
Neural Network-Based
Full-Reference Image Quality Assessment

Sebastian Bosse∗, Dominique Maniry∗, Klaus-Robert Müller†‡, Member, IEEE,
Thomas Wiegand∗†, Fellow, IEEE, and Wojciech Samek∗, Member, IEEE

∗Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany
‡Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea

†Berlin Institute of Technology, 10587 Berlin, Germany

Abstract—This paper presents a full-reference (FR) image
quality assessment (IQA) method based on a deep convolutional
neural network (CNN). The CNN extracts features from distorted
and reference image patches and estimates the perceived quality
of the distorted ones by combining and regressing the feature
vectors using two fully connected layers. The CNN consists of
12 convolution and max-pooling layers; activation is done by
a rectifier activation function (ReLU). The overall IQA score
is computed by aggregating the patch quality estimates. Three
different feature combination methods and two aggregation ap-
proaches are proposed and evaluated in this paper. Experiments
are performed on the LIVE and TID2013 databases. On both
databases linear Pearson correlations superior to state-of-the-art
IQA methods are achieved.

I. INTRODUCTION

Images and videos are ubiquitous today. The share of
bits representing visual signals is huge and even growing.
According to Cisco Visual Networking Index [1], by 2017 80-
90% of global internet traffic will be internet video traffic or
shared peer-to-peer video. To bring this tremendous amount
of visual data to consumers, images and videos need to
be compressed in order to allow for the transmission over
band-limited channels. With decreasing bit rate, distortions
are introduced into the transmitted signal that become visible
for the human eye. In order to automatically evaluate and/or
optimize the performance of transmission systems or modules
of these in terms of rate-distortion costs, a metric for image
or video quality is necessary. As humans are typically the
ultimate receiver of visual signals, it is crucial for such a
metric to relate to human visual perception and to predict
the visual distortion perceived by humans reliably. Commonly,
image quality metrics (IQM) are categorized by the amount of
information used for estimating perceived quality. While full
reference (FR) IQM have access to the complete undistorted
source reference image and its distorted version, no reference
(NR) IQM take only the distorted image as an input in order
to estimate the perceived quality of it. Reduced reference (RR)
IQM [2][3] lives in the middle of this spectrum as only a set
features extracted from the source reference image is given as
input to the algorithm.

At sender or encoder side of a transmission system the
reference is typically available, which allows for the use of
FR IQM. The two most simple FR IQM are mean square
error (MSE) and the logarithmically related peak-signal-to-
noise-ratio (PSNR), both of which poorly correlate with per-
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ceived visual quality [4]. Sophisticated FR IQM typically
follow one of two strategies [5]: Bottom-up approaches aim
at modeling various processing mechanisms of the human
visuals system (HVS), such as masking effects [6], contrast
sensitivity [7] or just-noticeable-distortion [8], [9]. Top-bottom
approaches apply assumptions on the general functions of the
HVS and try to identify and exploit corresponding features
from images in order to estimate perceived quality. Here the
structural similarity (SSIM) [10], feature-similarity (FSIM)
[11], gradient magnitude similarity deviation (GMSD) [12]
and Haar wavelet-based perceptual similarity index (HaarPSI)
[13] are examples for this class of approaches. The structural
similarity index exploits the sensitivity of the HVS to changes
in local structures in order to predict perceived quality. The
feature similarity index combines local phase coherency and
local gradient magnitude and uses the differences in these
spatially local features to predict perceived quality. DOG-
SSIM [14] applies SSIM to difference of gaussian filtered
images and by this mimics the HVS more explicitly. Recently,
methods applying a third strategy have been proposed. These
methods operate purely data driven and do not rely on explicit
assumptions about the HVS or perceptual image features.
Data driven approaches proposed so far mainly deal with the
problem of NR IQA. In [15], luminance normalized image
patches are k-means clustered in order to learn a general image
representation. The distance between the luminance normal-
ized test image patches are soft-thresholded. The resulting
code coefficients are pooled and then regressed by a support
vector machine (SVM) to predict image quality. A linear SVM
regression is used to learn a set of linear image features for
NR IQA in [16]. An extension of this approach is presented in
[17]. Here, object-like patches are detected in a first step. The
identified patches are then given as an input to the method
in [16]. In [18], a five layer convolutional neural network
(CNN) is trained to jointly learn feature to be extracted and
a regression function applied to these features to estimate the
quality of luminance normalized image patches. The first layer
consists of 50 convolutional kernels used for feature extraction.
The extracted feature maps are pooled to one minimum and
one maximum feature map. These two feature maps are then
given as an input to two fully connected layers in order to learn
the regression. The quality of full images is then predicted by
averaging the patchwise estimation.

