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Abstract—Steady-state visual evoked potentials (SSVEP) are
neural responses, measurable using electroencephalography
(EEG), that are directly linked to sensory processing of visual
stimuli. In this study, SSVEP are used to assess the perceived
quality of texture images. The EEG-based assessment method
is compared to conventional methods and recorded EEG data
is correlated to obtained mean opinion scores (MOS). A dimen-
sionality reduction technique for EEG data called spatio-spectral
decomposition (SSD) is adapted for the SSVEP framework and
used to extract physiologically meaningful and plausible neural
components from the EEG recordings. It is shown that the use of
SSD not only increases the correlation between neural features
and MOS to r = −0.93, but also solves the problem of channel
selection in EEG-based image quality assessment.

Index Terms—EEG, SSVEP, video quality assessment, classi-
fication, MOS, spatio-spectral decomposition

I. INTRODUCTION

D IGITAL images and video have become ubiquitous today.
Most images and videos that are captured, transmit-

ted and displayed are intended to be ultimately viewed by
humans. Channels in image or video transmission systems
are bandwidth limited. This limitation necessitates bit rate
reduction of the data achieved by compression. However, bit
rate reduction comes at a price and with decreasing bit rate,
compression algorithms introduce degradations into the signal
that are visible to human viewers. In order to deal with the
tradeoff between bit rate permitted by the channel capacity
(or other infrastructure limitations) and the quality of the
visual signal, the measurement of these degradations in a
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perceptually relevant manner is crucial for the operation of
those transmission systems.

The assessment of perceived visual quality and the un-
derlying fundamental model of human vision has been an
ongoing research area since decades [1]. Although a lot of
progress has been made in recent years, a precise model for
perception of visual distortion is not available and the question
how to quantify perceptual visual quality remains answered
unsatisfyingly [1].

Hence, the assessment and quantification of perceived qual-
ity and the evaluation of transmission systems or modules
of transmission systems, such as compression schemes, is
commonly still approached in psychophysical tests. During
these tests, a participant (also called: observer) is presented a
stimulus in form of an image or a video and gives an overt re-
sponse on the subjective judgment on the visual quality of the
specific stimulus. Test procedures have been standardized for
television applications in [2] and for multimedia applications
in [3]. The psychophysical assessment of perceived quality
may be done based on the rating of a single stimulus via
Absolute Category Rating (ACR) or based on the comparison
of a reference stimulus with a test stimulus via Degradation
Category Rating (DCR). The ratings of individual test partici-
pants, observers, are pooled by averaging and reported as mean
opinion scores (MOS). It is recommended to average over
ratings collected from at least 15 observers [2]. Psychophysical
quality assessment tests are very exhausting for participants
and in order to prevent influence of fatigue, it is further
recommended to restrict the duration of a rating session to
not more than 30 min [2]. Individual ratings are highly variable
across subjects. Also, other factors than the characteristics of
the stimuli presented during test sessions have an influence on
the individual ratings, since internal states of the participants,
such as motivation, fatigue, rating strategies, may have impact
on the conscious decision process.

These drawbacks and the desire to gain insight into the
internal mental process during decision making in quality
assessment tasks motivated researchers to study psychophysi-
ological approaches recently.

This paper presents an image quality assessment study
based on an electroencephalographic technique called steady-
state visual evoked potentials (SSVEP). The data corpus used
for the evaluations presented was used earlier in three other
studies addressing different scientific questions [4], [5], [6].
[4] studies the detection of perceived quality degradation in
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images using electroencephalography (EEG) [7] and com-
mon spatial patterns (CSP) [8] for dimensionality reduction.
For this, [4] does not take into account the relation of the
neural signal to MOS values, but classifies distorted from
undistorted images and evaluates classification performance
with respect to different distortion magnitudes. This provides
strong evidence for the general feasibility of SSVEP-based
image quality assessment, but does not allow for assessment
of perceived quality as no ranking of different quality levels
is obtained. CSP is a supervised method that requires labeled
training data. It maximizes the variance ratio between two
conditions and is commonly used in classification problems.
Being supervised, CSP relies on labeled training data that
is usually not given in quality assessment studies. Thus,
and in contrast to [4], this study evaluates the correlation
between brain responses and MOS values and extends [5],
[6] by using spatio-spectral decomposition (SSD) [9], an
unsupervised method for dimensionality reduction that applies
assumptions on the spectral distributions of signal and noise,
and aims at maximizing the signal-to-noise ratio (SNR). For
this, SSD is re-formulated in the Fourier domain, rendering
it particularly suited for the SSVEP framework. In contrast
to [5], [6], SSD provides a rational channel selection not
relying on neuroanatomical knowledge or training data. By
this, neural components are extracted from the EEG-signal,
reflecting the sensory processing underlying image quality
perception and significant correlations of the extracted neural
features to MOS values are achieved. Based on the L2-norm
of the extracted SSD components we suggest a basic and
simple screening method for rejecting those subjects for who
SSD fails. Finally, we show the feasibility of the proposed
approach by evaluating the prediction of MOS values from
neural responses and show a prediction accuracy comparable
to behavioral approaches, although our framework still leaves
room for further optimization. In order to ease reproducibility,
the experimental design and the signal processing pipeline are
described in detail.

