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Abstract—Steady-state visual evoked potentials (SSVEP) are
brain responses elicited by periodic visual stimuli. Recently it
was shown that the use of SSVEP in quality studies allows
for accurate psychophysiological assessment of perceived visual
quality, but the influence of the stimulation frequency is still
unclear. This paper studies experimentally the relation between
the SNR of the neural signal and the stimulation frequency in an
psychophysiological quality assessment setup. For various source
images tested at different distortion magnitudes over the range
of 6 different stimulation frequencies, we show physiologically
plausible results that provide insights into the temporal dynamics
of neural distortion processing. Our findings inform a rational
choice of stimulation frequency in SSVEP-based image quality
assessment studies. This potentially improves the experimental
setup of future image quality assessment studies exploiting the
SSVEP paradigm.

Index Terms—Image quality assessment, SSVEP, stimulation
frequency, electroencephalography

I. INTRODUCTION

Accurate estimation of perceived visual quality is crucial for
operating, optimizing and evaluating most modern image and
video communication systems, and has been an active research
field since decades [1]. In recent years, a lot of progress has
been made, yet a precise model for the perception of visual
quality is not at hand. Thus, quantifying the perceptual prop-
erties of image processing and communication systems still
relies on the collection of human responses when presented
with a stimulus of interest, such as an image or video of a
certain quality. Conventionally, these responses are obtained
as overt, behavioral quality ratings during psychophysical
tests [1]. Ratings are typically averaged over subjects and
perceptual quality is reported as mean opinion score (MOS)
[2]. These ratings are the results of a conscious process,
typically reported in Likert-style questionaires [2], and as
such, prone to subjective factors, such as decision strategies,
expectations or fatigue [3]. Semantic annotations of rating
scales given to participants during psychophysical tests may
also fail at reflecting the participants’ appraisal of the stimulus
and thereby mislead given responses [3]. Another limitation of
psychophysical approaches to multimedia quality assessment
is its restriction to supra-threshold stimuli and its insensitivity
to sub-threshold stimuli. Depending on explicit conscious
responses these methods provide only limited insight into
internal perceptual and cognitive processes underlying the
decision making in quality assessment [4], [5]. These lim-
itations of psychophysical methods led researchers to study

psychophysiological approaches in the context of quality as-
sessment. Psychophysiological approaches are complementary
to classical psychophysical ones – in fact, Gustav Theodor
Fechner postulated inner psychophysics already 1907 as a neu-
ral foundation of outer psychophysics [6]. Due to its relative
modest cost in acquisition and operation, and its adequately
high temporal resolution, electroencephalography (EEG) is
one of the most popular methods used in psychophysiological
quality assessment and other domains of BCI (Brain Computer
Interfacing) [5].
Most studies investigate the relation between event related
potentials (ERPs) to perceived quality for different types of
media modalities. ERPs are brain responses that are elicited
by a specific sensory or cognitive event, such as an unexpected
change in quality. [7]–[10] show significant correlations be-
tween ERPs and MOS for distorted audio and speech signals.
[11] studies the assessment of JPEG distortions exploiting
ERPs. [12]–[15] show that also video quality can be assessed
using ERPs. [16] shows a relation between vertical dispar-
ities in stereoscopic images and the neural signal measured
as ERPs. Another line of research shows a change in the
spectral power distribution related to perceptual quality for
3D videos subject to coding distortions [17], [18]. Also other
psychophysiological signals such as electromyography (EMG)
or eye movements are studied for quality assessment [19], [20].
In contrast to ERPs, being transient responses elicited by a
single stimulus change, steady-state visual evoked potentials
(SSVEPs) are neural responses elicited by a train of changes
[21]. As a key feature, SSVEPs are confined to a set of narrow
band frequency bins centered at the frequency of the stimulus
change and its harmonics. Therefore, the signal-to-noise ratio
(SNR) is typically high as only a small fraction of the broad
band noise lies in the same frequency bins [21] the signal lives
in. For image quality assessment SSVEPs have been studied
at a stimulation frequency of fstim = 1.5 Hz [22]–[25]. While
it is known that for different cognitive tasks the stimulation
frequency has an impact on the properties of the neural signal,
e.g., for face discrimination [26] or perception of written text
[27], its influence on the neural detectability of changes in
image quality is not clear.
This work provides insights into the impact of the stimulation
frequency on image quality perception. 6 distorted images
based on 3 source reference images at 2 distortion magnitudes
are presented in an SSVEP alternation paradigm at 6 different



stimulation frequencies. Our results show a dependency of the
SNR of the extracted SSVEP on the stimulation frequency. Our
findings inform a rational choice of stimulation frequencies. In
Sec. II the experimental setup is explained. Sec. III describes
the data analysis. Results are presented and discussed in
Sec. IV. Sec. V concludes the article.

