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ABSTRACT

Due to its computational simplicity, the PSNR is a popular
and widely used image quality measure, although it correlates
poorly with perceived visual quality. Distortion sensitivity, a
reference image specific property, can be used to compen-
sate for the lack of perceptual relevance of the PSNR. Based
on the functional mapping between perceptual and computa-
tional quality a deep convolutional neural network is used to
estimate patchwise distortion sensitivity. The local estimates
are used for an imagewise perceptual adaptation of the PSNR.
The performance of the proposed estimation approach is eval-
uated on the LIVE and TID2013 databases and shows com-
parable or superior performance as compared to benchmark
image quality measures.

Index Terms— Neural network, distortion sensitivity,
image quality assessment, perceptual models

1. INTRODUCTION

Reliable estimation of perceptual quality is crucial for the
evaluation, design and optimization of image and video com-
munication systems. Image quality measures (IQMs) are cat-
egorized according to the amount of information about the
reference signal available to the quality estimator as full ref-
erence (FR), reduced reference (RR) and no reference (NR)
approaches. NR quality estimation targets very general per-
ceptual quality models, but may not be suitable for all applica-
tions. An important example is video coding [1], where some
distortions, e.g. film grain might be introduced intentionally
by the director. An encoder, optimizing reference-free, should
not ’correct’ for those only seeming distortions.

FR IQMs classically follow two main strategies [2]:
While bottom-up approaches explicitly model the human
visual system (HVS) [3, 4, 5], top-down approaches mimic
potentially hypothesized abstract properties of the HVS from
a signal processing perspective [6, 7, 8, 9]. With recent ad-
vances in machine learning, a third branch of data-driven
approaches emerged [10] that may not rely on potentially
deficient domain knowledge.

Generally, FR IQMs benefit from adaptation to the spe-
cific content of the images to be tested [11]. This may be

done for a whole image or locally, e.g. by considering HVS
models such as saliency [12] or scalewise divisive normal-
ization [13], information content [14], conditional probability
[15] or learned features [16]. Adaptations are typically based
on the reference signal. In [17] visual sensitivity is estimated
for image quality prediction from normalized and filtered dis-
torted images using a convolutional neural network (CNN).
However, as we will discuss, this forfeits the practically cru-
cial advantage of processing complex calculations only on the
reference signal.

The simplest and probably most widely used FR IQMs are
the mean squared error (MSE), computed as the average en-
ergy of the samplewise error between reference and distorted
signal, and the peak signal-to-noise ratio (PSNR), a logarith-
mic approximation of human perception based on the Weber-
Fechner law [18] applied to the MSE. The low complexity
of the MSE/PSNR is particularly appealing in time-critical
applications such as block-based hybrid video coding, where
during mode decision the blockwise distortion is evaluated for
every coding mode considered [1]. A perceptual adaptation
based solely on the reference image would increase computa-
tional complexity for quality prediction only out of the search
loop of mode decision.

In this paper we build on the previously proposed frame-
work for distortion sensitivity [19] for image quality predic-
tion and extend it by incorporating all functional parameters
into an end-to-end learning scheme based on a deep neural
network. Parameters of distortion sensitivity are estimated
from the reference signal in order to compensate for the per-
ceptual shortcomings of the PSNR and improve its perfor-
mance for perceptual quality estimation.

The proposed approach is evaluated on the LIVE [20] and
the TID2013 [21] databases.

2. METHODS

2.1. Distortion Sensitivity

Perceptual quality assessed in psychophysical tests is char-
acterized by saturation effects in the extreme cases of very
high and very poor quality. For the evaluation of computa-
tional quality models, this is accounted for by mapping the
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Fig. 1: PSNR (left: no compensation, right: compensated
for slope β2 and shift β3 per reference image) vs. DMOS for
the JPEG subset of the LIVE database [20]. Colored dashed
curves and circles indicate regressed and measured DMOS
values for individual reference images. Thick black curves
show regressed DMOS values over all reference images.

computational quality value Qc to perceptual quality values
Qp. A commonly used mapping function for mapping from
the computational to the perceptual domain is the 4-parameter
generalized logistic function [22]

Qp =f(Qc;β)

=β0 +
β1 − β0

1 + e−β2·(Qc−β3)
. (1)

Parameters β can be estimated as β̂ from a set of images
annotated with perceptual quality values Qp, typically MOS
or DMOS, and computational quality scores Qc, and can be
used to predict perceptual quality scores from computational
quality values (computed by a specific quality measure) as

Q̂p = f(Qc; β̂). (2)

A typical regression from Qc to Qp exemplified for the
JPEG-subset of the LIVE database [20] with Qc calculated
as PSNR is shown in Fig. 1a, where the colored circles indi-
cate DMOS and PSNR values for individual images and the
black line represents the regression function from Qc to Q̂p
estimated on the full set of images in the database.