The paper begins with a short discussion of related work
in Section II. Section III gives an introduction to SSVEP
and explains underlying neural mechanisms. Section IV and
Section V detail the experimental setup, the suggested signal
processing and the adapted method for extracting neural com-
ponents. Results are presented in Section VI and discussed in
Section VII.

II. RELATED WORK

EEG-based approaches to assess the perceived quality of
multimedia signals have been studied since recently for dif-
ferent stimulus modalities and experimental paradigms. Most
approaches in literature exploit event related potentials (ERP,
see Section III). For instance, [10], [11], [12], [10] investigate
neural correlates of distorted audio and speech signals based
on ERP and find significant correlations. The assessment of
perceived quality subject to JPEG distortions using ERP is
studied in [13]. In [4], steady state visual evoked potentials
(SSVEP, see Section III) are used to classify distorted and
undistorted images. SSVEP elicited by distorted images are

related to behavioral responses reported as MOS values on a
single sensor basis in [5], [6]. The perception of video quality
has been studied using EEG in [14], [15], [16], [17], [18]. In
[14] correlations between MOS and averaged ERP-amplitudes
measured at a single electrode (CPz) of r = −0.84 for video
quality are reported. For the combination of audio and video,
the correlation increases to r = −0.87. In [19], changes in
different frequency bands of the neural signal as a response
to coding artifacts in 3D video are studied. Here, correlations
between band power and MOS of |r| ≈ 0.25 are achieved on
a-posteriori selected channels. The relation of EEG-signals to
computer graphic artifacts is evaluated in [20]. Multi-variate
techniques have been shown capable of detecting the SSVEP
in the visual cortex that is induced by the flickering of 3D
shutter glasses even when the flickering frequency is about
the threshold of perception [21].

A detailed overview on the EEG-based multimedia quality
assessment can be found in [22] and [23].

III. STEADY-STATE VISUAL EVOKED POTENTIALS

Neural processing of sensory stimuli changes the electrical
activity of the brain. Those changes are stereotypical to
specific stimuli and may be measured as potentials between
electrodes attached to different locations on the scalp. This
technique is called electroencephalography (EEG) [7]. Ampli-
tudes of evoked potentials are usually very small and lie in the
range of several microvolts, buried in the EEG background
activity with an amplitude range of tens of microvolts. As
evoked potentials are time locked with the stimulus onset,
they are also called event related potentials (ERP) and can
be resolved against the background activity (and other types
of non-phase locked noise, introduced e.g. by eye movements)
by averaging the recorded signals across several trials [24].

Brain responses elicited in the visual cortex by periodic vi-
sual stimulation are periodic themselves and can be very stable
in amplitude and phase. They have therefore been referred to
as steady-state visual evoked potentials (SSVEP) [25], [26].
Their frequency content is determined by the frequency of
the stimulation, as the response spectrum has narrowband
peaks at the stimulation frequency and its integer multiples
(harmonics) [25]. The occurrence of activity at harmonics of
the stimulation frequency has two reasons: Multiple temporal
frequencies in the stimulation (e.g a square-wave temporal
modulation profile) and the nonlinearity of the brain [25]. This
allows for the description of SSVEP by the amplitude, phase
and scalp topography specific to the respective harmonic.
As the signal is only contained in the response components
harmonically related to the stimulation frequency, the noise
in a recording can be easily estimated by the amplitude of
the response component in the frequency bins neighbored to
harmonics of the stimulation frequency [27]. Responses in
real EEG recordings are contaminated by noise. This stems
from additive EEG noise [28] or from artifacts introduced e.g.
by movements. However, the fact that the response itself is
narrowband, while noise sources are broadband explains the
reported high signal-to-noise-ratio (SNR) of SSVEP record-
ings, relative to broadband ERP-responses [25], [27]. For more
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detailed information on the SSVEP and its use in research see
[25].

IV. EXPERIMENTAL SETUP

A. Stimuli

Blanket GrayFlakes

GrayRubber Oatmeal

Scarf Stone

Fig. 1. Texture images used in experiment taken from [29], [30]

In order to make the measurement independent of local
image statistics and thus of the current gaze position, six
spatially roughly stationary gray-level texture images were
chosen from two image databases [30], [29] as the basis
for stimulus generation (Fig. 1). The images have a size
of 512 × 512 pixel and are normalized to identical mean
luminance. The visual quality of theses images was degraded
to six different quality levels. Distortions were introduced
by coding the original images using the HM10.0 test model
[31] of High Efficiency Video Coding standard (HEVC) [32]
using intra only settings [33]. HEVC offers a flexible quadtree
structure for prediction and transform. Statistical redundancies
are exploited by block-wise temporal (for video signals) and

spatial linear prediction. The residual signal is transformed
block-wise, and coefficients are quantized in the transform
domain. Coding artifacts, which are perceived by the human
observer as a loss of visual quality, are introduced by the
quantization of the transform coefficients. The quantization is
controlled by the Quantization Parameter (QP). The distortion
levels, mediated by the QP, have been estimated in a pilot
study in order to meet roughly similar perceptual qualities
with two conditions per texture above the perception threshold
(MOS ≈ 8, see Subsection IV-D), one condition per texture
close to the perception threshold and three conditions per
texture distributed below the perception threshold. In Fig. 2,
examples of the distorted versions of the original image
GrayFlakes give an impression of the stimuli.

