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Abstract—Brain-Computer Interfaces (BCIs) are trained to
distinguish between two (or more) mental states, e.g., left and
right hand motor imagery, from the recorded brain signals.
Common Spatial Patterns (CSP) is a popular method to optimally
separate data from two motor imagery tasks under the assump-
tion of an unimodal class distribution. In out of lab environments
where users are distracted by additional noise sources this
assumption may not hold. This paper systematically investigates
BCI performance under such distractions and proposes two novel
CSP variants, ensemble CSP and 2-step CSP, which can cope
with multimodal class distributions. The proposed algorithms
are evaluated using simulations and BCI data of 16 healthy
participants performing motor imagery under 6 different types
of distraction. Both methods are shown to significantly enhance
the performance compared to the standard procedure.

I. INTRODUCTION

Brain-Computer Interfacing (BCI) serves as a non-muscular
communication system between a computer device and a
human being [1], [2]. It depends on the user’s measured brain
signals alone and thus provides a powerful tool for locked-in
patients who are not able to move, speak, voluntarily blink
or control their eye movement [3]. A BCI translates a user’s
intentions by measuring brain signals e.g. with electroen-
cephalography (EEG) into computer commands and so allows
human beings to control a computer device without the use
of muscular control or speech. BCI’s also find their use in the
fields of wheelchair control [4], rehabilitation [5] and mental
state monitoring [6].

Combining the field of machine learning with BCI research
already reduced calibration time [7], [8] and thus essentially
improved BCI efficiency and usability. Novel, more robust,
approaches led to important improvements e.g. in artifact
classification [9] and feature extraction [10], [11], [12].

Since EEG recordings are highly sensitive to noise, most BCI
research has been carried out in very artificial lab environments
where users sat still and could entirely focus on the respective
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task. Those situations do not represent everyday life situations
where the user might be distracted by environmental changes,
background noise (e.g. street noise, TV, conversations) or just
cognitive tasks.

Recent BCI studies started leaving this controlled lab envi-
ronments and conducted studies with end-users [13], [14],
[15], [16]. Other studies were carried out with participants
walking indoors [17], outdoors [18] or on a treadmill [19]
while controlling a spelling device or also speaking while
carrying out motor imagery tasks [20].

With the idea to contribute to this recent out of lab research,
we recorded a motor imagery-based BCI study where we
simulated multiple real-world scenarios by adding secondary
tasks to the primary motor imagery task [21]. This design
allowed us to systematically investigate different distraction
scenarios.

However, for several participants, common classification meth-
ods did not lead to significant BCI control. We therefore
propose novel approaches based on ensemble methods and
multiple-step classification which tackle the problems of
changing environmental situations and are put into perspective
with the recorded study.

This paper is organized as follows: We summarize CSP,
ensemble methods and multiple-step classifcation in Section
2 and explain our simulation study. In Section 3, we briefly
present the recorded BCI study (a more detailed description
can be found in [21]), before we evaluate our results in Section
4 and conclude the paper in Section 5.

II. METHODS
A. Common Spatial Patterns

Common Spatial Patterns (CSP) is a well established spatial
filtering method in motor imagery-based BCIs [22] [23]. It
detects synchronization and desynchronization processes and
computes discriminative spatial filters by maximizing the vari-
ance of one class (e.g. left hand imagination) while minimizing
the variance of the other class (e.g. right hand imagination),
which can be solved by a generalized eigenvalue problem

2111) = )\ZQU).

The obtained spatial filters W = [wy,ws,...,wp| will be
sorted by «; = max{)\;, Ai} according to their contributing
discriminative quality such that oy > ... > ap.

B. Ensemble Methods

Ensemble Methods are a basic concept and widely used in
the field of machine learning. They combine multiple classi-



one-step CSP}
1

in-lab setting out-of lab setting two-step CSP}
i
|
left MI 1 right MI 1st step !
i
I A/\/\[\
! - A
unimodal class distribution bimodal class distribution 2nd step

ensemble CSP

SYNVYN

1st classifier  2nd classifier

Fig. 1: The two new approaches compared to one-step CSP

fiers to improve accuracy and robustness. Therefore, individual
classifiers need to reach higher accuracy than chance level and
their errors must be independent or at least uncorrelated [24].
Bagging computes several classifiers and determines the pre-
diction by a majority voting and thus cancels out variance and
bias in data and unstable methods [25].