Although the parameters are typically estimated, β0 and
β1 relate directly to the lower and upper bounds of the per-
ceptual quality values of the quality annotations. As such, β0
and β1 are mainly driven by the range of the perceived qual-
ity scale and, thus, defined by the experimental design of the
subjective test and know in principal a-priori. The regression
function is shifted with respect to Qc by β3. The slope of the
regression, that, with a value of Q̂p(Qc = β3) =

β1−β0

4 · β2,
is steepest at Qc = β3, is controlled by β2, scaled by the
range of β0 to β1. Disregarding the scaling in the slope of the
regression function, β2 and β3 are independent of the qual-
ity scale, but on the relation between the values of a spe-
cific quality measure and the ground-truth quality scores of
the image set used to estimate the regression parameters. If
the data set used for estimating β is large and diverse enough

to ensure generalization, the estimated regression parameters
can be used to map values of a specific computational quality
measure into the perceptual quality domain for other images
as well. Fig. 1a suggests that β3 is predominantly determined
by the source image and its estimation specific for the source
image r could be used to compensate the systematic devia-
tions of a computational quality measure Qc. With c com-
pensating globally for β2 and dr compensating for the source
image specific shift we find a perceptually adapted Qc as

Qc,adapt = c · (Qc − dr). (3)

The resulting regression after compensation with c, d esti-
mated as the (in practice unavailable) regression parameters
β2, β3 is shown in Fig. 1b for the JPEG-subset of the LIVE
database. We will refer to dr as distortion sensitivity of an im-
age r with regard to a specific computational distortion mea-
sure.

2.2. Distortion Sensitivity and the Mean Squared Error

Disregarding c for the moment, with Eq. 3 the PSNR can be
shifted to an imagewise perceptually adapted PSNR

paPSNR = PSNR− dr

= 10 · log10
C2

10
dr
10 MSE

, (4)

which leads to an imagewise perceptually adapted MSE as

paMSE = 10
dr
10 MSE. (5)

Distortion sensitivity is not necessarily a global signal prop-
erty, but may vary locally over image regions. With distor-
tion sensitivity d(p) of the local image patch p and the local
MSE(p), the MSE between the samples of the distorted and
the reference image in patch p, we redefine a locally percep-
tually adapted MSE as

paMSE =
1

P

P−1∑
p=0

10
d(p)
10 ·MSE(p) (6)

with P being the number of patches extracted from an image.

2.3. Neural Network-Based Estimation of Distortion Sen-
sitivity

Motivated by its previously shown performance for percep-
tual quality estimation [16], we use a VGGnet-inspired [23]
CNN. Input to the network are 32× 32 pixel-sized patches of
the reference image. Our proposed CNN comprises 12 weight
layers that are used to estimate the distortion sensitivity d(p)
for the given image patch p. The network is organized as
a series of conv3-32, conv3-32, maxpool, conv3-64, conv3-
64, maxpool, conv3-128, conv3-128, maxpool, conv3-256,



conv3-256, maxpool, conv3- 512, conv3-512, maxpool lay-
ers, followed by FC-512, FC-1 layers. Convolutional layers
are activated through a Leaky Rectified Linear Unit (LReLU)
activation function with a leakyness of 0.2 [24]. An additional
parallel branch consisting of only 1 weight and having a con-
stant input of 1 is used for estimating a global value of c.

The outputs ĉ, d̂(p) are used with Eq. 1, Eq. 3 and Eq. 6
for estimating the perceptual quality as

Q̂p =a+
b− a

1 + e−ĉ·Qc
, with (7)

Qc =10 · log10
C2

1
P

∑P−1
p=0 10

d̂(p)
10 ·MSE(p)

. (8)

As discussed previously, a, b are chosen as the lower and up-
per limit of the rating scales used during psychophysical qual-
ity assessment.