B. Participants

Sixteen participants (seven females and nine males, in the
age group 21-46) took part in the experiment. All had normal
or corrected-to-normal vision and none of them had a history
of neurological diseases. They were all native German speak-
ers or at least with a level of German comprehension of five,
on the six level scale of competence laid down by the Common
European Framework of reference for Languages [34]. All of
them were naïve in respect of video quality assessment studies
and were paid for their participation. Each subject was briefed
individually about the purpose of the experiment. The study
was performed in accordance with the declaration of Helsinki
[35] and all participants gave written informed consent.

C. EEG Data Acquisition

EEG was recorded with sampling frequency of 1000 Hz
using BrainAmp amplifiers and an ActiCap active electrode
system with 64 sensors (both by Brain Products, Munich,
Germany). The electrodes used were Fp1,2, AF3,4,7,8, Fz,
F1-10, FCz, FC1-6, FT7,8 Cz, C1-6, T7, CPz, CP1-6, TP7,8,
Pz, P1-10, POz, PO3,4,7,8, Oz, O1,2. The electrode that in
the standard EEG montage is placed at T8 was placed under
the right eye and used to measure eye movements. Fig. 3
plots the layout of the electrode positions. All the electrodes
were referenced to the left mastoid, using a forehead ground.
For offline analyses, electrodes were re-referenced to linked
mastoids. All impedances were kept below 10 kΩ.

D. Stimulus Presentation

As the experiment consisted of two parts, one addressing
conventional psychophysical assessment of perceived quality
in terms of MOS, the other addressing neurophysiological
assessment, two different forms of stimulus presentations were
used. However, the presentation environment was identical for
both parts of the experiment: The stimuli were shown on a 23"
screen (Dell U2311H) with a native resolution of 1920×1080
pixels at a refresh rate of 60 Hz. The screen was normalized
according to the specifications in ITU-R Recommendation
BT.500 [2]. The size of the images in the behavioral part of
the experiment was the same as in the videos. The viewing
distance was 110 cm, in compliance with specifications in the
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QP=14, MOS=8.5 QP=43, MOS=3.8 QP=51, MOS=1.5

Fig. 2. Distorted images used in experiment exemplified for texture Oatmeal.

Fig. 3. Electrode layout. The EOG electrode is placed below the right eye.
The blue shaded area indicate the approximate location of the visual cortex
projected to the scalp.

ITU-T Recommendation P.910 [3], and the stimuli resolution
was 512 × 512 pixels (128 × 128 mm), which corresponds
to 7.15◦ visual angle. Subjects sat in front of the display in
a dimly lit room. Between the two parts of the experiment
subjects had a short rest and were provided small snacks and
drinks.

1) Behavioral Part: In the psychophysical part of the
experiment, participants evaluated the perceived quality of
the textures following a Degradation Category Rating (DCR)
procedure using Simultaneous Presentation (SP) [2]. Image
pairs were presented simultaneously side-by-side with the
distorted test image on the left hand side and the undistorted
reference image on the right hand side within a 50% gray
background. Each image pair was presented in the display
for 10 s. Each stimulus presentation was followed by a voting
during which the observer rated the impairment of the test

image in relation to the reference image using a rating scale
implemented by a slider. A nine-grade degradation scale [3]
was used where the ratings 1, 3, 5, 7 and 9 corresponded to
the semantic annotations Very annoying, Annoying, Slightly
annoying, Perceptible, but not annoying and Imperceptible,
respectively. In this scale, grade 8 corresponds to the psy-
chophysical perception threshold of the impairment [3]. Each
stimulus pair was presented 3 times in order to obtain statis-
tical significance. Learning effects were reduced by including
a training session in which 12 stimuli were presented at
the beginning of each session. Stimuli presented during the
training session were not included in the statistical analysis of
the test results.
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Fig. 4. Structure of the temporal presentation of stimuli, here for one base
image. Distorted and undistorted images of one base image are presented
alternating at a constant frame rate of fr = 3 Hz. Each distortion was
presented for 4 alternation periods, the order of presented distortion levels
was randomized in each trial. The first 8 images only comprised undistorted
images.

2) Neurophysiological Part: In this part of the experiment,
in order to elicit SSVEP, distorted images have been presented
in periodic alternation with undistorted images at a frame rate
of fr = 3 Hz. This corresponds to a stimulation frequency
fstim = 1.5 Hz in terms of SSVEP paradigms [25].

Stimulus presentation was structured in consecutive texture
blocks (see bottom panel of Fig. 4). Within one texture
block, alternations have been repeated four times for each
distortion magnitude, resulting in a presentation of 8 frames
per distortion magnitude. Each texture block started with
the presentation of 8 undistorted frames. Thus, a texture-
specific block consisted of 56 frames (6 distortion levels ×
4 alternations × (1 distorted frame + 1 undistorted frame) +
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8 undistorted frames). The construction of such a texture-
specific block is sketched in the top panel of Fig. 4. The order
of the distortions was randomized for each texture and each
trial and the order of the textures was randomized for each
trial in order to avoid adaptation or memory effects.

