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Abstract

The PSNR and MSE are the computationally simplest and thus most widely
used measures for image quality, although they correlate only poorly with per-
ceived visual quality. More accurate quality models that rely on processing on
both the reference and distorted image are potentially difficult to integrate in
time-critical communication systems where computational complexity is disad-
vantageous. This paper derives the concept of distortion sensitivity as a prop-
erty of the reference image that compensates for a given computational quality
model a potential lack of perceptual relevance. This compensation method is
applied to the PSNR and leads to a local weighting scheme for the MSE. Local
weights are estimated by a deep convolutional neural network and used to im-
prove the PSNR in a computationally graceful distribution of computationally
complex processing to the reference image only. The performance of the pro-
posed estimation approach is evaluated on LIVE, TID2013 and CSIQ databases
and shows comparable or superior performance compared to benchmark image
quality measures.
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1. Introduction

Digital images and videos are ubiquitous in modern society and their avail-
ability relies on efficient transmission systems. For transmission over today’s
channels, signals are digitized and compressed, leading to distortions in the sig-
nal at the receiver. Hence, a crucial aspect for designing, benchmarking and5

optimizing communication systems is the quality of the received signal. The
ultimate receiver in most multimedia communication systems is a human, thus,
the decisive criterion for quality is the human judgement. Unfortunately, no
reliable model for quality judgement is at hand. Therefore, perceived quality
is typically assessed in psychophysical judgment tests, during which observers10

are presented with a stimulus and asked for a response on the respective qual-
ity. Individual observer’s ratings are pooled to the famous mean opinion score
(MOS), or, when referenced to a rating of the reference stimulus to the differ-
ential mean opinion score (DMOS) [1]. Recommendations of the International
Telecommunication Union specify the different procedures for such assessment15

[1, 2].
However, quality assessment by humans is cumbersome, expensive and in many
application scenarios not accessible, e.g. due to real-time constraints. Computa-
tional approaches for image quality estimation aim at bypassing these problems
by estimating the quality of signals without the direct involvement of humans.20

Computational quality models are typically categorized based on the amount of
information about the reference signal available to the model as full reference
(FR), reduced reference (RR) and no reference (NR) approaches. Unarguably,
NR quality estimation poses the most ambitious challenge as it has to the least
information available. Yet conceptually, NR quality estimation may not be25

a feasible approach for certain applications with an important example being
encoder control in video compression [3]. An unreferenced rate-distortion op-
timization would steer the encoder towards coding decisions that remove any
type of noise or artifact. In some videos, however, noise and artifacts as for
instance film grain, motion blur, or camera shakes are artistic components that30

are intentionally introduced in order to evoke a certain emotional response in
the viewer. Prominent examples for this are the movies The Blair Witch Project
or Cloverfield. However, even with a reference available, perceptual aspects of
quality are still not efficiently used for optimizing compression schemes.
The simplest FR image quality measure (IQM) is presumably the mean square35

error (MSE) between reference image and distorted image. Since it has conve-
nient features, it is perhaps also the most widely used IQM, as it a) is of low
computational complexity, b) is memoryless, c) qualifies mathematically as a
distance metric in RN , d) has a clear physical interpretation as the energy of
the error signal, e) features convexity, symmetry and differentiability, allowing40

for simple optimization procedures, and f) is additive [4]. Despite all these
advantageous properties the MSE has one crucial disadvantage: As a quality
estimator it does not correlate well with visual quality as perceived by humans
[5]. This lack of correlation with human perception led scientists and quality re-
searchers to build IQMs around models specifically incorporating engineering as45
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well as biological domain knowledge. Two main strategies are classically distin-
guished for FR IQMs [6]: whereas bottom-up approaches explicitly emulate the
human visual system (HVS) [5, 7, 8], top-down approaches model hypothesized
abstract processing properties of the HVS from a signal processing perspective
[9, 10, 11, 12]. Motivated by success of machine learning in image processing50

areas, purely data-driven approaches [13] represent a recently emerging third
strategy with the potential advantage of circumventing deficient domain knowl-
edge of human visual processing.
In general, FR IQMs can benefit from adaptations to the specific content of the
images whose perceptual quality is to be estimated [14] and this adaptation is55

mostly implemented by a weighting scheme. Proposed weighting schemes con-
sider for instance models of the HVS such as saliency [15], scale-wise divisive nor-
malization [16], information content [17], conditional probability [18], contrast
sensitivity [19, 20], contrast and luminance perception [21, 22] or shearlet-based
measurements of local activity [23]. These weighting schemes model different60

aspects of the HVS but relate to the same concept of distortion sensitivity, sug-
gesting that distortions measured by a given quality model are more (or less)
visible in one image area than in another and hence that this image area is
more (or less) sensitive to distortions than another. However, here the estima-
tion of distortion sensitivity relies on explicit domain knowledge. Interestingly65

and in contrast to most previous approaches, we will see that our psychophysical
derivation will lead to a non-normalized weighting scheme.
Although accurate quality models have been proposed, most of them are infeasi-
ble in time-critical applications such as video compression [3]. In modern video
codecs such as High Efficiency Video Coding (HEVC) [24] frames of a video are70

subdivided into blocks. For the encoding of each of these blocks, a multitude
of coding modes are available, each of which has to be tested for its resulting
rate-distortion costs, i.e. for each block and coding mode the induced distortion
has to be calculated. Evidently, from an efficiency perspective a complex per-
ceptual distortion measure is unsuitable here.75

Thus, in this paper, distortion sensitivity is modelled as a property of the refer-
ence image. This is particularly appealing as in combination with a low-complex
quality model, i.e. the mean squared error (MSE) or peak signal-to-noise ratio
(PSNR), computationally demanding processing could be restricted to the refer-
ence image only. For time-critical applications such as block-based hybrid video80

coding, this is a crucial property, as complex processing would be gracefully
taken out of the search loop [3].
The first contribution of this paper is the derivation of a functional definition
of distortion sensitivity. This is based on a conceptual and statistical discussion
of the parameters of the regression function that is used to map the output of85

a computational quality model into the perceptual domain. In a second contri-
bution, the limits of the proposed framework are explored for a full image-wise
compensation of the PSNR for distortion sensitivity. The adaptation of the
proposed framework to other quality models is straight-forward. In a third con-
tribution, the concept of distortion sensitivity is adapted from a global to a local90

scale and it is shown for the PSNR how this leads to a weighting scheme that
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can be applied to the MSE. A neural network-based approach for the estimation
of local distortion sensitivity from the reference image in an end-to-end trained
image quality prediction framework is evaluated on LIVE, TID and CSIQ and
compared to existing approaches in the literature as fourth contribution.95

