
1

Multivariate Machine Learning Methods for Fusing
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Abstract—Multimodal data is ubiquitous in engineering, com-
munication, robotics, vision or more generally speaking in in-
dustry and the sciences. All disciplines have developed their
respective sets of analytic tools to fuse the information that
is available in all measured modalities. In this paper we
provide a review of classical as well as recent machine learn-
ing methods (specifically factor models) for fusing information
from functional neuroimaging techniques such as LFP, EEG,
MEG, fNIRS and fMRI. Early and late fusion scenarios are
distinguished and appropriate factor models for the respective
scenarios are presented along with example applications from
selected multimodal neuroimaging studies. Further emphasis is
given to the interpretability of the resulting model parameters,
in particular by highlighting how factor models relate to physical
models needed for source localization. The methods we discuss
allow to extract information from neural data, which ultimately
contributes to (a) better neuroscientific understanding, (b) en-
hance diagnostic performance and (c) discover neural signals of
interest that correlate maximally with a given cognitive paradigm.
While we clearly study the multimodal functional neuroimaging
challenge, the discussed machine learning techniques have a wide
applicability beyond, i.e. in general data fusion and may thus be
informative to the general interested reader.
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I. INTRODUCTION

Modern neuroscience benefits greatly from a multitude of
imaging techniques that, individually, have helped to further
our understanding of cognitive processing [1], [2] and im-
proved clinical diagnostics [3], [4]. The combination of sev-
eral imaging modalities originated in the context of epilepsy
imaging [5], [6], [7] but has since then become an important
asset in cognitive neuroscience. It is only through multimodal
setups that otherwise unparalleled spatial and temporal imag-
ing resolution can be obtained, which allows for combination
of complementary information and thereby a better diagnosis
and a deeper understanding of how different aspects of brain
activity are related.

The most popular multimodal imaging setups combine mea-
surements of electrophysiology with measurements of hemo-
dynamics. Example techniques for measuring electrophysi-
ological properties of neural activity are electrocorticogra-
phy (ECoG), electroencephalography (EEG), and magnetoen-
cephalography (MEG). Examples for techniques that measure
changes in hemodynamic parameters include positron emis-
sion tomography (PET), functional near-infrared spectroscopy
(fNIRS), and functional magnetic resonance imaging (fMRI).
See [8], [9] for reviews on electrophysiological aspects of
brain activity and [10], [11] for reviews on hemodynamic
aspects.

The task of optimal combination of information from several
(imaging) modalities is referred to as multimodal analysis or
multimodal fusion. Multimodal fusion represents an ongoing
research endeavor, as there is still no gold standard solution
[12], [13].

The following list enumerates some of the key challenges
that make multimodal fusion a difficult problem:

• Different spatial and temporal sampling rates: The
number of recording channels typically range from ap-
proximately one hundred for electrophysiology to near
one million voxels for hemodynamics. The picture is
reversed, however, for temporal sampling rates where
electrophysiology is typically sampled in the kHz range
while hemodynamics are sampled with rates below 10 Hz.

• Non-instantaneous and non-linear coupling: The vas-
cular reaction to a given stimulus is in the range of sec-
onds, while the response in electrophysiological measures
(e.g. event-related potentials (ERPs)) occur in the range
of milliseconds. Furthermore, non-linear features such as
the instantaneous amplitude of neural oscillations may be
related to linear features of hemodynamics.
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• The presence of outliers and low signal-to-noise ratio
(SNR): Signals of interest may not be easily detectable
at the level of individual measurement channels due to
a low SNR. The existence of outliers in the data, (either
caused by technological or physiological artifacts) may
further shadow the signals of interest and lead estimates
of certain statistics of the data astray and thereby hinder
successful fusion.

• Interpretable results: The aim of multimodal imaging
settings is to increase our understanding of the work-
ings of the brain. Therefore, the results of multimodal
fusion techniques must be interpretable with respect to
functional or anatomical neurophysiological references.

In order to overcome these challenges it is helpful to regard
multimodal fusion as modeling as well as an optimization
problem. With respect to both of these two views one class of
statistical learning methods has become particularly popular
for multimodal data analysis: factor models. These models
assume that the measurements are the result of the activity of
a limited set of components (see Section III for the formal
definition) of which a mixture is observed at the level of
the sensors of the measurement device. Un-mixing these
components, requires a set of assumptions about the nature
of the components. Different assumptions lead to different
statistical learning methods and therefore it is important to
know these assumptions when choosing an analysis method.

A decomposition into components can be done separately
for each modality or jointly for all measurement modalities.
We refer to the former approach as late fusion scenarios and
to the latter approach as early fusion. In order to provide a
comprehensible review of suitable fusion methods we refrain
from covering the entire spectrum of multimodal analysis.
Instead focus on methods for these two approaches to the
analysis of multimodal functional neuroimaging data. See
Fig. 1 for an illustration.

While in principle all of the presented models can be
extended to more than two modalities, we here focus – for
the sake of readability – on the special case of two different
measurement modalities. Furthermore, since the scope of this
review is limited to functional neuroimaging data, we assume
all measurements to be temporally aligned.

The remainder of this manuscript is organized as follows.
In section II we briefly summarize what is known about
the physiological origins of electrophysiological and hemo-
dynamic signals. In section III we revisit a generative model
of multimodal data that expresses the recordings from each
modality in terms of a set of hidden variables, which are called
components. We then review classical as well as recent meth-
ods for the extraction of components from either each modality
separately (section IV) or jointly from both modalities (section
V). Extensions to these methods are reviewed in section VI.
We conclude with a discussion in section VII.

II. PHYSIOLOGICAL ORIGINS

Before discussing analysis methods we very briefly review
the physiological origins of electrophysiological and hemody-
namic signals. Readers who are familiar with the basics of

these types of signals and their coupling may skip ahead to
the next section.

A. Physiological origins of electrophysiological measures
Neural activity results in changes of electrical fields [9],

which can be measured at various spatial, temporal and
functional extents [14]. Intracellular recordings allow for mea-
suring action potentials of single neurons [15]. The activity of
single and multiple neurons up to large neuronal assemblies
can be extracted with extracellular recording techniques, either
invasively with microelectrodes inserted in the brain or EcOG
[16] or non-invasively with EEG [17] or MEG [18].