The presentation of one trial for all reference images and
all distortion levels began with the presentation of a fixation
cross and took about 117 s in total. Trials were presented in
3 blocks, consisting of 20, 15, and 16, respectively, runs of
trials, resulting in 51 trials per condition. The 3 blocks were
divided by short breaks of about 10 min.

V. METHODS AND DATA ANALYSIS

A. Analysis of Psychophysical Data

In psychophysical tests, some observers might give incon-
sistent responses that can distort the result of the test. Those
observers can be identified by screening and should be rejected
for further analysis as recommended in [2]. Mean opinion
scores (MOS) are obtained by averaging condition-wise over
the ratings reported by individual observers.

B. Preprocessing of EEG Data

EEG signal was bandpass filtered from 0.5 Hz to 40 Hz
using a zero-phase Chebyshev filter of order 8 (3 dB of ripple
in the passband and 40 dB of attenuation in the stopbands)
and downsampled to 90 Hz. After eye-movement regression,
the EEG was re-referenced to the common average of all
electrodes.

1) Eye-Movement Regression: Let xk(t) denote the EEG
recording on one sensor k and x(t) ∈ RK represent the
recorded signal of K sensors at a time point t. Horizontal eye
movements are contained in the difference signal of the sensors
F9 and F10 xhor(t) = xF9(t) − xF10(t), vertical eye move-
ments and blinks in the difference between signals measured
at electrodes Fp2 and EOG xver(t) = xFp2(t)−xEOG(t). By
combining xhor(t) and xver(t) to xeye = [xhor(t), xver(t)]

T

we define Σeye as the covariance matrix of xeye(t), Σx

as the covariance matrix of x(t) and Σx,eye as the cross-
covariance of xeye(t) and x(t). This leads to a backward
model relating the sensor activity to the underlying originating
sources W = Σ−1x Σx,eye [36]. The forward model, relating
the source activity to the observed sensor activities is then
given as A = ΣxWΣ−1eye [36], where Σx and Σ−1x (from W)
cancel out. Interferences of eye motion can now be regressed
out from the recorded signal as x̃(t) = x(t) − AA#x(t)
[37], [38], where # denotes the pseudo-inverse of a matrix.
For further processing and analyses, data measured at EOG is
neglected.

Note that for the sake of readability, although eye artifacts
are regressed out, the recorded data x(t) is always assumed to
be free of eye movement artifacts in the following. Therefore,
x̃(t) is denoted as x(t).

2) Epoching: The EEG data recorded for each subject is
subdivided into epochs ranging from 666.67 ms to 2666.67 ms.
Thus, the neural data of each epoch is the signal recorded
after the presentation of the second frame of each trial and
contains the signal measured for the duration of 3 periods (see

Fig. 4). This reduces the influence of transient components of
responses to the stimulus onset [25].

3) Artifact Rejection: EEG epochs that contained a large
percentage (more than 20%) of data samples exceeding a
threshold of 25 µV were excluded as artifacts on a sensor-
by-sensor basis. Typically, these epochs were associated with
strong eye movements, blinks or other body movement that
could not be regressed out.

C. Feature Extraction

Fourier transform is applied epoch-wise to the recorded
EEG data. As the sampling frequency (fs = 90 Hz) is an
integer multiple of the stimulation frequency (fstim = 1.5 Hz)
and the epoch length of 2 s allows for an integer number
of stimulation periods per epoch (in this case 3 periods), no
windowing is applied to the data, in order to avoid sidebands
[39].

D. Dimensionality Reduction

A common method for the analysis of EEG data and
dimensionality reduction is to find a spatial filter W that
projects the sensorwise measurement x(t) to a new subspace
containing the spatial components y(t) = W>x(t) [36], [40].
As in Section V-B1, W is found by optimizing y(t), given
x(t), in regard to a specific criterion. The columns wi ∈ RK
of W ∈ RK×K contain the filters of the specific compo-
nents i. Thus, the time course of the ith spatial component
can be calculated as yi(t) = w>i x(t)). Accordingly, with
A =

(
W−1)>, the column ai ∈ RK of A ∈ RK×K contain

the spatial activity patterns of the respective component i [36].
The signal-to-noise-ratio (SNR) of the components y(t)

was suggested as an optimization criterion for a technique
called spatio-spectral decomposition (SSD) [9]. SSD extracts
components of neural oscillations by maximizing the power
in one frequency band and, simultaneously, minimizing the
power in another frequency band. For this the SNR is defined
as

SNR =
Ps(f)

Pn(f)
, (1)

where Ps(f) and Pn(f) are power spectra of a recorded
EEG signal bandpass filtered according to the assumed signal
frequency band (leading to xs(t) and its power spectrum
Ps(f)) and to the assumed noise frequency band (leading to
xn(t) and its power spectrum Pn(f)). With a spatial filter W
and the projection y(t) = W>x(t), the SNR of y(t) can be
defined by

SNR(W) =
W>ΣsW

W>ΣnW
(2)

with Σs and Σn being the covariance matrices of the
bandpass filtered signals xs(t) and xn(t).