The paper is structured as follows: In Section 2 the concept of distortion sensi-
tivity as a property of the reference image is derived and discussed. The neural
network-based estimation of local distortion sensitivity is presented in Section 3.
Performance of the presented approach for neural network-based compensation
for distortion sensitivity is evaluated and compared to other relevant approaches100

on the LIVE [25], the TID2013 [26] and the CSIQ [27] databases in Section 4.
Section 5 concludes the paper with a discussion and sketches application oppor-
tunities and future work.

2. Distortion Sensitivity

2.1. Psychometric Relation between Computational and Perceptual Quality105
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Figure 1: Relation between Qc, Qp and Q̂. Left: Mapping of Qc to Qp for the LIVE
database. Red circles indicate Qc vs. Qp for individual images, the black curve shows the

resulting regression function for the full set. Right: Resulting quality predictions Q̂p vs. true
quality values Qp.

Due to saturation effects in the extreme cases of imperceptible quality loss
or strong impairments, subjective image quality ratings typically do not relate
linearly to many computational quality measures. The relation is commonly
linearized by a nonlinear mapping from the computational to the perceptual
domain. A widely used function is the 4-parameter generalized logistic function110

[28]
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Qp =f(Qc;β)

=β0 +
β1 − β0

1 + e−β2·(Qc−β3)
. (1)

Parameters β = (β0, β1, β2, β3) are estimated as β̂ based on image-wise
pairs of computational quality values Qc, output of a computational quality
model, and perceptual quality values Qp, output of a quality assessment, e.g. a
psychophysical test. Resulting estimates of the regression parameters are then
used to predict perceptual quality values from computational quality values as

Q̂p = f(Qc; β̂). (2)

Regression parameters1 β are not valid globally, but dependent on the qual-
ity assessment procedure used to obtain Qp and the quality model computing
Qc, where the consistency of the relation between Qp and Qc relies on the perfor-
mance of the computational quality model. In practice, regression parameters115

can only be estimated on a limited number of images that need to be sufficiently
representative in order to ensure generalization of the prediction to unseen im-
ages.
Fig. 1 exemplifies a typical regression based on Eq. 1 from computational to
perceptual quality (left) and the resulting prediction of perceptual quality from120

computational quality (right) with Qc calculated as peak signal-to-noise ratio
(PSNR) and β estimated on the full LIVE database [25]. Red circles denote

pairs of (Qp, Qc) or (Qp, Q̂p) respectively, for individual images. The black line

represents the estimated regression function from Qc to Q̂p.
Although estimation of regression parameters is typically data-driven, β0125

and β1 relate directly to the lower and upper bounds of the perceptual quality
values. As such, β0 and β1 are mainly determined by the range of the perceptual
quality scale and, thus, defined by the experimental design of the subjective test
and therefore in principle known a-priori. Regression parameter β3 denotes a
horizontal shift of the regression function with respect to Qc. The slope of the130

regression, which, with a value of
∂Q̂p

∂Qc
(Qc = β3) = β1−β0

4 · β2, is steepest at
Qc = β3, is controlled by β2 and scaled by the range of β0 to β1. Disregarding
this scaling, β2 and β3 are not depending on the quality scale, but on the relation
between the values of a specific quality measure and the ground-truth quality
scores for the image set used to estimate the regression parameters. Hence,135

β0, β1 in Eq. 1 can be fixed to the lower and upper bound of the rating scale a
and b and β can be reduced to β = (β2, β3).

Note that another often used regression function, e.g. in [20, 29, 30], the

1In order to simplify notation, the ̂-sign is dropped from now on and estimated regression
parameters β̂ are referred to as as β.
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5-parameter logistic regression

f5(x;α) = α0

(
1

2
− 1

1 + eα1·(x−α2)

)
+ α3 · x+ α4

extends the 4-parameter logistic regression by a linear term α3 · Qc as readily
seen by reparameterizing f5(x;α) with α0 = β0 − β1 , α1 = −β2, α2 = β3
and α4 = 1

2 (β0 + β1). In contrast to the psychophysical ratings scale, the140

5-parameter logistic function is therefore not bounded and furthermore might
yield non-monotonic regression functions contradicting psychophysical quality
ratings. For these reasons, the 4-parameter logistic regression function is favored
in this analysis. In principle, however, the proposed framework can also be used
with the 5-parameter logistic function. In this case, parameters α0 and α1145

could not simply be set to a and b but instead α0, α1 and α3 would need to be
estimated on the training set – similar to what will be presented for β2.

2.2. Distortion Sensitivity as an Image Property
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Figure 2: PSNR vs. DMOS for the JPEG-subset of the LIVE database [25]. High values of
DMOS denote low subjective quality. Colored dashed curves and circles indicate regressed and
measured DMOS values for individual reference images. The thick black curve shows regressed
DMOS values for the whole ensemble. Examples images are given for the two extreme cases
of distortion sensitivity.