This paper applies the data driven CNN framework to the
domain of FR IQA. A 12-layer CNN is applied to the image
patches from source reference and distorted images in parallel.
The features extracted from the image patches by the CNNs are
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Fig. 1: Layout of the proposed neural network.

fused and fed into a 2-layer fully connected network to learn
the regression function for patch-wise quality estimation. This
architecture was used in [19] for NR IQA and preliminary
results for FR IQA have been presented in [20]. In this work
we provide further evaluations on FR IQA and compare two
different methods for aggregating local patch quality to global
image quality.

This paper is organized as follows. In the next section we
present the neural network based FR IQA method and describe
three feature combination strategies and two patch aggregation
methods. In Section III-A we evaluate our method on the
popular LIVE [21] and TID2013 [22] image quality databases.
We conclude in Section IV with a brief discussion.

II. PROPOSED METHOD

A. Network Layout

As neural networks commonly take data of fixed size as an
input, we apply the proposed system to individual unprepro-
cessed 32×32 RGB patches cropped from the reference and the
distorted images. An imagewise estimate of perceived quality
can then be obtained by suitable pooling of the patchwise
estimated quality, e.g. by weighted or unweighted averaging.
Thus, training and testing is performed patchwise. For training,
patches are annotated with the quality labels given to the full
image that the respective patch was cropped from. A high
level layout of the proposed method of patchwise estimation
of perceived quality can be subdivided in four modules, as
shown in Fig. 1.

In a first step, features are extracted from reference and
distorted image patches, respectively, by two identical convolu-
tional neural networks (CNN) that are not interconnected with
each other. For feature extraction, we choose a architecture
with many layers inspired by [23], as this network achieved
very good results in the ILSVRC image classification challenge
[24]. Thus, only 3× 3 convolution kernels are used, activation
is done by a rectifier activation function (ReLU) and feature
maps are reduced in size only by max-pooling. Referring to
the notation from [23], the 12 weight layers in our architecture
are organized as: conv3-32, conv3-32, maxpool, conv3-64,
conv3-64, maxpool, conv3-128, conv3-128, maxpool, conv3-
256, conv3-256, maxpool, conv3-512, conv3-512, maxpool.
In order to ensure the output of the convolution to be of
the same size as the input, all convolutions are applied with
zero-padding. Maxpool layers have 2 × 2 kernels. Dropout

regularization [25] is applied to the FC layers with dropout
ratios 0.3, 0.4, 0.4 and 0.3.

The two feature vectors fr and fd that are extracted from
the reference image and the distorted image by the CNNs are
fused in a second step. In this paper three different fusion
strategies are discussed:

(1) subtracting fr and fd
(2) concatenating fr and fd
(3) concatenating fr, fd and fr − fd

After feature fusion, in the third step the fused feature
vector is input to a fully connected neural network (FC-512,
FC-1) regressing it to a patch quality estimate.

The fourth step aggregates the patch quality estimates to
an image quality estimate.

B. Training and Optimization

A given image can be subdivided in Np patches and
annotated with a ground truth quality label qt collected in
subjective tests. The quality qt of an image is estimated as
q and can be calculated by averaging the patchwise quality
estimate yi, output of the neural network: q = 1

Np

∑Np

i yi.
Training is performed by minimizing the mean absolute error
(MAE)

Epatchwise =
1

Np

Np∑
i

|yi − qt|

MAE puts less emphasis on outlier than mean squared error
(MSE) [18]. The optimization is done through the adaptive
learning rate optimizer ADAM [26] with α = 0.0001.