Maximizing SNR for W leads to the generalized eigenvalue
problem

ΣsW = DΣnW. (3)

The entries of D contain the generalized eigenvalues and can
be interpreted as the amount of SNR projected to a specific



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

component. The solution of Eq. 3 leads to W and thus to
SNR optimized spatial components. For details on SSD and
its application on signals in the time domain, please refer to
[9], [40].

With some adaptation, SSD can directly exploit the nar-
rowband property of SSVEPs. The SNR of SSVEPs can be
approximated sensor- and harmonic-wise as

SNR =
Ps(fh)

Pn(fh)
≈ P (fh)

0.5 (P (fh −∆f) + P (fh + ∆f))
, (4)

where P (fh) denotes the power of the harmonic component
at one particular harmonic frequency fh and, with frequency
resolution ∆f , P (fh±∆f) denotes the power of the spectrally
neighbored components. Exploiting the unitary property of the
Fourier transform, with Xk(f ; e) being the Fourier transform
of the EEG signal from an epoch e at a sensor k and with K
sensors in total, we find the covariance matrices in Eq. 3 as

Σs =


Cs0,0 Cs0,1 · · · Cs0,K−1

Cs1,0 Cs1,1 · · ·
...

...
...

. . .
...

CsK−1,0 · · · · · · CsK−1,K−1

 (5)

and

Σn =


Cn0,0 Cn0,1 · · · Cn0,K−1

Cn1,0 Cn1,1 · · ·
...

...
...

. . .
...

CnK−1,0 · · · · · · CnK−1,K−1,

 (6)

with

Csi,j =
∑
e

Xi(fh; e)X∗j (fh; e) (7)

+Xi(−fh; e)X∗j (−fh; e)

Cni,j =
∑
e

Xi(fh −∆f ; e)X∗j (fh −∆f ; e) (8)

+Xi(−fh + ∆f ; e)X∗j (−fh + ∆f ; e)

+Xi(fh + ∆f ; e)X∗j (fh + ∆f ; e)

+Xi(−fh −∆f ; e)X∗j (−fh −∆f ; e).

Within a SSVEP paradigm, a filter W can be found for
every harmonic of the stimulation frequency.

After solving Eq. 3, we normalize W columnwise.

VI. RESULTS

A. Behavioral Data

After screening, no participant had to be rejected on
basis of the behavioral data. In Fig. 5 the regression of
the perceived quality in terms of MOS values is plotted
against the QP used for compressing the images. Regres-
sion was performed by using a 3-parameter logistic function
MOS(QP) = β1

1+e−β2·(QP−β3) . Vertical bars represent the 95%
confidence interval. The perception threshold at MOS=8 [2]
is indicated by a horizontal line. The two highest quality
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Fig. 5. MOS values obtained in the behavioral part of the experiment for all
6 textures. The distortion perception threshold around MOS = 8 is indicated
by the horizontal black line. Vertical errorbars denote confidence intervals of
MOS values of the specific condition.

levels are above the perception threshold for each texture. For
different textures we tried to introduce distortions at quality
levels that can mostly be considered as being perceptually
roughly equal. The resulting MOS values are mostly very
close and the confidence levels overlap for the most instances
of equal quality levels1. Note the extreme cases, where the
horizontally and vertically oriented structure of Scarf allows
for a relatively good representation by separable DCT and the
high contrast is able to mask quantization noise, the rather flat
diagonal structure of GrayRubber can not be captured by the
DCT and structure vanishes due to quantization [41].

B. Neurophysiological Data

As summarized in Section III, a periodic visual stimulation
elicits responses consisting of frequency components that are
harmonically related with the stimulation frequency fstim.
Fig. 6 shows the time courses and the amplitude spectra of
the full epoched neural signal measured at Oz electrode and
averaged over all trials and textures for subject VPik and for
different distortion levels. The distortion level is increasing
from top to bottom. The increase of distortion magnitude in
the images presented at stimulation frequency fstim triggers an
increase of neural processing at fstim and its harmonics. Thus,
as the time courses in Fig. 6 show, the EEG signal becomes
more and more modulated by the stimulation frequency and
its harmonics. This modulation can be quantified directly
in the spectral domain. Here, the modulation is represented
by increased amplitudes in the spectral components of the
harmonics. Although being expected for all harmonics, this
behavior is most evident for the even harmonics f2 = 3 Hz
and f4 = 6 Hz. Note that it becomes less conclusive for
f6 = 9 Hz as the SSVEP is buried in the alpha band of
the neural signal. Similar information can be obtained by

1The maximal QP in HEVC is QP=51. Therefore the quality of Scarf could
not be reduced any further.
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Fig. 6. Epoched neural signals of participant VPik, measured at electrode
Oz and averaged over all textures and trials at different distortion levels.
Distortions are increasing from top to bottom row. In the left column the time
courses are shown, where gray shadings indicate the presentation period of a
distorted image. In the right column, each row shows the amplitude spectra
of the entire respective averaged epoch. Clearly, the harmonics become more
clearly visible in the spectra (right column).
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Fig. 7. Signal-to-noise-ratio for the EEG signal measured at electrode Oz (left)
and measured for the first component of the SSD optimized for f4 = 6 Hz
(right) for subject VPia averaged over all textures for distortion level 4.

analyzing the signal collected at other electrode positions as
well (not shown). However, although SSVEPs are expected to
be elicited predominantly at electrode positions covering the
visual cortex (see blue shaded area in Fig. 3), brain anatomy
is strongly variant across humans and cap positions are not
perfectly aligned in every experiment. Thus, optimal electrode
positions are generally unknown for each measurement.