Regression parameters are commonly estimated over a set of images based
on an ensemble of reference images that are subject to different distortion types150

at different distortion magnitudes. However, given enough samples, i.e., impair-
ment levels, regression parameters βi,d can also be found per reference image
i and distortion type d. Note that in practice this would result in the loss of
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any generalization ability.
Such a reference image specific estimation of β is shown in Fig. 2 for JPEG-155

distorted images from the LIVE database [25] with Qc measured as PSNR. The
database provides Qc as DMOS, high values of DMOS denote low subjective
quality. Circles denote (Qc, Qp) pairs of distorted images and are colored accord-
ing to the base reference image. Colored dashed curves represent the regression
functions estimated for the different reference images, the black curve represents160

the regression function estimated for the full ensemble. Reference-specific re-
gression curves are widely dispersed around the ensemble-wide regression. This
gives raise to the notion of distortion sensitivity, as for a given PSNR distorted
versions of some reference images exhibit a rather high perceptual quality, while
others are reported to appear highly distorted. This is indicated for the extreme165

cases by vertical black arrows; with regard to the PSNR, the relatively flat image
of the sailing boat, represented by green, is perceptually more sensitive towards
JPEG distortions than the highly textured image, represented by orange. Based
on the previous interpretation of the regression parameters β (and as such βi,d)
and the insight that β0, β1 are only dependent on the experimental setup for170

quality assessment, distortion sensitivity can be functionally captured by β2 and
β3. Hypothetical compensation for the shifting parameter β3 is sketched for two
reference images by dashed black horizontal arrows in Fig. 2.

With a functional quantification (for simplicity neglecting different distortion
types for the moment) of distortion sensitivity si0 and si1 of a reference image i

such a compensation can be used to adapt a computational quality value Qc as

Qac = s0 · (Qc − s1). (3)

Assuming a regression according to Eq. 1, βi
2 and βi

3 are optimal predictors
of s0 and s1. With β0 and β1 being the upper and lower bounds a and b of the175

rating scale, Eq. 2 can be rewritten as

Q̂p =a+
b− a

1 + e−s0·(Qc−s1)

=a+
b− a

1 + e−Qac
. (4)

Although βi
2 and βi

3 are generally not available in practice, assuming their
availability helps to analyse the influence and limits of full image-wise distortion
sensitivity-based compensation in quality estimation. For this we distinguish
four different cases in which we assume available a) no reference image-specific180

information: s0 = β2, s1 = β3; b) optimal estimation of s0 only: s0 = βi
2, s1 =

β3; c) optimal estimation of s1 only: s0 = β2, s1 = βi
3; and d) optimal estimation

of s0 and s1: s0 = βi
2, s1 = βi

3, where β(·), in contrast to βi
(·), denotes a

parameter estimation over the full ensemble of reference images. Note that, with
regard to correlations between Qp and Qac, s0 = β2, s1 = β3 and s0 = 1, s1 = 0185

are equivalent, but not with regard to the Pearson correlations between Qp and
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Figure 3: Influence of compensating the PSNR for distortion sensitivity on JPEG subset of
LIVE database. Top: Adapted PSNR vs. ground truth DMOS. Bottom: Estimated DMOS
compensated for distortion sensitivity vs. ground truth DMOS.

Table 1: Correlations between PSNR compensated for distortion sensitivity and ground truth
DMOS (Qac vs. Qp), and predicted DMOS compensated for distortion sensitivity and ground

truth DMOS (Q̂p vs. Qp). All correlations are calculated on the JPEG subset of the LIVE
database.

Qac vs. Qp Q̂p vs. Qp
ρP ρS ρP ρS

s0 = β2, s1 = β3 -0.88 -0.9 0.9 0.9
s0 = βi

2, s1 = β3 -0.71 -0.72 0.73 0.72
s0 = β2, s1 = βi

3 -0.96 -0.98 0.98 0.98
s0 = βi

2, s1 = βi
3 -0.96 -0.99 0.99 0.99

Q̂p. Hence, for simplified, yet consistent notation the no adaptation case is
represented as s0 = β2, s1 = β3.

The effect of compensating the PSNR for distortion sensitivity is shown in
Fig. 3 for JPEG compressed images from the LIVE database: The top row shows190

the adapted PSNR (Eq. 3) vs. the ground truth DMOS, the bottom row the
predicted DMOS (Eq. 4) vs. the true DMOS for previously defined assumptions,
i.e., the left hand side column (Fig. 3a and Fig. 3e) is equivalent to no adaptation.
Fig. 3b and Fig. 3f suggest that image-wise compensation for the slope disperses
the quality estimates even further, while compensating image-wise for the offset195

(Fig. 3b and Fig. 3f) and even more a joint compensation for slope and offset
(Fig. 3d and Fig. 3h) achieves a clean alignment of quality estimates.
Corresponding correlations are summarized in Table 1 and corroborate this

8



observation. It is noteworthy that a joint compensation for slope and offset
achieves only small additional improvement over offset-only compensation.200

2.3. Distortion Sensitivity and Different Distortion Types

The previous subsection discussed reference image-specific distortion sensi-
tivity subject to a specific distortion type and exemplified this by JPEG distor-
tion. However, different distortion types affect different statistical properties of
natural images, hence, also the distortion type may have an influence on distor-205

tion sensitivity. This can be accounted for by extending previous considerations
and modelling distortion sensitivity not only as a property of a reference image i

with respect to a given computational quality measure, but also in dependency
of a specific distortion type d.

0 100
Qp

0

50

100

Q
p [

DM
OS

]

(a) s0 = β2, s1 = β3

0 100
Qp

0

50

100

Q
p [

DM
OS

]

(b) s0 = βi
2, s1 = β3

0 100
Qp

0

50

100
Q

p [
DM

OS
]

(c) s0 = β2, s1 = βi
3

0 100
Qp

0

50

100

Q
p [

DM
OS

]
(d) s0 = βi

2, s1 = βi
3

0 100
Qp

0

50

100

Q
p [

DM
OS

]

(e) s0 = βd,i
2 , s1 = β3

0 100
Qp

0

50

100

Q
p [

DM
OS

]

(f) s0 = β2, s1 = βd,i
3

0 100
Qp

0

50

100

Q
p [

DM
OS

]

(g) s0 = βd,i
2 , s1 =

βd,i
3

Figure 4: Influence of considering distortion sensitivity on the adapted PSNR for different
distortion types. Top, from left to right: Distortion type-agnostic consideration of s0 only,
s1 only, and s0, s1 jointly. Bottom, from left to right: Distortion type-specific consideration
of s0 only, s1 only, and s0, s1 jointly.

