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ABSTRACT
This paper presents a no reference image (NR) quality assess-
ment (IQA) method based on a deep convolutional neural net-
work (CNN). The CNN takes unpreprocessed image patches
as an input and estimates the quality without employing any
domain knowledge. By that, features and natural scene statis-
tics are learnt purely data driven and combined with pooling
and regression in one framework. We evaluate the network on
the LIVE database and achieve a linear Pearson correlation
superior to state-of-the-art NR IQA methods. We also ap-
ply the network to the image forensics task of decoder-sided
quantization parameter estimation and also here achieve cor-
relations of r = 0.989.

Index Terms— Convolutional neural network, no refer-
ence image quality assessment, quality perception, blind qp
estimation, image forensics,

1. INTRODUCTION

Enormous amounts of visual media are ubiquitous today and
considerable time and resources are brought up to ensure that
the captured, transmitted or presented media is of satisfactory
quality. For most applications the human visual system is the
ultimate receiver of visual data. Thus, image quality assess-
ment (IQA) aims at providing methods to measure the quality
of visual data in a way that is consistent with human percep-
tion. Considering the ease of this task for humans, judging the
visual perceptual quality is a surprisingly hard problem for
computers especially when it comes to blind or no-reference
(NR) IQA and researchers are working on it since several
decades. While in full reference (FR) IQA the algorithm not
only has full information about the distorted, but also about
the undistorted reference image, NR IQA estimates the qual-
ity of an image without access to any information about the
reference image.

Recently, several general purpose approaches not assum-
ing specific distortions have been proposed and gained atten-
tion [1]. Distortion specific NR IQA is considered as an eas-
ier problem. Thus, in [2] a 2-stage framework is presented,
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where in a first step the specific distortion of an image is iden-
tified based on scene statistics. In a second stage, distortion
specific image statistics are used to estimate the image qual-
ity. For that the coefficients of an oriented multiscale decom-
position are modelled by a generalized Gaussian distribution
(GGD) and perceived quality is deduced from the deviation
of this statistical model. In [3] a GGD model is used for
modelling the distribution of the coefficients after applying
a discrete cosine transform to the image. Features extracted
from the distribution parameters combination are used to es-
timate the perceived quality. NR IQA in the spatial domain
is addressed in [4], where oriented sample intensity differ-
ences are modelled by an asymmetric generalized Gaussian
distribution and, similar to [3], features are extracted from the
distribution parameters in order to predict the perceived qual-
ity. A different line of work, not assuming explicit knowl-
edge about natural scene statistics, is presented in [5]. Here,
a visual codebook is constructed by k-means clustering. This
codebook is used to encode patches of a distorted image and
patchwise descriptors are pooled and used as a predictor for
perceived quality. An extension of this codebook-based ap-
proach is proposed in [6]. In a first step, object-like regions
that are assumed to be semantically meaningful are identified
and samples of the extracted regions are then input to a similar
algorithm as in [5]. Another data driven approach to NR IQA
is presented in [7]. In a general convolutional neural network
(CNN) framework feature extraction and regression is com-
bined in order to estimate perceived quality. For that, images
are subdivided into patches, locally luminance and contrast
normalized and fed into a CNN consisting of five layers. The
first is a convolution layer with 50 filter kernels. The resulting
50 feature maps are pooled to one max- and one min-feature
map. Those two feature maps are fed to two fully connected
layers and finally combined by a linear regression to a one
dimensional estimate of perceived quality.

The presented study follows the data driven concept of
[7]. We propose a deep convolutional neural network (CNN)
with 12 weight layers. Deep CNNs have dominated image
classification because they are able to automatically learn
high-level feature representations. It seems counter-intuitive
to extract high-level features for IQA and so far NR IQA sys-
tems have used low-level features or relatively shallow neural



networks. Nevertheless, we show that extracting high-level
features through deep neural networks can lead to superior
performance in NR IQA. For that and in contrast to [7] we do
not preprocess the image patches. The network architecture
is also evaluated in the context of decoder-sided estimation of
the quantization parameter in High Efficiency Video Coding
(HEVC) relevant in image forensics [8] and also here achieve
a considerable prediction performance.

2. PROPOSED METHOD

2.1. Patchwise Training

Because neural networks usually deal with fixed size input,
we apply the network to unpreprocessed 32x32 RGB image
patches and average the prediction of N randomly sampled
patches for each image. During training each image patch
is associated with the quality label of the source image and
treated as an independent sample (see [7]). We chose a neu-
ral network architecture inspired by [9], as it is a fairly sim-
ple architecture with many layers and very good results in
the ILSVRC image classification challenge[10]. That means
we only use 3 × 3 convolution kernels, the rectifier activa-
tion function (ReLU) and reduce the size of feature maps only
through max-pooling.