C. Spatio-Spectral Decomposition
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Fig. 8. SSD activation patterns (left column) and SSD filters (right column)
for different subjects (from top to bottom: VPid, VPif).

SSD [9] aims at finding a linear combination of sensors that
maximize the signal noise ratio. For this study, optimization
is done for each individual subject based on the 4th harmonic
f4 = 4 · fstim = 6 Hz of the EEG data, exploiting all
epochs and thus not discriminating between different textures
or distortion magnitudes. Epoching the EEG data to segments
of length of 2000 ms leads to ∆f = 0.5 Hz. The effect of
SSD in terms of SNR improvement (see Eq. 4) is exemplified
for subject VPia and distortion level 4: Fig. 7 compares the
SNR of the signal measured at electrode position Oz to the
SNR of the first SSD component. It shows that not only
the SNR corresponding to the 4th harmonic f4 = 6 Hz is
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improved, but also the SNR corresponding the 2nd harmonic
f2 = 3 Hz. Interestingly, the SNR corresponding to the first
harmonic f1 = 1.5 Hz and the 3rd harmonic f3 = 4.5 Hz is
effectively decreased, although odd harmonics of the SSVEP
carry sensory information as well [25].

An impression about the resulting activation patterns A and
filters W is given in Fig. 8 for the subjects VPid and VPif.
Note that the eigenvectors of a matrix are ambiguous regarding
their sign, which is why the values of A are approximately
flipped for these two particular subjects. However, the acti-
vation pattern show the neurophysiological plausibility of the
revealed filters as the highest activation can be found in the
area of the visual cortex, most pronounced around electrode
Oz, but also stretching to other electrode locations.

D. Relating Neurophysiological to Behavioral Data

Fig. 9 shows the correlations between the average neural
signal and the MOS values for all subjects and the grand
average (GA). The neural signal is considered in three ways:
as the amplitude of the 4th harmonic f4 = 6 Hz of a) the
signal measured at location Oz (Oz); b) the first component
of the SSD optimized for the SNR on f4 (SSD1); and c) the
sum of the amplitudes of the first two components of the SSD
optimized for the SNR on f4 (SSD1 + SSD2). Significant
correlations (p < 0.05) are indicated by ◦. For all subjects, the
correlation between the signal recorded at Oz and MOS and,
except for subject VPir, the correlation between the first SSD
component and the sum of the first two SSD components are
significant. For most subjects, with the exception of VPig and
VPir, the first component of SSD provides a higher correlation
to MOS than the signal from Oz. Statistical significance for the
differences of the correlations with regard to the correlation
of the Oz signal is tested using Steiger’s Z-test [42]. In
Fig. 9 significant difference in correlations are indicated by +
(p < 0.05). For 10 out of 16 subjects the increase in correlation
by SSD is significant. Although SSD increases correlation for
the grand average (from rOz = −0.89 to rSSD1 = −0.91),
this increase is not statistically significant if all subjects are
considered. For the sum of the amplitudes of the two first
SSD component, the results becomes less conclusive, as the
correlation is further increased for some subjects (eg. VPia or
VPic), but decreases for other subjects (e.g. VPal or VPif).
For the grand average, the correlations drops even below the
correlation achieved in single channel analysis.

The direct relation of the amplitude of the 4th harmonic of
the first component of the SSD to the MOS values is shown
in Fig. 10.

E. Differences between Subjects

The results for subjects VPig and VPir in Fig. 9 show
that SSD, being unsupervised, is not always successful in
extracting the neural components that reflect perceived quality.
Cases like that are to be expected as they reflect the biological
variance among participants. For subject VPig, the correlation
can be re-increased by taking the 2nd SSD component into
account as well.
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VPig and VPir. For subject VPir, SSD fails at extracting components activated
on the visual cortex.
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The activation patterns for these subjects are shown in
Fig. 11. Evidently and in contrast to the results shown in
Fig. 8, the activation patterns of the 1st component do not
focus on any activation in the visual cortex. This explains
the drop in correlation for both subjects, when applying SSD.
The 2nd component does represent activity in the visual cortex
for subject VPig, but not for subject VPir. For subject VPig,
this explains the improved correlation achieved by taking
into account the 2nd SSD component as well (see Fig. 9).
For VPir, SSD fails at extracting physiologically meaningful
components, and thus the correlation stays low even if two
SSD components are taken into account.

SSD distributes the activation from channels to compo-
nents. For failing SSD (Fig. 11) the distribution of activation
among the components is different to successful SSD (Fig. 8).
Thus, L2-norms of the activation pattern of the first SSD
component differ significantly between subjects for which
SSD fails (VPif and VPir) and subjects for which SSD is
able to extract correct components as shown in Fig. 12.
This allows to define a measure for screening subjects with
regard to successful SSD, employing the the upper outer
fence based of the interquartile range [43]: With the threshold
thr = Q75% + 3 · (Q75% +Q25%) and Q75% and Q25% being
the first and third quartile of all subject’s ||a1||2 we reject
all subjects for which ||a1||2 exceeds thr. Fig. 12 shows
||a1||2 for all subjects. Subjects VPif and VPir can be clearly
detected by exceeding thr indicated by the dashed horizontal
line. Excluding VPif and VPir increases the overall correlation
of the grand average to rSSD1 = −0.93. In contrast to
the correlation of the grand average considering all subjects,
the increase of correlation for the screened grand average is
statistically significant with p < 0.05 (Fig. 9).