Fig. 4 plots the relation between the estimated quality Q̂p and the ground210

truth quality Qp for different distortion sensitivity compensation schemes, where
again β(·) (without superscript) denotes a parameter estimated over the full
dataset, βi

(·) denotes a reference image-wise estimation over all distortion types

in the database, and βd,i
(·) denotes parameter estimation per reference image

i and distortion type d. Clearly, a joint compensation of distortion type d215

and reference image i can improve the prediction accuracy. Corresponding
correlations are summarized in Table 2. Interestingly, as observed previously in
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Table 2: Correlation between adapted PSNR and true DMOS (Qac vs. Qp) and predicted

DMOS and true DMOS (Q̂p vs. Qp) for different adaptions of Qc by considering neither s0
nor s0, only s0, only s1, both s0, s1 when accounting for specific distortion types d or over
the set of all distortion types D.

Qac vs. Qp Q̂p vs. Qp
ρP ρS ρP ρS

d

a
gn

o
st

ic

s0 = β2, s1 = β3 -0.84 -0.87 0.86 0.87
s0 = βi

2, s1 = β3 -0.80 -0.83 0.81 0.83
s0 = β2, s1 = βi

3 -0.88 -0.93 0.90 0.93
s0 = βi

2, s1 = βi
3 -0.88 -0.94 0.91 0.94

d

sp
ec

ifi
c s0 = βi,d

2 , s1 = β3 -0.52 -0.50 0.77 0.77

s0 = β2, s1 = βi,d
3 -0.93 -0.96 0.98 0.99

s0 = βi,d
2 , s1 = βi,d

3 -0.96 -0.99 0.99 0.99

Table 1 for the single distortion case, a compensation solely based on the slope
parameter decreases prediction accuracy also in the multi-distortion case, be it
estimated per reference image over all distortions type (s0 = βi

2, s1 = β3) or220

per reference image and distortion type (s0 = βd,i
2 , s1 = β3). Compensation for

the offset over all distortions per reference image (s0 = β2, s1 = βi
3) improves

prediction accuracy, also considering the distortion type (s0 = β2, s1 = βd,i
3 )

further improves the quality estimation. However, a joint consideration of slope
and offset (s0 = βi

2, s1 = βi
3 and s0 = βd,i

2 , s1 = βd,i
3 ) achieves only little225

additional improvement.
The discussion and findings presented in this section suggest distortion sensi-

tivity can be efficiently modelled as a feature of a reference image and function-
ally captured based on the shifting parameter of the 4-parameter generalized
logistic function. Additional image-wise compensation for the slope parameter
achieves only little further improvements in prediction accuracy. Hence, in the
following only the shifting parameter will be considered as a functional repre-
sentation of distortion sensitivity. For simplified notation β2 is replaced by c.
This modifies Eq. 3 and Eq. 4 to

Qac = Qc − s. (5)

and

Q̂p =a+
b− a

1 + e−c·(Qc−s)

=a+
b− a

1 + e−c·Qac
, (6)

where c is estimated over full datasets and distortion sensitivity is denoted as
s.

2.4. Localized Distortion Sensitivity

Previous considerations studied distortion sensitivity as a full image feature.
However, statistics of natural images are locally structured and spatially highly
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non-stationary [31, 32] so that distortion sensitivity not only varies globally
across different images, but also spatially within a given image.
Although in principle applicable to any computation distortion measure, the
PSNR allows for a very simple consideration of local distortion sensitivity. Ac-
cording to Eq. 5 the PSNR (instantiating the computational quality value Qc)is
compensated for distortion sensitivity and the perceptually imagewise adapted
PSNR (paPSNRI) written as

paPSNRI = PSNR− sI (7)

= 10 · log10

C2

10
sI
10 ·MSE

,

with sI denoting the image-wise distortion sensitivity and C the maximum
(peak) sample value of the given signal class, e.g. for 8-bit SDR images C = 255.
While PSNR and paPSNRI do not allow for a direct local weighting, the mean
squared error (MSE) can be adopted image-wise to the perceptually adapted
MSE (paMSEI)

paMSEI = 10
sI
10 ·MSE. (8)

By localizing distortion sensitivity to a pixel position (x, y) as s(x, y), we
define the perceptually adapted MSE (paMSE) with s(x, y) being the reference
and s̃(x, y) the distorted image samples is defined as

paMSE =
1

M ·N

M−1∑
x=0

N−1∑
y=0

10
s(x,y)

10 (s(x, y)− s̃(x, y))2 (9)

leading directly to a perceptually adapted PSNR (paPSNR)

paPSNR = 10 · log10

C2

paMSE
. (10)

Note that when distortion sensitivity is available only globally for a full image,230

with s(x, y) = sI then Eq. 10 simplifies to Eq. 7.
The resulting compensation for local distortion sensitivity is very similar to the
normalized weighting scheme often used in the literature [17, 15], but does not
employ a image-wise normalization of the weights.
Due to the scarceity of samples, i.e. distortion levels per reference image, no235

performance limits can be derived for local compensation of distortion sensitiv-
ity.

3. Estimation of Distortion Sensitivity using Neural Networks

The neural network used for end-to-end trained image quality estimation
proposed in [33] is re-used here for the estimation of patch-wise distortion sen-
sitivity. Input to the network are 32 × 32 pixel-sized patches of the gray-scale
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Figure 5: CNN-based compensation of the PSNR for distortion sensitivity. Distortion sensi-
tivity si is estimated by the CNN from the reference patch P r

i . The image-wise paPSNR is
calculated from all sensitivity-weighted MSEs between collocated reference patches P r

i and

distorted patches P d
i and mapped into the perceptual domain on the quality estimate Q̂p.