The network is trained by minimizing the mean absolute
error (MAE) between reported and predicted perceptual qual-
ity

E = |Qp − Q̂p| (9)

Since the network is estimating d patchwise, but Qp is
estimated imagewise, patches for one image are in the same
mini-batch during training. For training, each mini-batch con-
tains 1 image, represented by 32 randomly sampled image
patches. Optimization of the weights is controlled using the
ADAM method [25]. In order to prevent overfitting, the final
model used for evaluation is chosen as the one with the best
validation loss during training [26]. For evaluation, patches
are densely sampled from the test images.

3. EXPERIMENTS AND RESULTS

The proposed approach is evaluated on the TID2013 [21] and
LIVE [20] image quality databases. TID2013 and LIVE differ
in the range and orientation of quality scores. In order to make
errors and gradients comparable across databases, scores have
been linearly mapped to the same range. For cross-validation,
databases have been randomly split by reference image into
training, evaluation and test set (17/6/6 for LIVE, 13/6/6 for
TID2013). Results are reported based on 100 random splits.
All models are trained for 150 epochs.

Fig. 2 shows the optimization loss during training, vali-
dation and testing over the number of epochs of training for
one randomly chosen split from training over TID2013. The
loss shows the typical behavior for iterative gradient descent
minimization and does not indicate overfitting.

Table 1 summarizes the performance of the proposed ap-
proach applied per distortion in terms of Spearman rank order
correlation coefficient (SROCC) for the full LIVE database
and the actual subset of TID2013. The proposed approach
consistently outperforms PSNR and shows comparable or su-
perior performance to SSIM, MS-SSIM, FSIM.
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Fig. 2: Course of loss over epochs for test, validation and
training.

PSNR SSIM MS-SSIM FSIM paPSNR

LIVE

jpg2k 0.90 0.96 0.96 0.97 0.95
jpg 0.88 0.98 0.97 0.98 0.96
gwn 0.99 0.97 0.97 0.97 0.98
blur 0.78 0.95 0.95 0.97 0.93
ff 0.89 0.96 0.95 0.95 0.93

TID2013

gwn 0.93 0.87 0.86 0.91 0.95
scn 0.92 0.85 0.85 0.94 0.96
mn 0.83 0.78 0.81 0.81 0.86
hfn 0.91 0.86 0.86 0.9 0.95
in 0.90 0.75 0.76 0.82 0.90

gblur 0.91 0.97 0.97 0.96 0.96
den 0.95 0.93 0.93 0.93 0.94
jpg 0.92 0.92 0.93 0.93 0.95

jpg2k 0.88 0.95 0.95 0.96 0.96
mgn 0.89 0.78 0.78 0.86 0.92
lcmi 0.91 0.91 0.91 0.95 0.96

Table 1: Average SROCC over 100 runs of the proposed
method for the distortion types of LIVE database and the ac-
tual subset of TID2013 in comparison to PSNR, SSIM [7],
MS-SSIM [6] and FSIM [9].

PSNR SSIM MS-SSIM FSIM paPSNR paPSNR
β = 1 β = βdist

opt

LIVE 0.88 0.95 0.95 0.96 0.91 0.94
TID2013 (actual) 0.82 0.88 0.88 – 0.84 0.92
TID2013 (full) 0.64 0.74 0.79 0.8 0.65 0.88

Table 2: Average SROCC over 100 runs for the full LIVE
database, the actual subset of TID2013 and the full TID2013
database in comparison to PSNR, SSIM, MS-SSIM and FSIM
without (β = 1) and with (β = βdistopt ) distortion type specific
linear scaling of d̂.

Results obtained for models trained on the full databases
and the actual-subset from TID2013 are shown in Table 2 in
the column ‘β = 1’. The quantification of distortion sensitiv-
ity as a property of the reference image is dependent on the
distortion type and this dependency can be effectively approx-
imated by a distortion-specific linear scaling factor [19]. The
column titled ‘β = βdistopt ’ lists the SROCC obtained when
such a scaling factor is applied to the distortion type-agnostic
estimate of d. This simple adaptation significantly increases
the prediction monotonicity of the proposed method and ren-
ders it comparable (LIVE) or superior (TID2013) to SSIM,
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Fig. 3: Examples of resulting sensitivity maps d(p) for different distortions resulting from additive white Gaussian noise
(AWGN), JPEG2000 and JPEG compression.