Extracellularly measured local field potentials (LFP) repre-
sent a superposition of all currents in the brain, with a distance-
dependent contribution of different sources such as synaptic
currents, calcium-spikes, action potentials and spike afterpo-
tentials of different neurons [9]. While signals measured from
microelectrodes and EcOGs can represent rather focal and
localized signatures of neuronal activity, signals measured
with EEG rely on synchronous activity of large assemblies
of neurons. Such synchronous activity is often resembled
in neuronal oscillations [19] and the spatial synchronization
strength is reflected in the power of these oscillations [20],
[21]. These oscillations have been linked to practically every
aspect of cognitive function [22], [23], [24], [25], [19] and are
thus also the subject of multimodal analysis settings. Besides
these neuronal oscillations, there is synchronized activity of
neurons measurable with electrophysiological methods that
follows certain events or the presentation of stimuli. Such
activity is often termed as event related potentials (ERPs), with
different components attributed to various cognitive processes
[26], [27].

B. Physiological origins of hemodynamic measures
Hemodynamic activity can be measured invasively by in-

trinsic optical imaging [28]. Non-invasive alternatives exist in
the form of fMRI [29], [30] or fNIRS [31].

fMRI measures the combination of metabolic and vascular
response to neural activation, the so-called blood oxygen-level
dependent (BOLD) signal [30]. The BOLD signal is inversely
related to the local concentration of deoxygenated hemoglobin
(HbR), which in turn is influenced by changes in cerebral
blood volume (CBV) and cerebral blood flow (CBF) [32].
Since HbR is paramagnetic, while oxygenated hemoglobin
(HbO) is not, only changes in the concentration of HbR alter
the local magnetic susceptibility and hence give rise to the
fMRI signal obtained in a magnetic-resonance (MR) scanner
with so-called T2*-weighted pulse sequences.

Functional near infrared spectroscopy (fNIRS) relies on the
fact that near-infrared light can traverse biological tissue and
thus allows the transmission of photons through the intact
brain [31], [33]. The absorption properties of HbR and HbO
differ substantially in the infrared range [34]. This enables
to measure changes in concentrations of HbR and HbO in
vivo. When compared to fMRI, fNIRS measurements can
be performed with a lightweight and comparatively low-cost
setup. Similar to EEG, light emitting and detection devices
(so-called optodes) can be mounted on a fNIRS cap.
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C. Neurovascular coupling

The relationship between neural activity and the vascular
response is known as neurovascular coupling [10], [32],
[35], [36] and the exact nature of this coupling is far from
understood [37], [38], [39]. However, recently a number of
studies have shown that neural and hemodynamic signals
are highly correlated [40], [41], [42], [43], [44], [36], [45],
[46]. Simultaneous intracranial electrophysiological recordings
and high-resolution fMRI in macaque monkeys, for example,
revealed a correlation between the BOLD signal and neuronal
activity in the gamma range as a neurovascular coupling
mechanism [43], [44]. Similar results have been obtained
in cats [47]. However, neurovascular coupling can also be
assessed using noninvasive methods such as combined EEG-
fNIRS [48], [49] or EEG-fMRI [50], [51], [52], [53]. These
and other studies have demonstrated an inverse relationship
between the amplitude of neural oscillations in the alpha and
beta range as well as a peak in correlation at a time delay of
6 to 8 seconds.

III. THE MULTIMODAL LINEAR MODEL

A. Nomenclature

In this paper we represent the modalities to be fused
by the symbols x and y. A single observation is denoted
by column-vectors x(t) ∈ RMx and y(t) ∈ RMy , where
Mx and My denote the number of recording channels in
each modality. The matrices that contain all data points
are denoted by X = [x(1), ...,x(Tx)] ∈ RMx×Tx and
Y = [y(1), ...,y(Ty)] ∈ RMy×Ty . Further symbols used
in this article and their meaning is summarized in Table I.

B. The multimodal forward model

The central assumption we make is that the datasets are
decomposable into what is called a set of components (or
factors). The notion of a component underlies all of the models
presented in this paper. An individual component is identified
by a unique temporal and spatial signature and may thus
be regarded as a functional unit. The component notation is
congruent for x and y, so we introduce the notation exemplary
for x only. Let the scalar variable six(t) denote the temporal
signature of a component with the index i at time point t.
We will also refer to six(t) as the temporal activity of this
component. The strength with which six(t) is expressed at each
recording channel is called the spatial activation pattern and
denoted by the column-vector1 aix ∈ RMx .

Generally a given dataset is assumed to be composed of a set
of Kx ≥ 1 components. Let sx(t) ∈ RKx denote the column-
vector which represents the temporal activity of the Kx

components and let Ax =
[
a1x, ...,a

Kx
x

]
∈ RMx×Kx denote

the matrix in which each column contains the corresponding
spatial activation patterns. We will make use of these variables
when we consider the mapping from components to recording
channels. This mapping is referred to as the linear forward
model, linear generative model, or encoding model, for an

1Please note that i is not the exponent of the variable but denotes the ith
component.

Fig. 1. A multimodal generative model (top) and two generic fusion
approaches to multimodal data (bottom). A cognitive phenomenon (H, e.g.
attention, stimulus processing) influences certain aspects of modality specific
neurophysiological processes, such as electrophysiological or metabolic prop-
erties. In the context of this generative model, these processes are modeled
by latent variables (also called sources) and denoted by sx/y . These latent
variables are mapped by a modality specific transformation (Ax/y) to their
respective sensor space variables (X/Y). Starting from the recorded datasets
X and Y, it is the task of factor model based methods to extract estimates of
the latent sources (ŝx/y) such that features of the estimated source activity
(Φ(ŝx)) and Ψ(ŝy)) are informative about H itself, or tell us something
about how exactly H exerts influence on sx/y . In early fusion approaches,
information from both modalities is already taken into account when extracting
source activity from the data. In late fusion approaches, modality-specific
sources are extracted without using information from the respective other
modality first, and features of the estimated sources are combined thereafter.

in depth discussion of these terms see [54]. In this model,
the projection of the components to the recording channels is
given by

x(t) =

Kx∑
i

aix · six(t) + εx(t)

= Axsx(t) + εx(t) , (1)

where εx(t) ∈ RMx captures activity that is not explained
by the Kx components and thus considered noise. The task
of factor model based analyses is to extract estimates of the
underlying components from the data. We use ŝx and ŝy to
denote these estimates.