converted reference image. The proposed CNN comprises 12 weight layers that
are used to estimate the distortion sensitivity si of a given reference image patch
P ri . The network is organized as a series of conv3-32, conv3-32, maxpool, conv3-
64, conv3-64, maxpool, conv3-128, conv3-128, maxpool, conv3-256,conv3-256,
maxpool, conv3- 512, conv3-512, maxpool layers, followed by FC-512, FC-1 lay-
ers as shown in Fig. 6. Convolutional layers are activated through a Leaky
Rectified Linear Unit (LReLU) activation function [34] with a leakyness of 0.2.
To allow for the estimation of distortion sensitivity for patch sizes other than
32× 32 pixels, the network architecture is adapted for the processing of patches
of a) 8× 8 pixels by removing the first two pooling layers; b) 16× 16 pixels by
removing the first pooling layer; c) 64× 64 pixels by introducing an additional
pooling layer succeeding the 7th convolution layer; and d) 128 × 128 pixels by
introducing two additional pooling layers succeeding the 7th and the 9th con-
volution layer.
Analogous to Section 2.4, the distortion sensitivity estimate si output of the
network is used to weight the patch-wise MSEi, measured between a reference
image patch P ri and the collocated image patch P di from the distorted image.
The resulting image-wise paMSE from Eq. 9 leads with Eq. 10 directly to the
image-wise paPSNR. The image-wise paPSNR is mapped into the perceptual
domain by Eq. 6. Based on previous considerations, parameters a and b are
fixed as the lower and upper value of the quality scale used in the psychophysi-
cal quality assessment; an additional parallel branch consisting of only 1 weight
with a constant input of 1 is used for estimating a global value of c. The overall
architecture is sketched in Fig. 5.
Commonly the MSE is used as minimization criterion in regression tasks. How-
ever, optimization with respect to mean absolute error (MAE) puts less em-
phasis on outliers and reduces their influence. Hence, MAE is chosen as a less
outlier sensitive alternative to MSE. The loss function to be minimized is then

E = |Q̂p −Qp|. (11)
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Figure 6: Architecture of the network. Layers are represented by cuboids. Height and depth
of a cuboid represent spatial resolution at different levels, width represents the number of
channels. The input layer is denoted by a black cuboid, the output of convolutional layers
(including LReLu-activations) by red, of max-pooling layers by blue and of fully connected
layers by green cuboids. Note that the last layer (output of the last fully connected layer with
the dimensionality 1 × 1 × 1) is the output of the network and, as such, holds the distortion
sensitivity estimate.

4. Experiments and Results

4.1. Datasets240

Experiments are performed on the LIVE [25], TID2013 [26] and CSIQ [27]
image quality databases.

The LIVE [25] database comprises 779 quality annotated images based on
29 source reference images that are subject to 5 different types of distortions
at different distortion levels. Distortion types are JP2K compression, JPEG245

compression, additive white Gaussian noise, Gaussian blur and a simulated fast
fading Rayleigh channel. Quality ratings were collected using a single-stimulus
methodology, scores from different test sessions were aligned. Resulting DMOS
quality ratings lie in the range of [0, 100], where a lower score indicates better
visual image quality.250

The TID2013 image quality database [26] is an extension of the earlier pub-
lished TID2008 image quality database [35] containing 3000 quality annotated
images based on 25 source reference images distorted by 24 different distortion
types at 5 distortion levels each. The distortion types cover a wide range from
simple Gaussian noise or blur over compression distortions such as JPEG to255

more exotic distortion types such as non-eccentricity pattern noise. This makes
the TID2013 a more challenging database for the evaluation of quality models.
The rating procedure differs from the one used for the construction of LIVE, as
it employed a competition-like double stimulus procedure. The obtained MOS
values lie in the range [0, 9], where larger MOS indicate better visual quality.260

The CISQ image quality database contains 866 quality annotated images.
30 reference images are distorted by JPEG compression, JP2K compression,
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Gaussian blur, Gaussian white noise, Gaussian pink noise or contrast change.
For quality assessment, subjects were asked to position distorted images hor-
izontally on a monitor according to its visual quality. After alignment and265

normalization resulting DMOS values span the range [0, 1], where a lower value
indicates better visual quality.

4.2. Experimental Setup

Networks are trained and tested either on LIVE, TID2013, or CSIQ for single
database-evaluation. The databases are randomly split in training, validation270

and test set. To guarantee that no distorted or undistorted version of an image
used in testing or validation has been seen by the network during training, the
datasets are split by reference image. For each database validation and test set
each contain 6 reference images, whereas the training set consists of 17, 13 and
18 reference images for LIVE, TID2013 and CSIQ. Results are reported as the275

average over 30 random splits. Models are trained for 150 epochs after which
the model with the lowest validation loss is selected and tested; this amounts
to early stopping [36]. Training and validation of models with an input patch
size of 32× 32 pixels is based on 32 patches, randomly sampled from one image
per iteration. This allows to train the network based on image-wise quality280

annotations from the datasets. To keep the amount of data seen by the neural
network in each training iteration constant for different patch sizes, the number
of sampled patches per image is scaled inversely proportionally with the square
of the patch size, i.e. 512 patches of 8× 8 pixel, 128 patches of 16× 16 pixels, 8
patches of 64× 64 pixels and 2 patches of 128× 128 pixels. Patches are densely285

sampled, i.e. the full image is considered, for testing.
To assess the generalization ability of the proposed methods the CSIQ image
database is used for cross-dataset evaluating the models trained either on LIVE
or on TID2013 and models trained for single database evaluation were reused.
LIVE and TID2013 share a lot of reference images, thus, tests between these290

two are unsuitable for evaluating generalization for unseen images. For cross-
distortion evaluation, models trained on LIVE are tested on TID2013 in order
to determine how well a model deals with distortions that have not been seen
during training and in order to evaluate whether a method is truly non-distortion
or just many-distortion specific.295

Note that, in contrast to many results reported in the literature, if not explicitly
stated differently, we use the full TID2013 database and do not ignore any
specific distortion type.