The 12 weight layers are organized as follows (notation
from [9]): conv3-32, conv3-32, maxpool, conv3-64, conv3-
64, maxpool, conv3-128, conv3-128, maxpool, conv3-256,
conv3-256, maxpool, conv3-512, conv3-512, maxpool, FC-
512, FC-1.

Except for the last fully-connected layer, all layers are ac-
tivated through the ReLU activation function. The convolu-
tions are applied with zero-padding, so their output has the
same spatial dimensions as their input. All maxpool layers
have 2×2 kernels. We apply dropout regularization [11] with
a ratio 0.5 to the fully connected layers. This architecture does
not contain any design decisions specific to the NR IQA task
and thus shows the general applicability of CNNs for image
analysis tasks.

Given an image represented by Np randomly sampled
patches and a ground truth quality label of qt. The quality
prediction q is calculated by averaging the CNN output yi
for each patch: q = 1

Np

∑Np

i yi. During training the mean

absolute error (MAE) Epatchwise = 1
Np

∑Np

i |yi − qt| is
minimized. As in [7], we use MAE as this loss function puts
less emphasis on outliers than mean squared error (MSE).
The optimization is done through the adaptive learning rate
optimizer ADAM [12] with α = 0.0001.

2.2. Weighted Average Patch Aggregation

Even though we only consider global image distortions, not
every image patch contains the same amount of task relevant
information. For instance, flat regions like a blue sky or a

white wall might be unaffected by certain distortions, while
highly textured regions like bushes might be unaffected by
other distortions. Furthermore, distortions in more salient im-
age regions are more detrimental to perceived quality (e.g.
blurry foreground vs. blurry background). In the method de-
scribed above, this problem is only addressed by averaging
over a number of image patches. We propose a second ar-
chitecture that employs a weighted average patch aggregation
layer. That way we can train our network end-to-end from raw
image to the image quality label and implicitly learn an im-
portance rating for every patch that is processed. To achieve
this we add two additional fully connected layers that run par-
allel to the two last layers of the original architecture and have
the same dimensions. This way we get a second output αi,
that we can use for weighting the estimated local quality of
a patch. To ensure that the weight is positive and non-zero it
is activated through a ReLU and a small stability factor ε is
added:

α∗
i = max(0, αi) + ε

The small constant (e.g. ε = 0.000001) is applied to avoid
the division by zero when all weights are zero. The weighted
average can then be calculated as follows:

q =

∑Np

i α∗
i yi∑Np

i α∗
i

End-to-end training means the error of the quality estima-
tion Eweighted of each image is directly minimized in train-
ing:

Eweighted = |q − qt|

This loss function has the disadvantage that the gradient
for improving the quality score is suppressed whenever the
weight α∗

i is low. The quality score of patches that consis-
tently get assigned low weights stops improving and thus the
low weight gets reinforced. Ideally we want the network to
assign a quality score that is as accurate as possible for each
patch, regardless of the weight that is assigned. To achieve
this we also explore an additional loss formulation where we
optimize both the patchwise loss and the weighted imagewise
loss jointly with

Eweighted+ = |q − qt|+
1

Np

Np∑
i

|yi − qt|

3. EXPERIMENTS

We evaluate and compare the proposed approach in terms
of prediction accuracy measured as Pearson product-moment
correlation coefficient (LCC) and mean square error (MSE)
and in terms of prediction monotonicity measured by Spear-
man’s rank order correlation coefficient (SRCC).



Fig. 1: Performance of the proposed CNN for NR IQA in terms of LCC, SRCC and MSE in dependence of the number of
randomly sampled patches.

Fig. 2: Performance of the proposed CNN for decoder-sided QP estimation in terms of LCC, SRCC and MSE in dependence
of the number of randomly sampled patches.

3.1. No-Reference Image Quality Assessment

To evaluate our approach in a non distortion specific setting,
we use the LIVE database [15]. It consists of 981 images that
are distorted versions of 29 reference images. The distortions
used are varying levels of JPEG compression, JPEG2000
compression, Gaussian blur, white noise and fast fading.

In order to evaluate the performance of the proposed
CNN, we train it on 10 random train-test splits. For that 6
reference images and their distorted versions where chosen
randomly for testing, 6 other reference image images and
their distorted version for validation and the remaining 17
reference images for training. For each epoch we sample 32
random patches from each image from the training set. The
models are trained for 3000 epochs, resulting in about 48
million patches used for training; training takes around 6s per
epoch on a Titan X GPU.