The datasets x and y are assumed to be related by K ≤
min(Kx,Ky) pairs of shared component processes among
the rows of ŝx and ŝy. The exact nature of the relation
between the shared components of course depends on the
measurement modalities that are being used. However, a very
generic connection between the modalities can be constructed
based on the assumption that the datasets to represent a
common timeline and thereby provide different views upon the
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Tx/y Number of data points, modality specific

Mx/y Number of measurement channels, modality
specific

Kx/y Number of components (i.e. latent factors),
modality specific

K Number of joint components, i.e. compo-
nents present in both modalities

x(t),y(t) Mx/My-dimensional column-vector of ob-
served data in modality x/y

X,Y Mx/y × Tx/y matrix containing the ob-
served data, modality specific

sx/y(t), ŝx/y(t) Kx/y-dimensional column-vector of (esti-
mated) components

εx/y(t) Mx/y-dimensional noise column-vector in
forward models

Ax/y Mx/y ×Kx/y matrix of sensor-space ac-
tivation patterns in forward models

Wx/y Mx/y×Kx/y matrix of filters in backward
models

Cxx/yy Data covariance, modality specific

Cxy/xy Cross-modal data covariance matrix

Rx/y Number of local brain sources included in
a physical model

Ux/y Rx/y × 3 spatial coordinates of locations
of the modeled brain sources

Lx/y Mx/y × Rx/y transfer matrix in physical
models

jx/y(t), ĵx/y(t) Rx/y-dimensional vector of (estimated)
brain source activity

εx/y(t) Mx/y-dimensional noise vector in physical
models

Fx/y Rx/y×Kx/y matrix of source-space acti-
vation patterns in joint forward models

j6sx/y(t) Rx/y vector of brain activity of no interest
in joint forward models

A6Lx/y
Mx/y×Kx/y part of the activation pattern
matrix Ax/y not explained by brain sources
in joint forward models

ex/y(t) Mx/y-dimensional noise vector in joint for-
ward models

TABLE I
NOTATION.

same underlying processes. Therefore, it is to be expected that
the time courses of shared components (or certain features of
these time courses) exhibit “similar” dynamics. We formalize
this notion of similarity by the following expression:

Φ(ŝix) ≈r Ψ(ŝiy), (2)

for i ∈ {1, ...,K}. The functions Φ(·) and Ψ(·) extract some
feature from the time course of the component pair ŝix and ŝiy
that is similar in terms of a similarity metric ≈r. Examples for
the feature extracting functions Φ(·) and Ψ(·) could be simply
the identity function, a function extracting spectral features,
(de-)convolution operators, or functions extracting statistical
properties of the distributions of ŝix or ŝiy. Examples for
similarity measuring functions are functions that measure co-
modulation in time, such as covariance or correlation. Another

popular choice for the similarity metric is an information
theoretic measures that is called mutual information (see
section IV-A2 for a formal definition). Note that in contrast
to covariance and correlation, mutual information captures
nonlinear dependencies between variables.

The models we will discuss in section V will be charac-
terized in terms of their specific choices of features to relate
from the measurement modalities and the similarity measuring
function. Figure 1 summarizes the notions presented in this
subsection by outlining the generative model of multimodal
neuroimaging data that is adopted here.

C. Estimating components using backward models: Filters

After having expressed the recorded data as a sum of
underlying components, where each component is the product
of a specific spatial and temporal signature, the question arises
how to recover the components from the data. In the most
general setting, the factors Ax and sx in Eq. (1) are estimated
jointly, a setting that is referred to as blind source separation
(BSS). However, the factorization into Ax and sx is not unique
and therefore further assumptions have to be made about
the nature of the spatial and temporal dynamics. As we will
see in later sections, different assumptions lead to different
factorization methods.

Estimating both the spatial activation patterns and the time-
courses jointly leads to potentially difficult optimization prob-
lems. The computational complexity, however, can be reduced
by resorting to a so-called linear discriminative (also called
backward or decoding) modeling approach, for a detailed
discussion on these types of models and their relationship
to forward models see [54]. In such an approach, the time-
courses of K neural sources are estimated by projecting the
data linearly onto a set of spatial extraction filters Wx =[
w1

x, ...,w
K
x

]
∈ RMx×K :

ŝx(t) = W>
x x(t). (3)

Note that sometimes (for example in the ICA community) a
different convention is adopted in which the extraction filters
are in the rows of Wx instead of the columns as we introduce
it here. The coefficients of Wx determine how to integrate
the information from all recording channels in order to op-
timally extract the time-courses of the components. Several
approaches to find, or rather to optimize, these coefficients
will be presented in the following sections. However, at this
point it is important to discuss some common misconceptions
about the interpretability of the coefficients of filters, once they
have been obtained.

A prerequisite for determining the anatomical origin and
neurophysiological relevance (that is, for enabling “neuro-
physiological interpretation”) of extracted time-courses is to
identify the strength with which the time-courses are expressed
at each recording channel. Importantly, the coefficients of
extraction filters do not encode this information and should
therefore not be interpreted with respect to the origin of
the extracted signal. This is only possible for the activation
patterns of forward models [54], [55]. Moreover, it is only the
activation patterns that can be subjected to source localization
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Fig. 2. Illustration of the difference between extraction filters (i.e. the
coefficients of backward models) and spatial activation patterns (i.e. the
coefficients of forward models) by using simulated data from only one
hypothetical modality. The top panel on the right side shows the time-courses
of two hidden source components, s1 and s2, of which s1 shall be the signal
of interest in this example and s2 corresponds to a noise component. These
time-courses are mapped to two recording channels (x1 and x2) by means
of Eq. (1), using the matrix Ax =

[
a1,a2

]
. The time-courses of the data in

channel space is shown in the middle panel on the right side, as well as in a
scatter plot on the left side (x1 on the abscissa and x2 on the ordinate). The
scatter plot also shows the activation patterns (columns of the matrix Ax) as
solid line vectors. Note that a1 is only half as long as a2, which means that the
noise component s2 is expressed much stronger in the channel data. Using
s1 as a target variable, the vector w is the extraction filter of a backward
model optimized by means of Eq. (20). w is shown in the scatter plot as a
dashed line vector. Applying w to the data, i.e. computing w>x(t), yields
a reconstruction of s1, see the lower panel on the right side. Importantly,
while w extracts the time-course of component s1, its coefficients are not to
be interpreted as to how strong and with what sign s1 was expressed in the
data. Instead, only the coefficients of a1 contain that information. However,
an estimate of a1 can be derived from w by means of Eq. (4).

techniques (see below) in order to link cognitive functions to
specific brain areas. See Fig. 2 for an illustration of the duality
between filters and patterns.