4.3. Influence of Patch Size

In a first evaluation, the influence of the patch size is investigated for dis-300

tortion types that are shared among LIVE, TID2013 and CSIQ and for the
full databases. Spearman rank order coefficient (SROCC) obtained with the
proposed method is plotted with regard to the patch-size on which distortion
sensitivity is estimated in Fig. 7. The prediction monotonicity is surprisingly
little affected by the size of the patch on which distortion sensitivity is esti-305

mated. As will be discussed in detail in Section 5, this can be explained by

14



FULL AWGN GB JP2K JPEG

8 16 32 64 128
patchsize

0.6

0.8

1.0
s

(b) LIVE

8 16 32 64 128
patchsize

0.6

0.8

1.0

s

(c) TID2013

8 16 32 64 128
patchsize

0.6

0.8

1.0

s

(d) CSIQ

Figure 7: Influence of the patch-size on the prediction performance measured as SROCC
on LIVE, TID2013 and CSIQ evaluated for selected distortion types (Gaussian blur, white
Gaussian noise, JP2K and JPEG compression) and over the full databases.

the non-normalizing weighting scheme inherent to the paMSE defined in Eq. 9.
In accordance with the patch size used in [33], further results in this section
are achieved based on distortion sensitivity estimation on 32 × 32 pixel sized
patches.310

4.4. Performance Evaluation

Table 3: Average SROCC over 20 runs of the proposed method for the distortion types of
LIVE and CSIQ databases and the actual subset of TID2013 in comparison to PSNR, SSIM
[10], MS-SSIM [9], FSIM [12] and HaarPSI [11].

PSNR SSIM MS-SSIM FSIM HaarPSI paPSNR

LIVE

JP2K 0.895 0.961 0.962 0.972 0.968 0.949
JPEG 0.881 0.976 0.981 0.984 0.983 0.963
AWGN 0.985 0.969 0.973 0.972 0.985 0.981
GB 0.782 0.952 0.954 0.971 0.967 0.929
FF 0.891 0.956 0.947 0.952 0.951 0.941

TID2013

AWGN 0.929 0.865 0.865 0.91 0.937 0.94
SCN 0.92 0.852 0.854 0.89 0.931 0.944
MN 0.832 0.777 0.807 0.809 0.786 0.856
HFN 0.914 0.863 0.86 0.904 0.907 0.948
IN 0.897 0.75 0.763 0.825 0.867 0.916
GB 0.915 0.967 0.967 0.955 0.912 0.967
DEN 0.948 0.925 0.927 0.933 0.947 0.943
JPEG 0.919 0.92 0.927 0.934 0.951 0.952
JP2K 0.884 0.947 0.95 0.959 0.97 0.965
MGN 0.891 0.78 0.779 0.857 0.89 0.934
LCNI 0.915 0.906 0.907 0.949 0.962 0.963

CSIQ

AWGN 0.936 0.897 0.947 0.936 0.967 0.943
JPEG 0.888 0.955 0.963 0.966 0.97 0.954
JP2K 0.936 0.961 0.968 0.97 0.982 0.961
GPN 0.934 0.892 0.933 0.937 0.954 0.939
GB 0.929 0.961 0.971 0.973 0.978 0.969

CTRST 0.862 0.792 0.952 0.944 0.945 0.901

2Note that [10] and [11] use the 4-parameter logistic function that is also employed in this
work whereas [12], [37], [20], [38], [17] and [39] use a 5-parameter logistic function to regress
quality predictions onto MOS values before correlations are computed.
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Table 4: Comparison of the proposed method to the state-of-the-art FR image quality estima-
tion models based on the LIVE and TID2013 databases. The highest LCC and SROCC are
set in bold. The reported correlation for the proposed models are achieved on the test sets of
30 random train-test splits. Correlations for all other models are taken from the literature2.

LIVE TID2013
LCC SROCC LCC SROCC

F
ea

tu
re

ex
tr

a
ct

io
n

fr
o
m

d
is

to
rt

ed
im

ag
e

Y
es

SSIM [10] 0.945 0.948 0.790 0.742
FSIMC [12] 0.960 0.963 0.877 0.851
GMSD [37] 0.956 0.958 - -
DOG-SSIM [20] 0.963 0.961 0.919 0.907
DeepSim [38] 0.968 0.974 0.872 0.846
HaarPSI [11] 0.967 0.900 0.87 0.863
IW-PSNR [17] 0.933 0.933 - 0.689
PSIM [39] 0.958 0.962 0.908 0.893
DIQaM-FR [33] 0.977 0.966 0.88 0.859
WaDIQaM-FR[33] 0.980 0.97 0.946 0.940

N
o

PSNR 0.872 0.876 0.675 0.687
paPSNRγ=1 (proposed) 0.904 0.925 0.588 0.65
paPSNRγ=γ∗ (proposed) 0.938 0.943 0.863 0.876

The performance of the presented paPSNR-based quality estimation is sum-
marized and compared to related methods for selected distortion types on LIVE,
TID2013 and CSIQ in terms of SROCC in Table 3. The proposed method clearly
outperforms the PSNR for almost all distortion types and databases. An excep-315

tion that is observable in all databases is additive white Gaussian noise (AWGN),
for which the original PSNR is already a very good predictor and thus difficult
to improve. Although applying complex processing on the reference image only,
the SROCC of the proposed method is in general close to methods that perform
complex processing on the distorted image as well.320

Table 4 presents a comparison of the proposed method to state-of-the-art meth-
ods, evaluated on the full LIVE and TID2013 databases. Although the proposed
method (paPSNRγ=1) outperforms the PSNR on LIVE, its prediction accuracy
is clearly inferior to all other approaches. Here, the distinction of the proposed
approach from methods employing complex processing on the distorted image325

is important to note; the computational advantage of the proposed approach
will be discussed in detail in later. In contrast to the single distortion results
shown in Table 4, on TID2013 the proposed approach not only performs inferior
to other sophisticated state-of-the-art approaches, but even worse as compared
to the PSNR. This can be explained by the distortion type dependency of dis-330

tortion sensitivity analyzed in Section 2.3.
This distortion type dependency can be effectively approximated by simple lin-
ear scaling of s with a distortion type-specific factor γ [23]. The scaling is
incorporated as an additional trainable parameter into the sensitivity estima-
tion described in Section 3 and γ is distortion type-specific jointly optimized335

with all other distortion type-agnostic parameters of the network. The result-
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ing performance over the full dataset is referred to as paPSNRγ=γ∗ in Table 4.
Note that this evaluation relies on the (for most applications reasonable) as-
sumption that the distortion type by which the test image is affected is known.
As Table 4 shows, considering distortion type dependency increases the predic-340