II. EXPERIMENTAL SETUP

The presented experiment consisted of two parts. In the
first part, perceived quality was assessed in a conventional
psychometric test, in the second part EEG data was recorded
during stimulus presentation. Both experimental parts were
conducted under identical viewing conditions: Stimuli were
shown on a 27” screen (DELL U23711) with a native resolu-
tion of 2560×1440 pixels at a refresh rate of fr = 60 Hz. The
screen was calibrated according to the specifications in [28].
Stimuli were shown in native resolution without any scaling.
The viewing distance was set with regard to the resolution of
the HD source content (see Sec. II-B) leading to a viewing
distance of 1.0 m [28]. The psychometric part took around
10 min, the neurophysiological part lasted about 1 h, excluding
preparation time. 9 subjects (all male, in the age group 25-28)
with normal or corrected-to-normal vision participated in the
experiment and were monetarily compensated for participa-
tion.

A. Choice of Studied Stimulation Frequencies
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Fig. 1: Constraints on the set of possible stimulation frequen-
cies for a display refresh rate fr = 60 Hz and a stimulation
duration Tstim = 2 s. Blue circles: Constraint posed by stimu-
lus duration. Red circles: Constraint posed by display refresh
rate. Possible are only stimulation frequencies conforming to
both constraints, indicated by filled circles.

As it is not possible to update the stimulus on screen
without refreshing the display the set of possible stimulation
frequencies for an SSVEP-base quality study is constraint by
rate fr of the display device used.
Since SSVEPs are effectively represented in the frequency do-
main, a second constrained is raised by the implicit assumption
of a periodic signal by the Fourier transform. In order to avoid
leakage, full cycles of the periodic stimulation have to fit into

the temporal analysis window of the length Tstim [29]. Thus,
a stimulation frequency fstim has to satisfy the two conditions

fstim · Tstim =m (1)
fr

2 · fstim
=n with m,n ∈ N. (2)

In order to achieve a frequency resolution of 0.5 Hz, a stimula-
tion duration of Tstim = 2 s is used. The display frame rate is
fr = 60 Hz. Stimulation frequencies allowed by Tstim = 2 s
as given by Eq. 1 are indicated by blue circles, stimulation
frequencies allowed by fr = 60 Hz (Eq. 2) are indicated
by red circles. Filled circles indicate stimulation frequencies
that satisfy both constraints. The resulting set of possible
stimulation frequencies [1,2,2.5,3,5,6,7.5,10,15,30] Hz is re-
duced to [2,3,5,6,7.5,10] Hz in order to decrease the number of
parameters in the experiment, as pilot experiments revealed a
low SNR on the first two harmonics for stimulation frequencies
higher than 10 Hz and lower than 2 Hz.

B. Stimulus Material

Stimuli were based on three 768 × 768 pixel sized image
patches cropped from HD video sequences. These patches,
shown in Fig. 2, were selected in order to provide roughly
texture-like yet diverse visual properties and served as source
reference images. Visual quality of each of the source ref-
erence images was degraded to two different quality levels.
Distortions were introduced by coding these images using the
HM16.0 test model [30] of High Efficiency Video Coding
standard (HEVC) [31] using intra only setting [32]. Quantiza-
tion Parameters (QPs) used to generate the distorted patches
were selected in order to meet quality levels of approximately
similar perceptual qualities for the source reference image.
For this, perceptual quality was estimated using HaarPSI [33],
aiming at target values of 0.8 and 0.65. The resulting QP
values were {36,41} for Woods, {35,42} for CrowdRun, and
{39,47} for SunFlower.

C. Measurement of Behavioral Responses

Quality was assessed psychophysically following the degra-
dation category rating (DCR) procedure with simultaneous
presentation (SP) [28]. The undistorted source reference im-
age was shown on the left hand side simultaneously with
the distorted image on the right hand side for duration of
10 s or until subjects reported a quality judgement. Dur-
ing presentation, subjects were asked to report their quality
judgement using a slider on screen. For rating, a five-grade
degradation scale was used with the semantic annotation
5-Imperceptible, 4-Perceptible, but not annoying, 3-Slightly
annoying, 2-Annoying, and 1-Very annoying.

D. Measurement of Neurophysiological Responses

In order to elicit SSVEP, during the neurophysiological
part undistorted and distorted versions of the stimuli were
presented in alternation at stimulus frequencies fstim ∈
[2, 3, 5, 6, 7.5, 10] Hz. Image sequences were presented for 10 s



with the first and last second being excluded from further anal-
ysis. Each combination of source reference image, distortion
level and stimulation frequency was presented in 7 trials in
random order. Each trial started with a 1 s-presentation of a
fixation point in the center of the active screen.