D. Recovering the forward model from a backward model:
Patterns

Earlier we have identified interpretability to be one of the
key properties that are desired in (multimodal) neuroimaging.
In [54] has been established that extraction filters of backward
models cannot be interpreted in terms of the studied brain
processes (that is, be used to localize these processes to indi-
vidual sensors). This is due to the fact that extraction filters are
generally functions of the signal and the noise and thus heavily
influenced by factors not of interest for the neurophysiological
interpretation. As a remedy, a corresponding forward model of
the form of Eq. (3) may be derived from every linear backward
model, the activation patterns of which can be interpreted
in the aforementioned way. The transformation of backward
model extraction filters into forward model activation patterns
is given by

Ax = CxxWxC
−1
ŝxŝx

= CxxWx

(
W>

x CxxWx

)−1
, (4)

where Cxx denotes the data covariance matrix and Cŝxŝx

denotes the covariance matrix of component time-courses.
By virtue of the transformation (4), we can pursue a

backward modeling approach, allowing us to conveniently

parametrize cost functions solely in terms of the extraction
filters (see next section), while being able to achieve neuro-
physiological interpretability and source localization through
analysis of the activation patterns of the corresponding forward
model.

E. Source localization for factor models

Unlike backwards models, forward models of the form
Eq. (1) allow to identify those sensors that are related to
the brain activity under study, and thereby to localize the
components of a factor model in sensor space. For imaging
modalities such as fMRI, for which a one-to-one relationship
between sensors and brain locations exist, the analysis of
forward model activation patterns is thus sufficient to enable
conclusions about the brain areas involved in the studied brain
process.

For modalities such as EEG, MEG or fNIRS, which measure
effects of brain activity only outside the head, a source space
representation of the sensor readings has to be inferred in order
to draw similar conclusions. To this end, a physical model is
required, which describes how neural (source) activity in the
brain maps to the sensors. Such a model comprises information
about the geometries of the different tissues (gray matter,
white matter, cerebrospinal fluid, skull, skin) in the studied
head, as well as modality-specific properties of these tissues.
In case of EEG and MEG, it needs to describe the flow of
the extra-cellular ionic return currents occuring in response to
the intra-cellular neuronal activity through the volume. The
physical properties of interest here are the tissues’ electrical
conductivities as well as inhomogeneities and anisotropies.
Since the quasi-static approximation of Maxwell’s equations
holds for the frequencies typically studied in EEG/MEG,
the relationship between source neuronal currents and the
EEG/MEG scalp electrical potentials/magnetic fields gener-
ated by the corresponding return currents is linear [56].

In the case of fNIRS, the physical model describes the pho-
ton transport through the tissue, and involves optical properties
such as absorption and scattering coefficients of different tissue
types. The relationship between the internal coefficients in
the brain reflecting neuronal activity indirectly through blood
de-/oxygenation and the respective coefficients measured at
the scalp surface is generally non-linear; however, for small
changes in absorption coefficients a linear approximation is
reasonable [57]. Therefore, we can assume the following
physical model in all of the discussed cases:

x(t) = Lxjx(t) + εx(t) . (5)

Here, the time-dependent Rx-dimensional vector jx(t) de-
scribes the brain source activity at Rx distinct locations
Ux ∈ RRx×3 in the brain (e. g., points on the cortical sur-
face in MNI coordinates). Notice that for electrophysiological
imaging modalities, the source activity is in fact a vector field,
since each source location emits a directed electrical current.
However, for simplicity, we here assume that the orientations
of these currents are fixed (e. g. to be perpendicular to the
local cortical surface, which is the predominant direction of
the pyramidal cells thought to be the main generators of the
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EEG signal). The Mx × Rx transfer matrix Lx describes
the relationship between the source brain activity and the
sensor readings, and comprises all geometrical and physical
properties of the head discussed above. It it is called the lead
field in case of EEG/MEG. Finally, εx(t) is a Mx-dimensional
noise vector.

Given a physical model (that is, transfer matrix Lx), source
localization of EEG/MEG or fNIRS activity can be carried
out by estimating the brain source activity jx(t) at locations
Ux giving rise to the measured signals x(t). This amounts
to solving an ill-posed inverse problem, and can be done by
introducing prior assumptions on the spatial and/or temporal
characteristics of the source activity (e. g., [58], [59], [60],
[61], [62], [63], [64], [65], [66], [67], [68], [57]).

How exactly factor models relate to physical models needed
for source localization has rarely been made explicit in the
literature. In the following, we will work out the respective
relationships for the case of linear models. Obviously, the
physical model Eq. (5) has the same structure as Eq. (1)
introduced in the context of factor models, and is in fact also
a forward model of the data. However, the meaning of the
variables in the two models differs in the following terms.

• The factor model Eq. (1) assumes a small number Kx ≤
Mx of components sx(t), each of which captures the
activity of a potentially spatially distributed “network” of
brain areas, and is thought to have a distinct functional
role in terms of the brain processes under study (e. g.,
those whose activity is consistent across imaging modal-
ities). Components are typically assumed to be mutually
uncorrelated if not even statistically independent.

• The physical model Eq. (5), on the other hand, models
activity of a large number of Rx ≥ Mx brain sources
jx(t), each of which corresponds to a single location in
the brain. The known relationship between brain sources
jx(t) and their locations Ux established by the transfer
matrix Lx enables time-resolved source localization of
the measured activity x(t). Unlike factor model compo-
nents, different brain sources may very well be correlated
and relate to the same cognitive component.

• Technically, the term Axsx(t) in Eq. (1) captures the part
of the data that is correlated with the brain processes of
interest, and may consist of genuine brain activity but
also artifacts originating outside the brain, while the term
Lxjx(t) in Eq. (5) is the part of the data that is explained
by physical sources in the brain, and may contain activity
related to the brain processes of interest but also unrelated
activity.

• Conversely, the noise term εx(t) in Eq. (1) captures all
measured activity that is not explained by any of the
Kx factors and therefore unrelated to the brain processes
under study regardless of whether it can be explained by
sources in the brain or not, while εx(t) in Eq. (5) captures
all activity that is not explained by sources physically
located in the brain regardless of whether it is related to
the brain processes under study or not.

We have seen that each component six(t) of a factor model
can be localized to sensors through its static activation pattern

aix. To achieve a localization to actual brain anatomy, we
need to derive analogous patterns in source space. This can
be achieved by merging physical and factor models into a
theoretical joint forward model

x(t) = Lxj 6sx(t)︸ ︷︷ ︸
I. brain only

+ A 6Lxsx(t)︸ ︷︷ ︸
II. factors only

+LxFxsx(t)︸ ︷︷ ︸
III. both

+ ex(t)︸ ︷︷ ︸
IV. none

(6)

decomposing the data into parts explained by I. brain processes
of no interest, II. artifacts of non-cerebral origin correlated
with the brain processes of interest, III. the brain activity of
interest and IV. artifacts not correlated with the brain activity
of interest. Here, j6sx(t) ∈ RRx is the brain activity unrelated
to any of the Kx factors, A 6Lx ∈ RMx×Kx is the part of the
activation pattern matrix that is not explained by brain sources,
ex(t) is non-cerebral noise unrelated to any factor, and finally
Fx ∈ RRx×Kx are the desired source-space activation patterns
localizing each of the Kx components sx(t) to brain anatomy.