Since original CSP only considers two Gaussian-distributed
classes, we face major complications when classifying data
that does not arise from the same two Gaussian distribution.
An ensemble version of CSP could profit from the diversity
of different classifiers in case of multimodal data that is still
separable in e.g. left vs. right (see Figure 1).

C. Multiple-Step Classification

Assuming different distraction scenarios in real-world situa-
tions can lead to immense feature shifting when applying only
a single classifier. While data from different scenarios might
each be separable (e.g. in left and right) the whole dataset
usually would not. Applying multiple steps in the classification
process could separate the data into different distractions while
in the next step, data is separated into left and right by a group-
based classifier (see Figure 1).

Similar approaches have been applied in BCI research [26],
[27], [28] and reviewed in [29].

D. Simulations

To investigate behaviour and limits of ensemble CSP and
multiple-step CSP, we simulated EEG time series with binary
decision tasks for three different groups of EEG data (clean,
little noisy, very noisy). They represent shifts in data distribu-
tion as one might discover in presence of artifacts, cognitive
distractions or environmental changes.

For clean, we generated 2 diagonal covariance matrices (one
for each class, e.g. left vs. right) with uniformly distributed
random numbers in the interval [0, 10].
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For the groups little noisy and very noisy we added some
shifting which varied between 0 and 50 (in steps of 2.5)
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between clean and little noisy and double of that shift between
clean and very noisy (0-100, in steps of 5) such that their
diagonal covariance matrices were generated by uniformly
distributed random numbers from between 0 and 10 up to
between 100 and 110. For each of the 21 shifting values, we
repeated the simulations 1000 times.
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For each group, we generated trials of 2-dimensional Gaussian
distributed data with 100 samples (time points), mixed it with

a random orthogonal matrix and added Gaussian noise to each
trial.
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Fig. 2: Simulation Ensemble CSP

1) Ensemble CSP: We simulated 480 trials all together and
used half of the trials for training and the other half for testing.
Since one classifier is trained for each group, we generated
160 trials per group (clean, little noisy, very noisy), equally
balanced between left and right.

For each group, we extracted one CSP filter and trained
a classifier based on regularized linear discrminant analysis
(RLDA) [30], [22], [7]. We then applied all 3 classifiers on
all the testing data, calculated the mean of the 3 classifiers’
output and compared this averaged output to the real labels,
see Figure 2 for an overview.

To compare ensemble CSP with original CSP, we also trained
a single RLDA-based classifier on all training trials (one CSP
filter) and applied this to the testing data.
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Fig. 3: Simulation 2-step CSP

2) 2-Step CSP: We again simulated 480 trials, used half
for training and the other half for testing. Here, we assume a
scenario where we have one outlier group which highly differs
from the rest of the data. Therefore, we generated 320 clean
trials and 80 of both, little noisy and very noisy.

We trained one Ist step-classifier to separate {clean, little
noisy} from {very noisy} and two left vs. right 2nd-step classi-
fiers, see Figure 3 for an overview. In case of misclassification
during the first step it is possible though that e.g. a little noisy
trial ends up in the very noisy group and the wrong classifier
is applied in the second step.

We compared this approach to original CSP, where we trained
a global one-step classifier on all training data to discriminate
between left and right and applied this classifier to the testing
data.

All classifiers were trained based on RLDA and one CSP filter.

III. EXPERIMENTS

A. Farticipants

We recorded EEG data of 16 healthy volunteers (6 female;
age: 22-30 years). Most of them had no BCI experience, only
3 had already participated in a BCI study and only 1 of them
in a motor imagery experiment. All participants were required
to speak and understand German in order to understand the
visual and auditory instructions which were given in German.
The volunteers were paid for their participation except for
3 participants who are members of the TU Berlin Machine
Learning Group.

B. Distractions

Besides the primary motor imagery task, we added 6
secondary distraction tasks. All distraction tasks are explained
briefly in Table I. Those additional tasks lead to e.g. cognitive
distractions (news, numbers), muscular artifacts (numbers) and
steady state potentials (flicker; stimulation). For a more detailed
description, we refer to [21].

C. Experimental Setup

We recorded with 63 wet Ag/AgCl electrodes placed ac-
cording to the 10-20 system [31] at symmetrical positions on
a Fast'n Easy Cap (Easy Cap GmbH) with reference to the
nose. Signals were amplified with two 32-channel amplifiers
(Brain Products) and sampled at 1000 Hz.