tion performance substantially, especially when tested on TID2013 containing
a multitude of different distortion types.
Remarkably, the proposed paPSNR shares eminent conceptual similarity with
the information content weighted PSNR (IW-PSNR) [17] which also achieves
accuracy improvements for the low-complex PSNR through an image-dependent345

local weighting function. However, a methodological key difference between the
two frameworks lies in the amount of information accessible to the weighting
function: whereas local weights are based exclusively on the reference image
for paPSNR, both the reference and corresponding distorted image are taken
into consideration in case of IW-PSNR. Correlations of the two approaches as350

listed in Table 4 are therefore not directly comparable. Although a meaningful
notion of distortion sensitivity as an image property as described in Section 2
appears to be restricted to the reference image, switching the role of reference
and distorted images in the proposed framework allows for an easy adaptation to
estimate patch weights based on distorted images. For clarity, models employing355

this adaptation are denoted as paPSNRdst. Note that the adapted weighting
function employed by paPSNRdst still disposes of less information than in the
IW-PSNR framework as patch weight estimates are exclusively based on dis-
torted images. Linear Pearson correlation and Spearman rank order correlation
on LIVE and TID2013 for this adaptation are listed in Table 6. Performance on360

LIVE is comparable or even superior to other state-of-the-art methods. In case
of TID2013, performance also clearly increases, yet state-of-the-art performance
is only accomplished when distortion type dependency is compensated for. In
comparison with IW-PSNR, the paPSNRdst achieves a superior performance on
LIVE as well as clearly higher Spearman rank order correlations on TID2013.365

4.5. Local Weights

The spatial distribution of patch-wise estimated distortion sensitivity si and
the resulting distortion sensitive MSE is exemplified in Fig. 8 for two refer-
ence images and two distortion types, namely JPEG compression and additive
white Gaussian noise. Original images are presented in Fig. 8a and Fig. 8h,370

corresponding sensitivity maps for JPEG compression distorions in Fig. 8b and
Fig. 8i and those for AWGN in Fig. 8c and Fig. 8j. Examples for patch-wise
MSE maps are visualized in the second from right column, resulting paMSE
maps in the right column of Fig. 8. Distortion sensitivity maps are presented
in the same color scale representing values of si from 21 to 34, thus are di-375

rectly comparable. Local distortion sensitivities values lie in a range expected
from Fig. 2. Color scales differ between the visualizations of different MSE and
paMSE maps in order to use full ranges for each map.
Comparing the distortion sensitivity maps shows that for the case of JPEG
distortions, local distortion sensitivity varies largely within the images. While380

low values of sensitivity are assigned to textured regions of the images, high
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(a) Original

(b) si, JPEG

(c) si, AWGN

(d) MSEi, JPEG

(e) MSEi, AWGN

(f) paMSEi, JPEG

(g) paMSEi, AWGN

(h) Original

(i) si, JPEG

(j) si, AWGN

(k) MSEi, JPEG

(l) MSEi, AWGN

(m) paMSEi, JPEG

(n) paMSEi, AWGN

Figure 8: Examples of local distortion sensitivity for two reference images and two distortion
types. The left-most column show the reference images from which patch-wise distortion
sensitivity is estimated. The second from left column shows the resulting maps of distortion
sensitivity for JPEG compression and AWGN distortions. In the second from right column
the patch-wise MSE is shown, the perceptually adapted MSE resulting from patch-wise MSE
and patch-wise distortion sensitivity is shown in the right-most column. Low values are
represented by blue, high values by yellow. For comparability, colors are aligned for the
distortion sensitivity maps.

values of sensitivity are estimated for rather flat areas, e.g. the sky in Fig. 8a
and Fig. 8h. This is expected as distortions in textured regions are subject to
masking effects, whereas JPEG-specific distortions such as blocking are highly
visible in flat areas.385

For the case of additive white Gaussian noise, local values of si do not show
this wide range of variation, but are relatively uniformly distributed over image.
This suggests that, disregarding a global shift, the (unadapted) PSNR already
is a good quality predictor for images affected by additive white Gaussian noise.
This is in line with the numerical results presented in Section 4.4.390
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Table 5: Average SROCC over 100 runs of paPSNR trained and tested on different databases
for selected distortion types and over full databases.

Trained on LIVE TID2013
Tested on TID2013 CSIQ LIVE CSIQ
JP2K 0.96 0.962 0.945 0.956
JPEG 0.923 0.958 0.949 0.935
AWGN 0.932 0.95 0.983 0.932
GB 0.906 0.97 0.893 0.959
FULL 0.637 0.815 0.897 0.815

4.6. Cross-Database Evaluation

The generalization ability of the neural network-based adaptation of the
PSNR is studied in a cross-database evaluation for selected distortions and over
full databases. For cross-database evaluation on the full database, no knowledge
about the distortion type is assumed, i.e. γ = 1. The results are presented in395

terms of SROCC in Table 5.
High generalization ability is achieved for the single distortion case. Given the
large amount of reference images shared between LIVE and TID2013, this is
not surprising. For single distortions the approach also generalizes well for im-
ages unseen during training in CSIQ. Cross-database evaluation over full image400

databases results in low prediction accuracies. As shown in Section 4.4, the
proposed method does not perform well without consideration of the distortion
type; hence, high accuracies can neither be expected for distortion-type agnostic
cross-database evaluation.

4.7. Weight Estimation on Distorted Images405

Table 6: Performance comparison on LIVE and TID2013 databases with models trained on
the distorted image instead of the reference image.