It is easy to see that the joint forward model Eq. (6)
can be obtained from the factor model Eq. (1) by splitting
activation pattern and noise terms into parts that can or cannot
be explained by physical brain sources through

Ax = LxFx + A 6Lx (7)
εx(t) = Lxj 6sx(t) + ex(t) . (8)

Analogously, the same model can be recovered from the
physical model Eq. (5) by splitting brain activity and noise
terms into parts that are or are not related to the studied
processes via

jx(t) = Fxsx(t) + j 6sx(t) (9)
εx(t) = A 6Lxsx(t) + ex(t) . (10)

The decompositions Eq. (7)–(10) suggest that source-space ac-
tivation patterns Fx can be obtained without actually carrying
out simultaneous estimation of all parameters of the joint for-
ward model in three equivalent ways. First, by exploiting that
Eq. (7) is a static version of the physical model Eq. (5), sensor-
space activation patterns aix that have been pre-estimated
by factor modeling may be mapped to their source-space
equivalents f ix using any inverse source localization method
that makes assumptions only on spatial but not temporal
properties of the brain sources [59], [60], [62], [64], [66],
[65]. Second, by noting that for brain sources ĵx(t) that have
been pre-estimated from the entire data by source localization
methods, Eq. (9) is a source-space version of the factor model
Eq. (1), source-space activation patterns Fx may be obtained
by factor modeling using any of the component analysis
techniques introduced below. Third, in case that estimates
ŝx(t) and ĵx(t) of both component and brain activations
have previously been obtained through appropriate factor and
physical modeling, Eq. (9) takes the particularly simple form
of a general linear model (GLM), allowing one to estimate Fx

using linear regression. In all cases, the entries of the estimated
source-space activation pattern f ix indicate the strength and
effect direction with which the i-th factor is expressed at each
brain location and thereby link that component’s activity to its
generating brain structures.
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IV. METHODS FOR LATE FUSION

In this section we review multivariate backward models
for the extraction of components from a single measurement
modality. In the context of multimodal fusion these methods
are applied in late fusion scenarios, because information from
the respective other modality is not considered during the
extraction of components. For exemplary purposes we use the
variable x here to represent the observed data, regardless of
the measurement modality. Additionally we drop the subscript
that indicates the modality from all other variables because in
this section there is no need for it.

A further subdivision can be made into supervised and
unsupervised methods. Supervised methods make use of an
external target signal during the optimizing of the parameters,
while unsupervised methods rely on the statistics of the
data alone. Supervised methods are also used in so-called
asymmetric fusion settings of multimodal analyses. In this
setting, one modality, or features extracted from one modality,
are used as labels or regressors in order to extract factors from
another modality. Examples include studies on correlations of
the occipital EEG alpha band power with fMRI data [69] or
fNIRS data [50].

A reoccurring theme in all the methods is to guide the
search for the weight vector w (or an entire set of vectors
represented by the matrix W) by means of optimizing an
objective function. We would like to emphasize that for the
majority2 of methods we will discuss below, the objective
function takes the form

max/min
w

w>B1w, s.t. w>B2w = c, (11)

where c is a constant. The methods we discuss differ with
respect to the choice of the matrices B1 and B2. However,
if an objective function can be expressed in the above form,
the solution is obtained as the solution to the corresponding
generalized eigenvalue problem

B1w = λB2w, (12)

where λ denotes what is called the generalized eigenvalue that
is associated with the eigenvector w. Generalized eigenvalue
problems have been studied for decades in the field of nu-
merical linear algebra, which has lead to efficient algorithms
for solving them [70], [71]. Being able to cast an objective
function into the form of a generalized eigenvalue problem
is desirable, because it can then be solved using standard
numerical linear algebra tools such as MATLAB or R, for
example.

A. Unsupervised approaches

1) Principal Component Analysis: Perhaps the most pop-
ular and most widely used unsupervised factorization method
is the principal component analysis (PCA) [72], [73]. The
underlying idea in PCA is to find components in the data that
account for as much variance as possible under the constraint
that the components are mutually de-correlated.

2A notable exception are algorithms for independent component analysis
(ICA) discussed in Sections IV-A2 and V-A.

Let us formalize an objective for PCA for a single com-
ponent. The coefficients of the weight vector w are to be
optimized such that the extracted signal w>x(t) has maximum
variance:

max
w

Var
(
w>x(t)

)
, s.t. ‖w‖2 = 1 (13)

Expressing the variance of w>x(t) as

Var(w>x(t)) = w>Cw, (14)

where the matrix C is the covariance matrix of the data, we
arrive at

max
w

w>Cw, s.t. w>w = 1. (15)

which corresponds to Eq. (11) with B1 = C and B2 = I.
Thus the corresponding eigenvalue equation is given by

Cw = λw, (16)

and the solution is obtained as the eigen-decomposition of the
covariance matrix C.

It can be shown that the eigenvalue of a PCA component
corresponds to its variance, i.e. λ = w>Cw. Thus the fraction
of total variance explained by a subset of K ≤M components
is given by the ratio

∑K
i λi/

∑M
j λj . This ratio is often

used to determine the size of a suitable PCA component
subset that together explains a given percentage of the total
variance contained in the data. Here the idea is that the set of
components that explains most of the variance in the data are
the most “interesting” ones.

Applications: For example, in [74] PCA was used in
a multimodal setting involving concurrent EEG and MEG
recordings to determine that K ≈ 2 EEG components explain
about 50% variance of sleep spindles while K ≥ 15 MEG
components necessary to account for the same amount of total
variance. The findings lead the authors to conclude that the two
measurement modalities reflect the activity of different system
of neural sources during spindles.

While in the previous example the first K components
were deemed the interesting ones, PCA is also often used
to remove the components with maximal variance from the
data, because these are likely to correspond to strong noise
that contaminates the actual signal of interest. For example,
in simultaneous recordings of fMRI and electrophysiological
measures, the changing magnetic field of the MRI scanner
induces artifacts in the electrophysiological recordings that
are larger by many orders of magnitude. PCA hase been
used to clean the data by removing the highest variance
components in the context of scanning artifacts [75], [76],
pulse artifacts [77], [76], or line noise [78].