Trained on LIVE(full) TID2013 (actual)
Tested on TID2013 LIVE

jpg2k 0.93 0.91
jpg 0.93 0.91
gwn 0.91 0.98
gblur 0.85 0.83

common subset 0.92 0.89

Table 3: Average SROCC over 100 runs of paPSNR trained
on full LIVE database or the actual subset of TID2013 and
tested for selected distortions types on the other database.
Performance for the subset of common distortion types are
show in common subset.

MS-SSIM and FSIM.
This distortion type dependency can also be seen from the

resulting sensitivity maps; examples for AWGN, JP2K and
JPEG are shown in Fig. 3. For JP2K and JPEG, lower sensi-
tivities are assigned to image regions of higher activity, prob-
ably capturing masking effects. For JP2K and JPEG, sensitiv-
ity maps are similar, but differ in detail. For AWGN however,
rather constant sensitivity maps are estimated. The reason is
that the PSNR as a base quality measure is already very accu-
rate in predicting perceptual quality for AWGN and the con-
sideration of distortion sensitivity cannot achieve any further
improvement.

Table 3 shows that the proposed approach is relatively sta-
ble in a cross-database evaluation. LIVE contains more refer-
ence images than TID2013 (29 vs. 25), and therefore achieves
a higher performance than vice-versa. However, per reference
image, TID2013 is almost completely contained by LIVE,
hence it is difficult to draw a final conclusion regarding the
generalization ability.

4. CONCLUSION

The functional parameters of the sigmoidal mapping from the
computational domain into the perceptual domain are typi-
cally estimated over a full database. Two of the four parame-
ters (β0, β1) are approximately predefined by the setup of the
psychophysical quality assessment experiment and the other
two can be estimated jointly as global (β2) and reference-
specific (β3) in an end-to-end framework using a CNN for
improving the PSNR. Although other IQMs could be used as
a basis, the PSNR approach allows to conveniently distribute
the computational effort, as complex computations are only
performed on the reference signal, e.g. for perceptually rel-
evant mode decision in video coding [1]. The network ar-
chitecture used is rather deep; for real-time applications it
would be beneficial to reduce network depth. We evaluated
our method on 32 × 32 pixel-sized patches, however per-
formance might increase with other patch sizes. Training
on more patches might also influence the performance, but
would probably demand larger databases. In the proposed ap-
proach distortion sensitivity was estimated from the reference
image only. While this is argued as well in [16], [10] inter-
prets sensitivity as a feature of the distorted signal. For better
understanding of the underlying psychovisual processes this
should be studied comparatively. A very interesting property
of our approach is that no explicit domain knowledge is used.
Therefore it can be directly applied to related domains, such
as audio or video quality assessment.

5. REFERENCES

[1] Thomas Wiegand and Heiko Schwarz, “Video coding:
Part II of fundamentals of source and video coding,”



Foundations and Trends in Signal Processing, vol. 10,
no. 1-3, pp. 1–346, 2016.

[2] W. Lin and C.-C. J. Kuo, “Perceptual visual quality met-
rics: A survey,” J. Vis. Commun. Image Represent., vol.
22, no. 4, pp. 297–312, 2011.

[3] B. Girod, “What’s Wrong with Mean-squared Error?,”
in Digit. Images Hum. Vis., pp. 207–220. 1993.

[4] S. J. Daly, “Application of a noise-adaptive contrast sen-
sitivity function to image data compression,” Opt. Eng.,
vol. 29, no. 8, pp. 977–987, 1990.

[5] J. Lubin, “A human vision system model for objective
picture quality measurements,” Int. Broadcast. Conv.,
pp. 498–503, 1997.

[6] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-
scale structural similarity for image quality assessment,”
IEEE Asilomar Conf. Signals, Syst. Comput., vol. 2, no.
1, pp. 1398–1402, 2003.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image quality assessment: From error visibility
to structural similarity,” IEEE Trans. Image Process.,
vol. 13, no. 4, pp. 600–612, 2004.