F. Predicting the MOS from the Individual’s Neural Signal

The high correlations reported in Subsection VI-D suggest
to use a linear model to predict the MOS values from the
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Fig. 13. Residuals of (leave-one-subject-out) MOS from individual subject’s
opinion (MADbehav) vs. residual from predicting (leave-one-subject-out)
MOS from individual subject’s neural signal using a linear model cross-
validated from all other subject’s neural signal (MADneural).

neural responses. We evaluate the prediction performance
subject-wise by leave-one-out cross-validation. Based on a
linear model

y = β0 + β1x+ ε, (9)

with x being the amplitude of the first SSD component at
6 Hz of an individual subject Si, y being MOS values, β0, β1
being the regression coefficients and ε the prediction error. The
regression coefficients β0, β1 are estimated for each subject
Si based on the MOS values pooled for all subjects except
Si and the first SSD components of all subjects except Si.
In order to account for subject-wise differences in amplitude
ranges [44], caused e.g. by anatomical differences among the
subjects, we normalize the amplitudes of the neural signals
subjectwise over all source images and distortion levels to a
range between 0 and 1. The prediction performance is quanti-
fied subjectwise as MADneural, the mean absolute difference
(MAD) between the MOS predicted from the neural signal
of Si and the observed MOS from all subjects but Si over
all source images and distortion levels. For comparison and
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as behavioral counterpart, we evaluate the prediction of the
cross-validated MOS (pooled from all subjects but Si) from
the behavioral rating of Si. The prediction performance is
quantified as MADbehav, the MAD between subject Si ratings
and the MOS pooled pooled from all subjects except Si over
all source images and distortion levels. Fig. 13 shows the
prediction performances of the proposed approach and the
behavioral approach in terms of MADneural and MADbehav.
Each circle represents the prediction performances of one
subject. The dashed line indicates identity of the two prediction
performances. Although most points are located slightly below
the dashed line, and by that suggesting slightly higher accuracy
of the behavioral approach, assuming Gaussian distribution
of MADneural and MADbehav t-test [42] reveals that the
means of MADneural and MADbehav are statistically equal
(p < 0.05). Giving up the assumption of Gaussianity, signed-
rank test [42] also shows statistical equality of the medians of
MADneural and MADbehav (p < 0.05).

VII. DISCUSSION

We presented a neurophysiological approach to image qual-
ity assessment exploiting SSVEP. For analysis, we adapted
the SSD technique specifically for SSVEP data, used it to ex-
tract physiologically meaningful neural components from the
recorded data and showed that for most of the subjects these
components have a statistically significantly higher correlation
to behavioral responses than the signal recorded at Oz. By
using SSD, we overcome the problem of channel selection in
SSVEP-based image quality assessment. This paper did not
present a final solution for objective and reliable assessment
of video quality assessment, but we showed that with the
presented method high correlations of the extracted neural
signal with MOS values are achieved and that the proposed
method is feasible to predict MOS values with an accuracy
comparable to behavioral approaches.

The SSVEP approach is able to achieve a significantly
higher SNR than ERP-based approaches [25], and also the
number of trials collected per time is much higher compared
to ERP-based approaches. However, so far studies evaluating
SSVEP and ERP for image quality assessment have used
different sets of stimuli, so a final conclusion is difficult.
To understand the differences of the two paradigms on the
next level, it will be important to establish a similar set of
stimuli and then conduct future experiments to allow a precise
comparison and identify strengths and weaknesses of the two
approaches.

In order to arrive at a real-world solution to quality assess-
ment, this paper is limited in following respects and raises
several challenges for future work:

Most important, subjects sensitive to photonic flicker might
suffer not only from headache, but even seizures could in
principle be introduced by the presentation of a flickering
stimulus if the subject is suffering from epilepsy [45]. In an
SSVEP-based quality assessment study this must be prevented
by identifying and excluding affected subjects from the exper-
iments.

Eliciting SSVEPs relies on temporally highly precise and
alternating stimulus presentation. This is a clear limitation

of the proposed approach and renders SSVEP-based quality
assessment ’in the wild’ a very hard challenge.

As for all ERPs-based approaches as well, the presented
SSVEP focuses on the perception of quality change (intro-
duced by the alternation between undistorted and distorted
images) rather than quality perception per se. This bounds
the approach to the full reference domain and might limit its
applicability to only certain real-world applications.

Although our results indicate clear feasibility of the pro-
posed approach, future work should consider to study the
influence of low level image statistics such as luminance or
contrast systematically on the prediction performance.