2) Independent Component Analysis: A potentially limiting
aspect of PCA is the fact that the spatial activations patterns
of PCA components are constrained to be orthogonal3. This

3For PCA, the weight vectors W are the eigenvectors of the covariance
matrix C, i.e. it holds that C = WΛW>, where Λ is a diagonal matrix
and WW> = I. Using the last two equations and substituting Eq. (16) into
Eq. (4) reveals that for PCA it holds that A = W.
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assumption may be too strong in the context of neurophysio-
logical activation patterns. An alternative unsupervised factor-
ization method that does not impose such constraints on the
patterns is the independent component analysis (ICA).

ICA is based on the idea that the hidden components are
statistically independent. Let Ŝ denote the random variable that
contains the temporal signature of the extracted components.
Then Ŝ is parametrized by the weight matrix W, by virtue
of the backward modeling approach in Eq. (3). The notion
of maximal independence between the individual components,
denoted by the random variables Ŝi for i ∈ {1, ...,K} is equiv-
alent to the notion of minimizing the mutual information (MI)
between them. Mathematically, the MI between two variables
X and Y is defined as the Kullback-Leibler divergence DKL

between the joint probability distribution of X and Y (denoted
as p) and the product of the marginal probability distributions

I(X,Y ) = DKL(p(X,Y ) || p(X)p(Y ))

=

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy . (17)

Furthermore, the mutual information of Ŝi can be expressed
as

I(Ŝ) =

K∑
i

H(Ŝi)−H(Ŝ), (18)

where H(Ŝi) denotes the entropy of Ŝi. It can be shown that
minimizing I(Ŝ) can be achieved by minimizing the entropy
for all individual components. Since the Gaussian distribution
has the maximal entropy among distributions with fixed mean
and variance, the mutual information between components can
be minimized by extracting components with maximally non-
Gaussian distributions. A number of algorithms exist that are
based on the this idea (e.g. [79], [80], [81]).

A different approach to ICA is taken by methods that
exploit temporal information. These methods are based on the
joint (approximate) diagonalisation of time-lagged covariance
matrices. Examples are described in [82] and [83].

Note that the independence assumption used in ICA can be
applied to either the estimated time courses of the components
(as was outlined above) or to their estimated activation pat-
terns. The former approach is referred to as temporal ICA,
while the latter is called spatial ICA. In the context of fMRI,
spatial ICA is the more popular version, while in the context
of EEG and MEG, temporal ICA is used. See [84] for more
discussion on the choice between spatial and temporal ICA.

Applications: ICA algorithms are widely used in pre-
processing data to separate artifactual components from com-
ponents of neural origin, see [85], [86], for example. In
the context of multimodal measurements, ICA has proven
useful to identify pulse and scanner artifacts [87], [88] and
thereby greatly improve the signal quality compared to the
non-corrected signal. However, a study that compared several
versions of ICA as well as temporal PCA-based approaches
[76] in the context of simultaneously acquired EEG and
fMRI found that ICA- and PCA-based approaches perform
equally well, with ICA requiring more parameter tuning.

Applying both approaches in sequence can improve over either
approaches individually [89].

Neural oscillations were investigated using EEG/fMRI in
study presented in [48]. ICA was used to extract components
from the EEG that reflect the sensorimotor rhythm during
a movement task. The bandpower time-course of these ICA
components correlated inversely with activation in the pre- and
postcentral cortex as revealed by fMRI. Differential effects
were found for alpha (8 Hz to 12 Hz) and beta (12 Hz to
30 Hz) power, with beta power yielding stronger correlations
between the EEG components and the fMRI.

The study reported in [90] used ICA to investigate the
origin of auditory ERPs during simultaneous recordings of
EEG and fMRI. ICA was applied to both imaging modalities
separately. For fMRI, spatial ICA was applied. From the result-
ing decompositions, one pair showed significant correlations
between time-courses. The application of ICA separately to
each modality prior to fusion was also adopted in [91].

See [92] for further application examples of ICA.

B. Supervised approaches

In this section we assume that in addition to the data from
the imaging modality, we are also given an external target
signal, denoted by the scalar variable z. This variable may
encode additional information about the stimulus (e.g. type, in-
tensity, latency, etc.), behavioral measurements (reaction times,
ratings, etc.), external physiological parameters (skin conduc-
tance, heart rate, etc.), or artifactual information (e.g. eye
movements, motion parameters, etc.). In general, supervised
methods have an advantage over unsupervised approaches
because they have more information at their disposal.

1) Regression and classification: Two well known exam-
ples of supervised factor models are linear regression and
classification by means of linear discriminant analysis (LDA).
We will first examine linear regression and then treat LDA as
a special case of the former.

The goal of regression is to extract a component with a time-
course that co-modulates with the target variable z. Without
loss of generality, we assume z to have zero mean and unit
variance. One way of quantifying co-modularity between two
time series is by way of the mean squared error (MSE), given
by

MSE
(
w>x(t), z(t)

)
=

1

T

T∑
t

1

2

(
w>x(t)− z(t)

)2
. (19)

The spatial filter that minimizes the MSE is given by

w =
(
XX>

)−1
Xz>, (20)

where the row-vector z = (z(1), ..., z(T )) ∈ R1×T contain the
time-course of the target variable and the matrix X contains
the measured data and was defined earlier. This is known as
the ordinary least squares (OLS) solution.

Interestingly, the same solution is obtained for the following
objective function, which expresses co-modularity in terms of
covariance between w>x(t) and z(t):

max
w

Cov
(
w>x(t), z(t)

)
, s.t. Var

(
w>x(t)

)
= 1. (21)
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Or equivalently in matrix notation expressed as

max
w

w>Xz>, s.t. w>Cw = 1. (22)

Classification of two conditions (or classes) can be treated
within the regression framework outlined above. In such a
scenario, the target variable z takes on only two values that
indicate class membership. Eq. (20) yields the filter that
achieves optimal class separation by choosing z(t) = p(c1)
for all time points t that belong to class 1 and z(t) = −p(c2)
for all time points t that belong to class 2, where p(c1) denotes
the prior probability of class 1 and p(c2) the prior probability
of class 2 (see, for example, chapter 4 in [93]. The resulting
algorithm is called linear discriminant analysis (LDA).

Applications: Linear regression idea is a special case
of the general linear model (GLM) framework that has been
successfully applied in the context of unimodal and asymmet-
ric multimodal analysis of fMRI data for almost two decades
[94]. In the context of fMRI, the target variable is usually the
time-course of an fMRI voxel, while x is called the design
matrix. Each column of the design matrix contains a regressor,
which are explanatory variables such as stimulus level or task-
condition for example. As this approach is usually applied
to all voxels separately, it is referred to as mass-univariate
analysis. In the context of EEG, regression-based approaches
can be very useful for the extraction and removal of eye
movement artifacts [95], for example.