LIVE TID2013
LCC SROCC LCC SROCC

paPSNRdst
γ=1 0.971 0.971 0.739 0.741

paPSNRdst
γ∗ 0.972 0.971 0.898 0.902

Although it does not follow the previously derived concept of distortion
sensitivity and gives away the advantage of graceful distribution of complex
processing to the reference image only, local weights can in principal also be
estimated from the distorted image. The resulting prediction performance is
presented in Table 6. The results show that adaptation of the PSNR based on410

the distorted image achieves higher prediction accuracy compared to adapta-
tion based on the reference image both in terms of Pearson linear correlation
coefficient (LCC) and SROCC. From the perspective of distortion sensitivity
this is very surprising. However, it was shown e.g. in [40, 33] that a neural net-
work can learn to extract quality related information from the distorted image415
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only; such an information is not available from a reference image. Further, the
distorted image contains information about the distortion type [41] that can be
exploited by the network to improve prediction accuracy. It can be hypothe-
sised that a network trained on the distorted image in fact learns a different
representation compared to a network trained on the references. The inferior420

performance obtained by predicting ’distortion sensitivity’ from a undistorted
image by a network trained on distorted images (LCC: 0.877, SROCC: 0.921)
and predicting ’distortion sensitivity’ from an distorted image by a network
trained on undistorted images (LCC: 0.79, SROCC: 0.807) corroborates this
conjecture.425

5. Discussion & Conclusion

In this paper, a conceptual framework for distortion sensitivity for visual
quality estimation was derived. Parameters of the non-linear regression func-
tion used to map computational quality values into the psychophysical domain
were discussed and functionally interpreted. It was shown and exemplified for430

the PSNR that the shift parameter of the psychometric mapping function can
serve efficiently as a functional definition of distortion sensitivity. Distortion
sensitivity was modelled as a distortion type-dependent property of a reference
image; being a reference image property allows for an offline estimation of dis-
tortion sensitivity. It was shown that compensating for distortion sensitivity can435

efficiently improve the prediction performance of a given computational qual-
ity model. Limits of such approaches were explored quantitatively. A neural
network-based method for patch-wise estimation of distortion sensitivity within
an image quality estimation framework was presented that significantly improves
the quality estimation accuracy of the base quality model, i.e. the PSNR.440

The presented definition of distortion sensitivity and the proposed framework
for estimation thereof can be easily adapted to other quality models than the
PSNR and extended to other signal modalities such as videos, assuming the
availability of quality annotated data.
The neural network-based patch-wise compensation for distortion sensitivity445

significantly improves the performance of the PSNR. However, comparing the
achieved performance with the limits determined by (hypothetical) optimal
image-wise compensation shows that the method still has further potential for
improvement. The sub-optimality indicates that there is some room for improv-
ing the generalization ability of the model with regard to unseen images.450

Weights used for spatial pooling are commonly normalized. The weighting
scheme derived from distortion sensitivity does not comprise any normaliza-
tion. This also explains the independence of the SROCC from patch-size as
non-normalized weights are capable of capturing a global image property (cf.
Section 2.2. Imagine one image of high and spatially uniform distortion sen-455

sitivity and another image of low and spatially uniform distortion sensitivity.
While a non-normalized weighting scheme could differentiate between high and
low sensitivity, this information would be lost by normalization of the weights.
However, in future work, differences between normalized and non-normalized
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weighting can be studied within the presented framework. This potentially also460

brings better understanding on how humans spatially pool perceptual visual
quality.
The proposed method works better if local weights are estimated from the dis-
torted images rather than from the reference images. This does not follow the
concept of distortion sensitivity that was presented as a property of the refer-465

ence image and, thus, appears surprising. It is however not unexpected, since
networks, as shown in e.g. in [40, 33], are able to predict quality relatively
accurately from the distorted image alone as well. More insight into the na-
ture of distortion sensitivity and relevant features driving distortion perception
might be gained by investigating differences in the internal representations in470

networks trained based on the original and distorted images using explaining
methods [42, 43, 44]. Also note that the reference image-based models were
trained on a smaller sample size regarding the input signal compared to the
distortion image-based models, while the number of quality labels is identical.
At this point it is not clear how this imbalance impacts the training. How-475

ever, although achieving higher prediction accuracy, estimating quality based
on weights extracted from the distorted image forfeits the crucial advantage of
performing complex computations on the reference image only.
The derivation of a distortion sensitive PSNR led to a local weighting scheme for
a perceptual adaptation of the MSE. This has a very interesting application per-480

spective, as such a weighting scheme could be, analogously to [45], incorporated
into the bit allocation in hybrid block-based video compression. This would
directly bridge from psychometric properties to bit allocation for perceptual
image compression. The presented approach could play out its real strength,
as for mode decision [3] the computationally complex estimation of distortion485

sensitivity has to be performed only once per reference block, whereas per mode
decision iteration only the computationally low-complex MSE has to be calcu-
lated. The conceptual decoupling of of distortion sensitivity estimation from
quality estimation (enabled by modelling distortion sensitivity as a property of
the reference image only) further allows for parallelization and/or offline estima-490

tion of distortion sensitivity in time-critical systems. However, as computation
time is crucial for real-time systems, the estimation approach and the influence
of the network architecture should be thoroughly analysed in terms of compu-
tational complexity.
Although the perceptual adaptation of the low-complex MSE is particularly ap-495

pealing, the proposed framework can be directly applied to other FR quality
models.
The discussion of the limits of the proposed framework shows that the avail-
ability of quality annotated images and videos is crucial for the success of data-
driven approaches to quality assessment. This is especially important for an500

application such as the previously sketched distortion sensitive bit allocation as
most databases do not consider modern compression algorithms such as High
Efficiency Video Coding (HEVC) as a distortion type and typically only contain
images and videos of resolutions that are practically not of highest relevance any
more. Hence, until larger and more suitable database are available, the method505
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could be trained on images annotated by quality models that are computation-
ally less graceful, but more accurate.
Combining the concept of distortion sensitivity with psychophysiological meth-
ods [46, 47] for determination for perceptual thresholds such as the sweep-
steady-state visual evoked potential (SSVEP) [48, 49] are a promising for a510

directed assessment of distortion sensitivity, as SSVEP were shown to be highly
correlated with perceived quality [50, 51]. Also event-related potentials (ERPs)
were shown to be feasible to assess quality at different distortion levels [52].
However, the main advantage and technical motivation of the proposed distor-
tion sensitive quality assessment is not primarily a remarkable high accuracy,515

but the allocation of computational complex processing to the reference image
only.
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