C. Weighted Patch Aggregation

Image quality ratings given by humans are related to
the perceived quality of a full image. Typically, (perceived)
distortions are not equally distributed spatially over an image,
e.g. due to masking of band-limited noise in textured regions.
Moreover, distortions in salient image regions have a stronger
influence on global quality than distortions in less salient image
regions. Thus, the quality label assigned to a full image does
not necessarily reflect the locally perceived quality.

In order to account for the influence of local image and
noise properties on the quality of full images, we propose



a weighted average aggregation of patchwise estimated local
quality to global quality. To achieve this, two additional fully
connected layers are added to the network that run in parallel
to the last two layers (the regression part) of the network
proposed in Subsec. II-A and are of the same shape. The output
αi of these layers can be used to weight the estimated local
quality of the corresponding patch i. Activating the weight by
a ReLU and using a small stability term ε ensures it to be
positive and non-zero with

α∗
i = max(0, αi) + ε

The global quality of a full image can then be calculated as

q =

∑Np

i α∗
i yi∑Np

i α∗
i

(1)

.

For end-to-end training, the error of the globally estimated
quality

Eweighted = |q − qt| (2)

of each image is minimized. In the following we will refer to
this patch aggregation strategy as “weighted avg”. The simple
(non-weighted) averaging will be referred to as “average”.

III. EXPERIMENTS

A. Experimental Setup

The proposed method is evaluated on the LIVE [21]
database consisting of quality annotated images that are subject
to distortions of different kinds and varying levels. The LIVE
database [21] is based on 29 source reference images, subject
to 5 different types of distortions at three to five different
distortion levels. MOS values were obtained under fairly
controlled conditions. The TID2013 [22] comprises 25 colored
reference images and 3000 differently distorted images, sub-
ject to 24 different distortion types. Subjective ratings were
gathered by comparisons. The results from several viewing
conditions of experiments in three different labs and on the
internet were averaged.

We evaluated the proposed method in terms of prediction
accuracy and prediction monotonicity. Prediction accuracy is
measured as Pearson linear correlation coefficient (LCC) and
prediction monotonicity is measured as Spearman rank order
correlation coefficient (SRCC). For evaluating the performance
of the proposed FR IQA method, the CNN is trained on 10
random train-test splits: For testing, 6 source reference images
and corresponding distorted versions were randomly chosen,
6 of the remaining source reference images and corresponding
versions were randomly chosen for validation and the remain-
ing (13 for LIVE, 14 for TID2013) were used for training. In
each epoch, 32 random patches are sampled from each image
from the training set. Models are trained for 3000 epochs. In
our implementation, training takes about 11s per epoch on a
Titan X GPU.

B. Results

Table I summarizes the performance the different proposed
feature fusion schemes for LIVE and TID2013 databases. The

Dataset Aggregation fd − fr
concat
(fr, fd)

concat
(fr, fd, fd − fr)

LIVE
Average 0.976 0.974 0.976

Weighted avg 0.982 0.977 0.982

TID2013
Average 0.908 0.893 0.908

Weighted Avg 0.962 0.958 0.965

TABLE I: Comparison of performance of the two suggested
patch aggregation methods. The LCC was computed on the
validation set of one random split for each dataset and with
Np = 1024 random patches per image.