Linear classification methods such as LDA have been
found to yield very good performance for fMRI [96] as well
as for EEG [55] in unimodal settings. In multimodal settings,
LDA has been applied in [49], which we will discuss in more
detail in the next subsection. Other examples include, but are
not limited to, the studies described in [97], [98]. In [98],
LDA was used to extract a component from EEG recordings
that best discriminates between two conditions (target vs.
standard stimuli). Then the single trial variability of the LDA
projection was used as a regressor GLM analysis of the
simultaneously recorded fMRI. This procedure revealed that
both task dependent as well as task independent networks of
fMRI voxels contributed to fluctuations in attention.

2) Regression and classification using band-power features:
Given the interest in generators of neural oscillations, we cover
supervised backward models that extract oscillatory sources
next. Here the instantaneous amplitude (also called envelope)
is often the subject of investigation. A useful approximation
of the (squared) envelope is given by computing the variance
of the narrow-band signal in short consecutive time windows,
which we refer to as epochs. Using the variance approximation
of band-power, it is possible to derive algorithms for regression
and classification analogously to the previous section. The
important difference is that here not the projected signal itself
is assumed to co-modulate with the target variable z. Instead
the epoch-wise variance (i.e. the power time-course) of w>x
is assumed to co-modulate with z.

Let Xe ∈ RMx×Tx(e) denote the matrix that contains all
samples within an epoch, where the epoch is indexed by e and
Tx(e) denotes all time indices withing the e-th epoch. Because
we are using the variance approximation of spectral power in

a given frequency band, we assume x to be bandpass filtered
for the band of interest. We further denote the bandpower of
w>x within epoch e by φw(e), which we define as

φw(e)
def
= w>C(e)w, (23)

where C(e) denotes the covariance matrix of x computed for
the epoch e, similar to Eq. (14).

Next we formulate the co-modulation objective for φw and
z as a function of w. In analogy to Eq. (21) we use the
covariance as a measure for co-modulation, as this allows for
a (near) analytical solution. The resulting algorithm is called
source power co-modulation (SPoC) and was presented in
[99]. The objective for source power co-modulation is thus
given by

max
w

Cov (φw(e), z(e)) , s.t. Var
(
w>x(t)

)
= 1. (24)

Again, assuming zero-mean for z, the covariance reduces to
the product between the two variables, averaged over epochs:

Cov (φw(e), z(e)) ∝
∑
e

(w>C(e)w · z(e))

= w>

(∑
e

C(e) · z(e)

)
︸ ︷︷ ︸

def
= Cz

w . (25)

Using the last definition we can transform the SPoC objective
in Eq.(24) into

max
w

w>Czw, s.t. w>Cw = 1, (26)

which can be further transformed into the following general-
ized eigenvalue problem:

Czw = λCw, (27)

which is another example of the generalized eigenvalue equa-
tion seen above.

In analogy to the previous section on regression and LDA,
it can be shown that scenarios in which the bandpower of
a component is used to discriminate between two conditions
can be subsumed by the SPoC framework with the appropriate
choice for the values of z. By again choosing the values of
z to reflect the prior probabilities of the two classes (i.e.
z(e) = p(c1) if epoch e belongs to class 1 and z(e) = −p(c2)
otherwise) the SPoC generalized eigenvalue problem turns into

(C1 −C2)w = λCw, (28)

where C1 and C2 denote the covariance matrices of the two
classes and C = C1 + C2. The last equation is the solution
to the objective function of the common spatial patterns
(CSP) algorithm, which is very popular in the field of Brain-
Computer Interfaces [100].

Applications: Both CSP and LDA were used in a re-
cent multimodal study to fuse EEG and fNIRS recordings
in the context of sensorimotor rhythm (SMR)-based Brain-
Computer Interface (BCI) [49]. SMR-based BCIs rely on the
voluntary modulation of motor-related µ- and β-bands, which
can be induced by actual as well as imagery movements [21],
[101], [102]. In the study presented in [49] an EEG-based
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classifier for the detection of bandpower changes in a specific
frequency range was derived based on a temporal (i.e. band-
pass) filter as well as a spatial filter (CSP) in addition to a
linear classifier (here LDA). Raw fNIRS was converted into
concentration changes of oxygenated [HbO] and deoxygenated
[HbR] hemoglobin and the resulting features for each of the
24 fNIRS channels were used to estimate two LDA classifiers:
one for [HbO] and one for [HbR]. Finally, the outputs of these
three unimodal LDA classifiers (one derived from EEG and
two from fNIRS) were combined with an LDA meta-classifier,
which weighs the three signals according to the calibration
data.

A different study, reported in [103], used CSP and LDA to
deliver real-time feedback of SMR modulations induced by
motor imagery (MI), here imagined hand movements. fMRI
was recorded at the same time and processed offline. In
order to gain insights into the relationship between MI EEG
feedback and cortical fMRI signals, extracted EEG bandpower
dynamics of the SMR rhythm were related to fMRI activations
using GLM analysis. This analysis approach revealed that both
EEG and fMRI showed significantly more MI-related activity
during feedback blocks compared to no feedback.

For a more detailed review on various hybrid concepts for
neurofeedback and BCI, we would like to refer the interested
reader to [104].

V. METHODS FOR EARLY FUSION

In this section we discuss factor models that are designed to
decompose two (or more) datasets at the same time. These ap-
proaches integrate information from both measurement modal-
ities for the extraction of components, which makes them
applicable in early fusion scenarios. For simplicity we here
assume just two modalities, denoted by x and y, but the
concepts presented below can be extended to more than two
modalities. In the context of simultaneous measurements of
electrophysiology and hemodynamics, x represents the former
and y the later.

A. Multimodal versions of ICA

Joint ICA (jICA), presented in [105], is a method that
enables fusion of multimodal features from several of subjects.
Let Ns denote the number of subjects and Dx ∈ RNs×Nx and
Dy ∈ RNs×Ny denote the matrices that contain features from
the x and y modality, respectively.