EEG was recorded at a sampling frequency of 1 kHz using
BrainAmp amplifiers and an ActiCap active electrode system
with 64 sensors (both by Brain Products, Munich, Germany).
The electrodes were positioned at Fp1,2, AF3,4,7,8, Fz, F1-
10, FCz, FC1-6, FT7,8 Cz, C1-6, T7, CPz, CP1-6, TP7,8, Pz,
P1-10, POz, PO3,4,7,8, Oz, O1,2. The electrode that in the
standard EEG montage is placed at T8 was placed under the
right eye and used to measure eye movements. All electrodes
were referenced to the left mastoid using a forehead ground.
All impedances were kept below 10 kΩ.

III. DATA ANALYSIS

A. Behavioral Data

In psychophysical tests, some observers might give incon-
sistent responses that can distort the result of the test. Those
observers can be identified by screening and should be rejected
for further analysis as recommended in [34]. Mean opinion
scores (MOS) are obtained by averaging condition-wise over
the ratings reported by individual observers.

B. Neurophysiological Data

For offline analysis, EEG data is bandpass filtered using
a 3rd order Butterworth filter with a −3 dB passband from
0.8 Hz to 40 Hz in order to attenuate line noise and to remove
drifts and DC-offset. EEG data is downsampled to 120 Hz.
The influence of horizontal eye movement is regressed out
from the difference of the signals recorded at F7 and F8,
vertical eye movement from the difference of the signals from
VEOG and FP2. EEG data is re-referenced to common average
reference (CAR). EEG data is epoched into 4 non-overlapping
segments of the original 8 s trial records. This essentially
increases the number of trials for the price of a reduction of
stimulus duration, and, thus, to a spectral resolution of 0.5 Hz.
Epochs with more than 20% of samples exceeding ±25 µV are
excluded. Typically, these epochs are associated with strong
eye movements, blinks or other body movement that could
not be regressed out. The SSVEP was extracted from 2 s-
epochs as discrete Fourier transform (DFT) coefficients. SNR
per frequency bin is estimated as the ratio between the power
in a frequency bin and the mean of the power in the two
neighboring frequency bins. EEG data from O1, O2, Oz is
coherently averaged over all trials, subjects, and channels. For
data analysis the Wyrm toolbox [35] was used.

IV. RESULTS

The MOS values of the stimuli as obtained in the behavioral
part of the study are shown in Fig. 3. The results do not show
a split of the stimuli into two groups of distortion level of
similar perceptual quality. Thus, further analysis considers all
stimuli jointly by averaging neural data for all conditions.

Fig. 3: MOS values of the stimuli used in the experiment

Fig. 4 exemplify the scalp topographies of the SNR for the
first 2 harmonics 1fstim, 2fstim of the stimulation frequency
fstim for fstim ∈ [2, 3, 5, 6, 7.5, 10] Hz for one subject. While
for fstim ∈ [3, 5, 6, 7.5] Hz the SNR concentrates around
occipital electrode positions, this concentration is partially
reduced only for fstim ∈ [2, 10] Hz, in particular for the first
harmonic.

Accordingly, the time course of the EEG signal averaged
over the channels O1, Oz and O2 is shown in Fig. 6. For all
considered stimulation frequencies fstim < 10 Hz the EEG
signal shows a clear modulation with the visual stimulation.
For fstim = 10 Hz this modulation decreases, also resulting
in a lower amplitude of the signal. The according spectra of
the SNR are shown in the 2nd and 4th row of Fig. 6, with
red denoting the SNR on the harmonics of the stimulation
frequency. For all stimulation frequencies the spectral power
distribution of the signal is dominated by the first 2 harmonics.
The dependency of the SNR of the stimulation frequency on
the first 4 harmonics is summarized in Fig. 5. For fstim ∈
[5, 6] Hz the SNR at the 1st harmonic exceeds equals the SNR
at the 2nd harmonic. SNR at 2nd harmonics exhibit peaks for
fstim = 3 Hz and fstim = 6 Hz and a drop at fstim = 5 Hz
where the SNR of the 1st harmonic peaks. Higher harmonics
(3rd and 4th) both exhibit a peak in SNR at fstim = 5 Hz
(and possibly below 2 Hz). SNR at the 4th harmonic displays
a drop for fstim = 6 Hz and a peak for fstim = 7.5 Hz. SNR
at the 3rd and 4th harmonic drops for fstim = 3 Hz and for
fstim ≥ 7.5 Hz.