We recorded 7 runs with 72 motor imagery trials each (36 left,
36 right). Recording one run took about 10 minutes, one trial
lasted 4.5 seconds. The first run served as a calibration phase
where no secondary task was added. In each of the following
runs, we included 12 trials (6 left, 6 right) of each secondary
task (see Table I). This means, we recorded 72 trials of each
secondary task, except for clean, where we also recorded
72 trials during the calibration phase. Each task was equally
balanced between left and right hand motor imagination.
After the calibration phase, we extracted Laplacian filters [32]
of the electrodes C3 and C4 and trained an RLDA-based
classifier in broad band (9-13Hz, 18-26Hz) which was applied
in the online classification during run 2-7.

D. Data Analysis

After downsampling data to 100Hz, we selected an individ-
ual frequency band (in the maximum range of 5 and 35Hz)
and time interval for each participant according to [22].
With three CSP filters per class, we trained an RLDA-based
classifier on the calibration data (no secondary distraction
tasks) and tested on the remaining data (with distraction tasks).
Average classification rates are displayed in Table II. Each
row represents one participant and the corresponding averaged
classification accuracy over the whole experiment as well as
the average classification rates for each secondary task. The
ones highlighted in bold represent the participant’s best task
and the ones in red the participant’s weakest. We categorized
the participants according to their classification outcome in
3 groups. The first group achieved significant BCI control
in all secondary tasks (threshold of 61.11%). The second
group reached significant BCI control in the overall experiment
(threshold of 54.17%) and the third group did not reach
significant BCI control. Those thresholds were calculated by
applying a binomial test (o« = 0.05). Classification rates vary
clearly between the different tasks, especially the numbers task
shows a major decrease in classification accuracy. Since only
clean data was used in the training phase, we can assume
major feature shifts between e.g. numbers and calibration. To
support this assumption, we also classified clean against each
of the other secondary tasks and detected major feature shifts
especially between clean and numbers [21].

To overcome those feature shifts we further applied ensemble
CSP where we trained 6 classifiers (with 3 filters per class
each), one for each secondary task and averaged over the
output of all classifiers to compute classification accuracy.
For the 2-step approach we first trained a classifier with one
filter per class to separate numbers from the rest of the data.
For the second step, we trained one classifier on numbers
and one on not-numbers (both with 3 filters per class) to
discriminate between left and right hand motor imagery.

IV. EVALUATION

A. Simulations

Results of both simulations are displayed in Figure 4. On the
x-axis, we plotted the symmetric Kullback-Leibler divergence
[33] as a distance measure between the average covariance



TABLE I: 6 different secondary tasks which were added to the primary motor imagery task

Name Distraction Task Motivation Real-World Scenario
Clean without distraction control task
Eyes closing eyes overlay of o and p rhythms getting tired, relaxing
News listening to a public newscast cognitive distraction noisy environments (TV,
activation of auditory cortex music, street noise)
Numbers searching the room for a certain | cognitive distraction cognitive distractions in ev-
letter-number combination additional muscular artifacts eryday life
Flicker watching a flickering video (10Hz) | steady state visually evoked watching TV, using a com-
potential (SSVEP) puter
Stimulation vibro-tactile stimulation steady state vibration somatosensory
evoked potential (SSVESP)
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Fig. 4: Results of a 2-step CSP simulation ({clean, little noisy} vs. {very noisy}) with 21000 data points. The x-axis shows
the KL-divergence between average covariance matrices and the y-axis the classification accuracy.
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Fig. 5: The two new approaches compared to CSP trained on
clean

matrices.

Ensemble CSP outperforms one-step CSP in 77.02% of all
repetitions. Classification results for both methods are not very
high though. One-step CSP achieves an average classification

accuracy of 53%, while ensemble CSP reaches an average
of 62.29%. The high data contamination (only one third is
considered noise-free) might be the main reason for this.
For both methods we can identify a peak at 50% accuracy
where the classifier did not find any discriminative function.
For ensemble CSP there is a second peak at around 66%.
Misclassifying one third of the data could indicate that both
outlier groups were not separable at all and therefore only
reached accuracies around chance level. Those results show
that ensemble CSP indeed classifies significantly better than
one-step CSP but also is not able to overcome serious data
contamination. To prove significance, we applied a right-tailed
Wilcoxon signed rank test (o« = 0.05) [34].

Two-step CSP clearly outperforms one-step CSP especially for
higher distances. In 93.02% of all cases, 2-step CSP achieves
higher classification accuracy than one-step CSP. On average,
one-step CSP reaches 62.12% classification accuracy, 2-step
CSP even 83.04%. For 2-step CSP there is a clear peak at



TABLE II: Mean classification accuracies for one-step CSP.
One row represents one participant. For each participant, the
conditions with highest (bold) and lowest (red) performance
rates are highlighted.