Fig. 1 shows LCC, SRCC and MSE in dependence of
the number of patches randomly sampled from the test im-
age. The patchwise averaging outperforms the method of
weighted averaging. For the patchwise averaging around 16
patches randomly sampled from the test image are enough to
achieve the maximal performance. Using the combined loss

function for weighted averaging (weighted+) with more than
32 patches shows equal performance with the patchwise ap-
proach in terms of SRCC and only slightly lower performance
in terms of LCC and MSE. Table 1 lists and compares the pro-
posed method with 6 other state-of-the-art NR IQA methods
and 3 popular FR IQA methods. Our method achieves the
highest prediction accuracy in terms of LCC among all com-
pared methods and even compared to the FR IQA approaches.
In terms of SRCC, only SOM [6] achieves a slightly stronger
correlation.

3.2. Decoder-sided HEVC Quantization Parameter Esti-
mation

We also tested the proposed method on the problem of
decoder-sided estimation of the quantization parameter in
image and video forensics. For this, we compressed the
UCID [16] database, containing 1338 uncompressed color
images. For compression we choose the BPG image format
[17], that is based on a subset of coding tools of the Main
4:4:4 16 Still Picture Profile [18] of HEVC [19]. To gener-
ate our image material for the evaluation, for each reference



Fig. 3: Example outputs for densely sampled patches with the weighted average patch aggregation. Left: Input image, middle:
patchwise QP estimate, right: weight in weighted average calculation. The QP during encoding is 35. The estimated QP is
35.38.

Method LCC SRCC
PSNR 0.856 0.866
SSIM[13] 0.906 0.913
FSIM[14] 0.960 0.964
DIIVINE [2] 0.917 0.916
BLIINDS-II [3] 0.930 0.931
BRISQUE [4] 0.942 0.940
CORNIA [5] 0.935 0.942
CNN [7] 0.953 0.956
SOM [6] 0.962 0.964
Patchwise (proposed) 0.972 0.960
Weighted (proposed) 0.963 0.955
Weighted+ (proposed) 0.970 0.961

Table 1: Comparison of different NR IQA methods based on
the LIVE database. For further reference, in the first three
rows performances of three prominent FR IQA methods are
reported as well in italic. The highest LCC and SRCC for
the NR IQA methods are set in bold. The reported correla-
tions are the average correlation achieved on the test sets of
10 random train-test splits.

image we created 52 compressed versions by compression
with a quantization parameter QP ∈ {0 . . . 51}. The first 100
reference images are put aside as test set and the second 100
reference images are used as validation set during training.
Because it is easier to achieve correlations of predictions
between distorted versions of the same reference image, we
sample only one distorted version per reference image in the
validation and test set. The training set is resampled for each
epoch. For each epoch, 128 random reference images are
randomly picked. For each of these, 10 random distorted
versions are sampled and 32 random patches extracted. This
creates a total of 40960 patches used in each epoch. Each
mini-batch consists of 4 images with 32 patches each. The
network is then trained for 1000 epochs, each of which takes
around 20s to train on a Titan X GPU. After each epoch, the

model is evaluated on a fixed subsample of the validation set
and only the model with the lowest validation loss is kept.

Fig. 2 shows the evaluation of our three models on the
test set. The simple patchwise training performs well, even
with low number of patches. With 128 and more patches,
the weighted model performs as well in terms of correlations
and slightly superior in terms of MSE. It needs more patches
to perform well, because it uses the weighting mechanism
to select a subset of relevant patches. The weighted model
that jointly minimizes both loss functions (weighted+) per-
forms best in this experiment if it is pooling over more than
4 patches and achieves the maximal performance using about
16 patches. Fig. 3 gives an impression about the patchwise QP
estimation and the corresponding weights. The true QP in this
example is QP = 35 and was estimated as QPest = 35.38. It
can be seen that for patches for which the estimated QP (mid-
dle image) is far from the ground truth value, the according
weight is reduced (right image).

4. CONCLUSION

We applied a deep CNN to the problem of NR IQA and the
somewhat related task of blind QP estimation. For the NR
IQA task, the proposed CNN achieved the best LCC among
all evaluated NR and FR IQA methods. This result is counter-
intuitive as IQA is commonly believed to rely, in contrast to
image classification tasks, on rather low-level features. This
motivates to continue working on a better understanding of
the features driving the perception of image quality [20]. In
order to deal with locally variable sensitivity, we proposed
a weighted average patch aggregation method. Although we
were not able to show an improvement on the NR IQA results,
this method clearly increased LCC as well as SRCC for QP
estimation. Thus, future studies should further address local
distortion sensitivity in order to take it into account for the
IQA problem. As CNNs achieve high performance for FR
IQA [21], the CNN approach offers an excellent framework
to explore the domain of reduced reference IQA [22], living
between NR and FR IQA.
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