[8] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand,
“A Haar wavelet-based perceptual similarity index for
image quality assessment,” Signal Process. Image Com-
mun., vol. 61, no. Supplement C, pp. 33–43, 2018.

[9] L. Zhang, L. Zhang, X. Mou, D. Zhang, and X. Mou,
“FSIM: A feature similarity index for image quality as-
sessment,” IEEE Trans. Image Process., vol. 20, no. 8,
pp. 2378–2386, 2011.

[10] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and
A. C. Bovik, “Deep Convolutional Neural Models for
Picture Quality Prediction,” IEEE Signal Process. Mag.,
vol. 34, no. November, pp. 130–141, 2017.

[11] B. Ortiz-Jaramillo, J. Niño-Castañeda, L. Platiša, and
W. Philips, “Content-aware video quality assessment:
predicting human perception of quality using peak sig-
nal to noise ratio and spatial/temporal activity,” in
SPIE/IS&T Electron. Imaging. International Society for
Optics and Photonics, 2015, vol. 9399, p. 939917.

[12] W. Zhang, A. Borji, Z. Wang, P. Le Callet, and H. Liu,
“The application of visual saliency models in objec-
tive image quality assessment: A statistical evaluation,”
IEEE Trans. Neural Networks Learn. Syst., vol. 27, no.
6, pp. 1266–1278, 2016.

[13] V. Laparra, J. Ballé, A. Berardino, and E. P. Simoncelli,
“Perceptual image quality assessment using a normal-
ized Laplacian pyramid,” Electron. Imaging, vol. 2016,
no. 16, pp. 1–6, 2016.

[14] Z. Wang and Q. Li, “Information content weighting for
perceptual image quality assessment,” IEEE Trans. Im-
age Process., vol. 20, no. 5, pp. 1185–1198, 2011.

[15] S. Hu, L. Jin, H. Wang, Y. Zhang, S. Kwong, and C.-
C.J. J. Kuo, “Compressed Image Quality Metric Based
on Perceptually Weighted Distortion,” IEEE Trans. Im-
age Process., vol. 24, no. 12, pp. 5594–5608, 2015.

[16] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and
W. Samek, “Deep Neural Networks for No-Reference
and Full-Reference Image Quality Assessment,” IEEE
Trans. Image Process., vol. 27, no. 1, pp. 206–219,
2018.

[17] J. Kim and S. Lee, “Deep Learning of Human Visual
Sensitivity in Image Quality Assessment Framework,”
IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1676–
1684, 2017.

[18] S. E. Palmer, Vision science: Photons to phenomenol-
ogy, vol. 1, MIT press Cambridge, MA, 1999.

[19] S. Bosse, M. Siekmann, W. Samek, and T. Wiegand, “A
Perceptually Relevant Shearlet-Based Adaptation of the
PSNR,” in Proc. IEEE Int. Conf. Image Process., 2017,
pp. 315–319.

[20] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical
evaluation of recent full reference image quality assess-
ment algorithms,” IEEE Trans. image Process., vol. 15,
no. 11, pp. 3440–51, nov 2006.

[21] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazar-
ian, L. Jin, J. Astola, B. Vozel, K. Chehdi, M. Carli,
F. Battisti, and C.-C.J. J. Kuo, “Color Image Database
TID2013: Peculiarities and Preliminary Results,” 4th
Eur. Work. Vis. Inf. Process., pp. 106–111, 2013.

[22] VQEG, ITUT Tutorial, and VQEG, “Objective percep-
tual assessment of video quality: full reference televi-
sion,” ITU-T Telecommun. Stand. Bur., 2004.

[23] K. Simonyan and A. Zisserman, “Very Deep Convo-
lutional Networks for Large-Scale Image Recognition,”
ImageNet Chall., pp. 1–10, 2014.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp.
1026–1034.

[25] D Kingma and J Ba, “Adam: A method for stochastic
optimization,” arXiv Prepr. arXiv1412.6980, 2014.

[26] L. Prechelt, “Early stopping–but when?,” in Neural Net-
works: Tricks of the Trade, pp. 53–67. Springer, 2012.