TABLE IV: Mean classification accuracies for 2-step CSP.
The results which improved compared to Table II are high-
lighted in (blue).

Ist step 2nd step

‘ CSP H o ‘ clean ‘ eyes ‘ news ‘ num ‘ flicker ‘ stim ‘ overall cond not numbers | numbers
od ][ 90.97 | 95.83 | 95.83 | 93.06 | 72.22 | 95.83 | 93.06 od 96.53 | 100.00 99.17 83.33
obx 82.87 | 88.89 | 87.50 | 81.94 | 70.83 | 91.67 | 76.39 obx 90.28 9931 91.92 82.19
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nkk || 50.00 | 48.61 | 55.56 | 43.06 | 51.39 | 5139 | 50.00 nku || 52.08 | 98.84 52.65 49.32
nks || 49.42 | 4722 | 47.14 | 45.83 | 47.89 | 54.17 | 54.17 ma4 61.27 98.83 60.45 65.28
[ o ][6239 [ 66.68 | 63.10 | 62.64 | 53.81 | 6641 | 61.53 | nkk 48.61 94.68 48.12 50.57
nks 5775 | 98.83 58.43 54.29
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TABLE III: Mean classification accuracies for ensemble CSP.
The results which improved compared to Table II are high-
lighted in (blue).

od obx nko njz nkq nkt
97.92 | 88.89 | 93.66 | 75.93 | 55.56 | 71.99
nkr njy nkm nkn nkl nkp
73.24 | 64.58 | 65.28 | 58.92 | 50.23 | 52.78
nku ma4 nkk nks &
52.55 | 55.63 | 49.07 | 54.69 66.31

around 85% where, again, separation of the outlier groups
might have failed. After applying a Wilcoxon signed rank test
(o = 0.05), we can also state significant improvement for 2-
step CSP compared to one-step CSP.

The differences in performance between ensemble CSP and 2-
step CSP can be explained by the different simulation setting.
For ensemble CSP, we simulated the same amount of trials
for all 3 groups (clean, little noisy, very noisy). In the case of
2-step CSP, where we assume one particular outlier group, we
have twice as many clean trials as we have contaminated trials.
This makes it easier to achieve higher classification accuracies
compared to the ensemble CSP setting.

B. Study

Results of ensemble CSP and 2-step CSP applied to our
recorded BCI data can be found in Table III and IV. Compar-
ing the result of one-step CSP in Table II with the ensemble
results in Table III shows that we could improve the overall
performance in 13 out of 16 participants (improvements are
marked in blue). It is noteworthy that the 3 participants who
achieve lower classification rate in the ensemble approach,

only achieved between 50 and 61.11% accuracy with one-step
CSP.

Comparing 2-step CSP with one-step CSP yields similar
results. We could improve accuracies for 11 out of 16 par-
ticipants and the five participants with lower accuracies in the
2-step approach also only achieved between 50 and 61.11%
accuracy with one-step CSP.

A comparison of both methods with the original CSP approach
is displayed in Figure 5. Each square represents one partici-
pant, p-values of statistical testing (one-sided Wilcoxon signed
rank test, « = 0.05) are displayed in the upper left.

V. CONCLUSION

Everyday life situations bear much more complexity than
controlled lab environments. Adjusting classification and fea-
ture extraction methods are therefore crucial when bringing
BCI research out of the lab.

In this paper we proposed two new methods, ensemble CSP
and 2-step CSP. They tackle the problem of multimodal data
distribution and major feature shifts. Both perform signifi-
cantly better than original CSP in simulation scenarios and
artifact contaminated BCI data. However, they both still have
major difficulties when it comes to seriously contaminted data
as we have seen in the simulated and real scenarios. Ensemble
CSP needs diverse and accurate classifiers to improve its
accuracy with respect to original CSP, if individual classifiers
are not accurate, combining them will not yield the desired
result. For the first step of 2-step CSP it is important that data
can be separated in different groups. If that step fails, the error
propagates itself and the method would not work properly.

Both methods mean significant improvement when it comes



to multimodal distributed BCI data. Future work could focus
on a more robust feature extraction or classification method so
that even noisy data can be classified correctly. Deep neural
networks [35] and advanced data fusion techniques [36], [37]
may help to tackle this problem.
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