The relation between SNR and stimulation frequency can
be understood in parts from the power spectral density (PSD)
of the EEG, as the theta band (approx. 4–7 Hz) has a lower
level of activity as compared to the delta (approx. 1–3 Hz)
and alpha (approx. 8–12 Hz) bands [36]. The PSD of the
EEG recorded from unstimulated, open-eyed subjects is shown
for comparison in Fig. 7. The 3rd and 4th harmonics of
fstim = 3 Hz are buried in the alpha activity, as well as
the 2nd harmonic of fstim = 5 Hz and the 1st harmonic
of fstim = 10 Hz, whereas the 1st and 2nd harmonics of
fstim = 2 Hz are affected by delta activity, leading to a



(a) fstim = 2.0Hz

(b) fstim = 3.0Hz

(c) fstim = 5.0Hz

(d) fstim = 6.0Hz

(e) fstim = 7.5Hz

(f) fstim = 10.0Hz
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Fig. 4: Topographical distribution of the SNR on the first two
harmonics for one subject (left column 1st harmonic, right
column 2nd harmonic). Yellow indicates higher values, green
indicates lower values (see colorbar).
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Fig. 5: SNR over different stimulation frequencies for first 4
harmonics averaged over channels O1, Oz, O2. (grand average
over all subjects).

Fig. 7: Power spectrum of the EEG recorded from subjects
having eyes open without controlled stimulation.

decrease of the related SNRs. 3rd and 4th harmonics of
fstim = 2 Hz, and 1st harmonic of fstim = 6 Hz on the other
hand are less affected by the low background activity in the
theta band.

In [24] a high correlation between the SSVEP at the
amplitude at the 4th harmonic for a stimulation frequency
fstim = 1.5 Hz is reported but not explained. Extrapolating
from Fig. 5 suggests that for fstim = 1.5 Hz the SNR of the
4th harmonic is higher than e.g. the SNR of the 1st harmonic.
This explains the superior suitability of the amplitude of the
4th harmonic at fstim = 1.5 Hz as a neural marker in quality
assessment.

Even harmonics of the SSVEP represent responses to onset
and offset of the stimulus change and capture low-level prop-
erties of the stimulus such as contrast or luminance changes.
Odd harmonics are responses to the onset only and often
related to higher-level properties of the stimulus change [21].
The relation between even and odd, respectively, harmonics
and perceptual quality is not clear. A balanced SNR between
the first odd and the first even harmonic of the neural signal
therefore seems to be a reasonable criterion. This balance is
achieved at fstim = 6 Hz (see. Fig. 5). Moreover, a stimulation
frequency fstim = 6 Hz shows the highest SNR at the first
harmonic, which can be assumed to carry the signature of



neural distortion processing as it captures the stimulus onset.

V. CONCLUSION

We presented experimental results on the influence of the
stimulation frequency in a SSVEP-based image quality as-
sessment setup. Due to the curse of dimensionality imposed
by the number of considered stimulation frequencies only
6 different stimuli could be used in the experiment. This
renders the estimation of correlations between the neural signal
and behavioral responses, e.g. MOS unreliable and thus the
SNR was used as a proxy quantity. Our results show that
a stimulation frequency of fstim = 6 Hz achieves a high
SNR at the first harmonic and a balanced relation of SNR
at the first two harmonics, indicating to be a favourable
choice in quality assessment studies. On a reduced set of
considered stimulation frequencies and a larger set of stimuli
this should be validated in terms of correlation. Also the
relation between odd and even harmonics, respectively, and
perceived quality should be investigated in order to arrive
at a final conclusion. Potential dependencies on the source
reference images and its spatial statistics should be taken into
account. Sophisticated channel decomposition techniques such
as spatio-spectral decomposition (SSD) [37] were shown to be
useful for SSVEP-based quality assessment [24] and could be
used to analyze subject dependencies in future studies.
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(a) CrowdRun (b) SunFlower (c) Woods

Fig. 2: Source reference images used in experiment

(a) fstim = 2.0Hz (b) fstim = 3.0Hz (c) fstim = 5.0Hz

(d) fstim = 6.0Hz (e) fstim = 7.5Hz (f) fstim = 10.0Hz

Fig. 6: Time course (top and 3rd row) and SNR spectrum (2nd and bottom row) for different stimulation frequencies averaged
over O1,Oz and O2 channels. Time courses: Grey indicates single trial time courses for and stimuli, average for one subject
is denoted by blue. SNR spectra: SNR for harmonic frequencies is denoted by red, all other frequencies by blue.


