plied to alternative MKL methods such as MKL-KDA [10]
or formulations using more optimization variables such as
[1]. An extended version has been submitted to a journal.

2. Experiments
In our first computer vision experiments, we computed

32 kernels, all of them over varying color channels and spa-
tial tilings in the spirit of [9], namely 15 Bag of Words
(BoW) kernels over SIFT features, 8 BoW kernels over
global color histograms, 4 kernels over color histograms,
5 kernels over global histograms of gradient orientations.
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Table 3. Average AP scores on the VOC2009 test data set with class-wise selected `p-norm by AP scores on the training set.

∞ {1,∞} {1.125, 1.333, 2} {1.125, 1.333, 2,∞} {1, 1.125, 1.333, 2} all norms from the left
55.85 55.94 56.75 56.76 56.75 56.76

Table 4. Average AP scores on the ImageCLEF2010 training data set obtained by cross-validation with class-wise selected `p-norm.

∞ {1,∞} {1.125, 1.333, 2} {1.125, 1.333, 2,∞} {1, 1.125, 1.333, 2} all norms from the left
39.11 ± 6.68 39.33 ± 6.71 39.70 ± 6.80 39.74 ± 6.85 39.82 ± 6.82 39.85 ± 6.88

Table 1. Average AP scores attained on the VOC2009 test data.
The average kernel is denoted as `∞.

norm `1 `1.125 `1.333 `2 `∞ (SVM)
AP 54.58 56.43 56.70 56.34 55.85

Table 2. Average APs for ImageCLEF2010 data obtained by cross-
validation. Standard deviations lie in 5.87 for `1 to 6.68 for `∞

`1 `1.125 `1.333 `2 `∞ (SVM)
37.32 39.51 ± 6.67 39.48 39.13 39.11 ± 6.68

From Tables 1 and 2, we conclude that non-sparse MKL
outperforms sparse MKL as well as the average kernel when
one has to select one method for all classes. Tables 3 and
4 are based on selecting the class-wise best classifier by
cross-validation. Comparing the two rightmost entries in
them shows that MKL methods can achieve good perfor-
mance without relying on average kernel SVMs, however
gains are limited in terms of AP score. The difference be-
tween ImageCLEF and VOC data is that sparse `1-MKL
can achieve gains in the former. We thus on one hand con-
clude from this experiment that by the use of a non-sparse
`p>1 regularizer MKL can moderately help performance in
image classification.

3. Discussion
As an interpretation of our results, we identify two argu-

ments which favor average kernels and also one argument
for learning kernel combinations.

3.1. Randomness in BoW features

The first argument is the inherent randomness in the
BoW kernel. To demonstrate this we recomputed the same
BoW kernel ten times using k-means using initializations
and the inherently randomized ERCF [7]. We can observe
from Table 5 that averaging these kernels improve perfor-
mance over the best single kernel despite using always the
same SIFT features as inputs. Strikingly, ERCF which
shows a higher amount of randomness also yields a higher
gains from averaging. This indicates one reason why sparse
methods may fail.

3.2. Learning Kernels versus Prior Knowledge

The second argument is the trade-off between using prior
knowledge and learning kernel combinations. A higher

Method Best Single Kernel Sum Kernel
VOC2009, k-Means AP: 44.42 ± 12.82 45.84 ± 12.94
VOC2009, k-Means Std: 30.81 30.74
VOC2009, ERCF AP: 42.60 ± 12.50 47.49 ± 12.89
VOC2009, ERCF Std: 38.12 37.89

ImageCLEF2010, k-Means AP: 31.09 ± 5.56 31.73 ± 5.57
ImageCLEF2010, k-Means Std: 30.51 30.50
ImageCLEF2010, ERCF AP: 29.91 ± 5.39 32.77 ± 5.93
ImageCLEF2010, ERCF Std: 38.58 38.10

Table 5. AP Scores and standard deviations showing amount of
randomness in feature extraction: results from repeated computa-
tions of BoW Kernels with randomly initialized codebooks.

amount of prior knowledge reduces the potential of gains
from learning methods. This can be shown by using a differ-
ent kernel mixture with less BoW kernels which are known
to be strong for VOC datasets. We observed for the latter a
larger gap between `4/3-MKL (AP: 52.33) and the average
kernel SVM (AP: 50.33) but a lower best AP score in total
compared to Table 1.

3.3. Varying Informative Subsets Across Kernels

One argument for learning kernels is the hypothesis that
typical computer vision kernels have subsets of data of vary-
ing size for which the kernel contains information. Using a
method with a global kernel weight requires to weight the
kernels accordingly. To analyze this we created synthetic
data in which each kernel has a mutually disjoint subset of
data nk for which it is informative. A second experiment
has been designed in a similar manner. Table 6 shows the
results.

Experimental Settings for Experiment 1 (3 kernels):
nk=1,2,3 = (300, 300, 500), p+ := P (y = +1) = 0.25.
The features for the informative subset are drawn according to

f
(k)
i ∼

{
N(0.0, σk) if yi = −1
N(0.4, σk) if yi = +1

, σk =

{
0.3 if k = 1, 2

0.4 if k = 3
.

The features for the uninformative subset are drawn according to
f (k) ∼ (1− p+)N(0.0, 0.5) + p+N(0.4, 0.5).
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