In this study, subjects for which only a low correlation be-
tween neural signal and MOS values was obtained (e.g. VPif,
see Fig. 9) could not be identified by conventional psychophys-
ical screening [2]. On the recorded data, a simple screening
method based on interquartile ranges [43] was shown to be
useful for identifying subjects for which SSD failed. By
that the performance of the proposed method in terms of
correlation is statistically significantly increased. Replicability
of this screening approach will have to be evaluated on
other recordings, other subjects and for paradigms other than
SSVEP. Thus, in order to allow for a real-world application of
neurophysiological quality assessment methods, analogously
to psychophysical methods, appropriate screening techniques
will need to be further evaluated. Identifying and excluding
people for which BCI methods fail [46], [47], [48] is able the
boost performance of EEG-based methods. As an example,
[4] shows a negative relation between EEG-based distortion
detection and the power in the α-band (7.5 Hz to 12.5 Hz) and
argues that the α-activity interferes with the processing of the
visual information, while a state of high cortical excitability
is reflected by decreased α-activity. For future work, this
observation can serve as a starting point to study screening
methods for EEG-based quality assessment. Also, identifying
’high performing’ subjects may reduce the number of subjects
necessary for EEG-based quality assessment studies.

Results presented in this study are based on averages across
trials. Besides identifying the number of subjects, for real
world applications it is crucial to identify the number of trials
necessary for reliable quality assessment studies and in the
optimal case allow for single trial quality assessment. The
question regarding the number of subjects and the number
of trials can be treated analogously to psychophysical ap-
proaches [2]. However, in order to move towards applying
the proposed method generically in image quality assessment
studies, parameters of the experimental design need to be op-
timized. Important factors potentially driving the performance
of the approach include the stimulation frequency used for
eliciting the SSVEP and the dimensionality reduction method.
In the presented study, the stimulation frequency was set to
fstim = 1.5 Hz. It is known that for specific cognitive tasks
there are optimal stimulation frequencies [49], [50]. Future
work should evaluate if such an optimal stimulation frequency
also exists for image quality assessment. By using an optimal
stimulation frequency, the duration of the experiments might
be shortened. Further, the results in this paper are based
only on the 4th harmonic component, while SSVEPs are
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elicited on several harmonic frequencies. It has to be evaluated
how other frequency components can be integrated into an
analysis framework and exploited simultaneously. This is
especially important as it was shown that different harmonic
components represent different neural processing [51]. As
different aspects of neural processing usually implies differ-
ent neural sources and thus different activation topographies
[52], this may explain the drop of SNR that is observed
for odd harmonics of an SSD component that is optimized
for even harmonics as shown in Fig. 7. For some subjects,
SSD failed to increase the correlation to behavioral responses
and to extract neurophysiological plausible components. One
reason for that (in contrast to CSP in [4]) is that SSD is
an unsupervised channel decomposition technique. Although
a strategy for identifying subjects for which SSD fails was
proposed, it would be beneficial to enhance the robustness of
dimensionality reduction methods e.g. by divergence methods
that allow a higher resistance to outlier trials or other noise
contamination [53]. For in-lab quality assessment however,
e.g. for creating a database of quality annotated images or
for exploring some kind of distortion related parameter space,
however, SSVEP shows potential to be a feasible paradigm as
we showed that the accuracy of the subject-wise prediction of
MOS values from the extracted neural responses is statistically
equal to the prediction based on behavioral methods even
though the proposed methods has room for optimization. Here,
the linear prediction model was estimated on the data of all
other subjects. However, for application scenarios it would be
beneficial to identify a subject-wise model that does not rely
on other subjects’ responses to predict MOS values directly
from individual neural responses.

Future studies may aim at distortion levels close to the
perception threshold as this is as desirable operational point
for image communication systems. Here, a neurally informed
quality assessment procedure might help to complement con-
ventional behavioral methods, taking into account the het-
eroskedastic noise characteristics at the edge of perception
[54].

In this study, we used SSVEP to assess the perception of
quality of images containing texture only in order to ease the
experimental setup. Conceptually there is no reason to limit
the proposed approach to this class of stimuli. Thus, it will
be interesting to study experimentally whether the proposed
approach is also a feasible method to assess perceived quality
of complex natural images. SSVEPs have also been used
to assess motion perception [25]. Following this line, the
feasibility of SSVEP to assess video quality could be evaluated
in an extension of the presented experimental setup.

The extra preparation time (≈ 1
2 h) required for the setup

of the EEG system might eliminate the benefits of EEG
measurements, but a new generation of dry electrode-based
EEG caps has the potential to shorten the preparation time
drastically. It is recommended for psychophysical experiments
not to last longer than 30 minutes, in order to prevent the
subject from becoming unreliable in their behavioral responses
due to fatigue or boredom. In EEG-based experiments in
contrast, no response has to be given by the subjects and it
is not known yet what the limits in terms of duration are; in

cognitive neuroscience lenght of EEG-based experiments can
range between 2-3 hours.

We evaluated and quantified quality related neural correlates
based on an SSVEP paradigm. Clearly, several aspects of the
presented method need further evaluations and improvements,
but we showed that neural signals significantly correlate to
perceived quality are elicited and that spatial filtering using
SSD increases the correlation for most of the subjects. By
this, potentially a less biased and more objective measure of
quality perception than obtained with conventional behavioral
methods can be established.
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