Database TID2013 LIVE

Method LCC SROCC LCC SROCC

PSNR 0.675 0.687 0.856 0.866

SSIM[10] 0.790 0.742 0.906 0.913

FSIMC [11] 0.877 0.851 0.961 0.965

DOG-SSIM[14] 0.919 0.907 0.963 0.961

Average (proposed) 0.880 0.859 0.977 0.966

Weighted Avg (proposed) 0.946 0.940 0.980 0.970

TABLE II: Comparison of different FR IQA methods based on
the TID2013 and LIVE database. Highest LCC and SROCC
are set in bold. The reported correlations of the proposed
method are the average correlation achieved on the test sets
of 10 random train-test splits.

table shows that the relationship between the two feature vec-
tors can be learned by the model, but providing the difference
fr − fd explicitly leads to better results on both datasets.
Simple difference fusion fr − fd has the advantage that it
becomes zero if the feature vectors coincide (i.e., distorted
image equals reference image), but it lacks flexibility, e.g.
when only one of the feature vectors is informative. Due to the
limited size of the training data set we did not evaluate more
complex fusion techniques. However, although the differences
in performance are rather marginal for both databases and
aggregation methods, for further analysis the proposed method
is evaluated based on concat(fr, fd, fd − fr).

Table II compares the proposed methods with three
popular IQMs, namely PSNR, SSIM1, FSIM and DOG-SSIM.
Regardless of the patch aggregation strategy, the proposed
method achieves higher prediction accuracy and prediction
monotonicity on the LIVE database. On TID2013, DOG-SSIM
achieves higher LCC and SROCC than the proposed method
applying average patch aggregation, but is outperformed by
the proposed method if weighted-average patch aggregation is
used.

In the left panel of Fig. 2 the estimated patchwise quality
estimates yi are scattered against the patchwise ground truth
qt. The patchwise weight αi assigned to the specific patch
by the neural network in order to calculate the imagewise
quality is indicated by color. Some of the patches are assigned
with a negative quality estimate. These patches are consistently

1Please note that we refer to the correlations of SSIM as reported in [18].
Slightly different values are reported e.g. in [11].



Fig. 2: Scatter plot of patchwise (left) and imagewise (right) scores for the concat(fr, fd, fr − fd) method with weighted
average patch aggregation. The color represents the weight α∗ assigned to a specific patch in the left plot.

Original Image Distorted Image Patch-wise Weights

Fig. 3: Blockwise spatial distribution of patchwise predictions yi and weights α∗ for the concat(fr, fd, fr − fd) method with
weighted average patch aggregation. Blue color stands for low and orange color represents high values.

assigned with a very small relative weight α∗. By that, these
patches have only little influence on the global quality, calcu-
lated by the weighted average, and the imagewise prediction
error |q − qt| of these patches has with Eq. 1 only little
influence on the loss function Eq. 2. Thus, the backpropagation
for the specific patches gets ’stuck’ due to small gradients.
The resulting imagewise quality estimate is scattered against
ground truth on the right hand side of Fig. 2.

In order to better understand the effect of weighted average

patch aggregation we analyze the blockwise spatial distribution
of the weights α∗ and patch-wise predictions yi in Fig. 3. The
first example shows a relatively uniform patchwise score dis-
tribution yi, but a weighting which focuses more on the forest
than the river or the sky (similar to SSIM and FSIM). The
effect of the weighting in the second example is even clearer.
Here it separates the foreground object from the background.
For this image this is reasonable, as the foreground patches,
showing e.g. feathers of the parrot, contain finer structure than



the blurry background. Therefore the background is relative
to the foreground less important for the globally perceived
quality of the image. Also in the last example the weightings
have a region separation effect, namely they separate the
scores assigned to the sky from the scores assigned to the
rest. The former ones overestimate the MOS value, thus are
downweighted by the proposed method.

IV. CONCLUSION

We applied a deep CNN with a feature fusion architecture
to the problem of FR IQA and showed that it outperforms state-
of-the-art IQA methods on the LIVE dataset. We evaluated
three feature fusion approaches and two patch aggregation
techniques and briefly discussed their advantages and limita-
tions. By proposing weighted average patch aggregation we
considered local differences in relative influence to global
quality. By this the performance of the proposed method can
be improved further.

In future work we will study the influence of the CNN
architecture (e.g., depth) on FR IQA and investigate what
features are actually learned by the network using explanation
methods [27], [28]. Furthermore we will explore the perfor-
mance of our method in a cross-dataset scenario and separately
study the different distortion types.
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