In the next step the features from the modalities are simply
concatenated along the horizontal to yield a multimodal feature
matrix D = [Dx,Dy] ∈ RNs×(Nx+Ny). Each row in the
matrix D corresponds to the multimodal feature concatenation
of a single subject. Joint ICA now assumes the following
generative model:

D = G ·V> =

K∑
i

gi · vi>, (29)

which states that the multimodal feature matrix D can be
decomposed into the sum of K = min(Ns, (Nx + Ny))
components. Each of the components is characterized by a

multimodal feature profile vi ∈ RNx+Ny and vector gi ∈
RNs , for i ∈ {1, ..., Ns}, that encodes how strong and with
which sign the feature profile is present in each of the subjects.
Assuming statistical independence between the feature profiles
vi, a backward modeling approach can be applied to extract an
estimate of these profiles by ICA algorithms discussed earlier.

The natural scaling of data from different modalities, i.e.
Voltage in EEG vs percent signal change or concentration
changes in fMRI or fNIRS, yield quite different histograms
and may thus lead methods astray that rely on information-
theoretic measures. This is the case for jICA. Additionally,
an unequal number of samples between the two modalities
leads to jICA giving more priority the modality for which
more samples are provided. In order to ensure a balanced
representation, up-/downsampling has to be applied.

While jICA assumes a common modulation profile within
modalities for all subjects, this assumption is relaxed in
an approach called parallel ICA (paraICA) [106], [107]. In
this approach, a user specified similarity relation between
components from the different modalities is optimized simul-
taneously with modality-specific un-mixing matrices. Thereby
paraICA gives more emphasis to subject-specific multimodal
components, compared to jICA.

Recently, a fully Bayesian approach to multimodal ICA is
proposed in [108], in which the authors presented the so-called
linked ICA. In contrast to jICA and paraICA, a difference in
scaling or noise levels between modalities is not a problem
for linked ICA.

Applications: Examples of multimodal fusion using jICA
include fusion of EEG and functional MRI [105]. In this
application, spatial independence was assumed for fMRI and
temporal independence for the EEG ERP data. For fusing
ERP components and fMRI activation maps, the multimodal
feature maps were constructed as follows. The features in Dx

were the time-course of an averaged event-related potential
(ERP) from a single EEG channel, while the features in
Dy were statistical parametric maps obtained from a GLM
analysis. This study revealed a cascade of activations, along
with their spatio-temporal dynamics, involved in processing
of rare events among frequent distractors. While in [105] the
data set comprised measurements from 23 healthy subjects,
in [109] it was reported that the same analysis pipeline
had been subsequently applied to 18 chronic schizophrenia
patients. Findings of this analysis included a multimodal
component that reliably distinguished between patients and
healthy subjects.

A thorough analysis of how and why jICA works has
been presented in [110]. In this study, a visual detection
task was used to assess jICA performance in the fusion of
EEG ERPs and stimulus induced activation maps derived
from fMRI. One of the main results was the validation of,
what the authors called, the central linking hypothesis. This
hypothesis states that large parts of brain activity are visible
in both imaging modalities and that a link between them can
be established. Another recent study from the same group,
presented in [111], used jICA to uncover novel insights into
the dynamics of visual contour integration. In this study, jICA
revealed spatiotemporal dynamics of the integration process
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that would have been missed in a unimodal analysis.

B. CCA and PLS

For finding related components, a useful assumption is
temporal co-modulation, which can be captured by finding
those transformations for each modality that maximize the cor-
relation between the time-courses of the extracted components.
This is the idea of Canonical Correlation Analysis (CCA)
[112]. In the simplest case CCA finds a one-dimensional
subspace wx ∈ RMx and wy ∈ RMy for data from two
modalities such that the canonical correlation of the modalities
in that subspace is maximized:

max
wx,wy

Corr
(
w>x x(t),w>y y(t)

)
. (30)

The advantage of maximizing the correlation after the linear
transformation wx,wy is that the resulting correlation coeffi-
cient is invariant with respect to linear transformations of the
data, hence canonical. See Fig. 3 for an illustration of the CCA
idea. The generalization of the univariate canonical correlation
coefficient finds K dimensional subspaces Wx ∈ RMx×K

and Wy ∈ RMy×K such that the sum of the correlations
is maximized [113]. In matrix notation this objective can be
written as

max
Wx,Wy

Trace
(
W>

x XY>Wy

)
(31)

s.t. W>
x XX>Wx = W>

y YY>Wy = I

The concept of canonical correlation is very similar to that of
the principal angles [114] between the spaces spanned by the
data matrices X and Y. The objective of CCA in Eq. (31)
can be transformed into the following generalized eigenvalue
problem:[

0 Cxy

Cyx 0

] [
Wx

Wy

]
= Λ

[
Cx 0
0 Cy

] [
Wx

Wy

]
, (32)

where Cxy, Cyx, Cxx, Cyy are defined in Table I. If Cx and
Cy are assumed to be the identity matrix, that is assuming
that the features of x and y are uncorrelated, respectively,
Eq. 32 solves an optimization problem that is known as
partial least squares (PLS) [115], [116], which has also
found applications in multimodal data fusion [117]. The main
difference between PLS and CCA is that CCA aims at finding
maximally correlated components, while PLS aims at finding
maximally covarying components. While this can be the same
in some cases, in practice this is not necessarily so. The correct
choice of method depends on what aspects of the data the
analyst or experimenter wants to investigate.

Another way of solving the CCA objective is to learn a
probabilistic model, as proposed in [118]. Extensions of these
probabilistic models, as put forward in [119] also include a
factorization of the part of the signal that CCA considers noise
– this generalization of CCA is termed inter-battery factor
analysis in the statistics literature [120]. See also [7] for differ-
ent Baysian approach multimodal data fusion. CCA has been
extended to handle more than two modalities at the same time.
These, so-called, N-way or multi-way extensions of CCA have
found application in multimodal neuroimaging as well [121],

Fig. 3. Illustration of canonical correlation analysis (CCA) for multimodal
fusion, exemplary for two datasets x and y (shown on the left and right
panels, respectively). Two modality specific source spaces are assumed, each
containing at least one source that is highly correlated with a corresponding
source in the other modality. In this example, the time-courses of sx,1
and sy,1 are correlated, while sx,2 and sy,2 are uncorrelated to all other
sources. The source signals are projected to the recording channels according
to Eq. (1) with modality specific activation patterns, i.e. matrices Ax and
Ay , respectively. CCA optimizes spatial filters wx and wy such that the
correlation between the projections w>

x x(t) and w>
y y(t) are maximized.

[122], [123], [124]. See also the review on CCA by [125]. The
authors of [125] also discuss the differences between multiway
CCA and jICA: jICA seeks to find independent components,
which can be too strong an assumption in some cases. More
importantly, unlike jICA, multiway CCA does not constrain
the activation patterns of components to be the same for both
modalities.

Note that CCA assumes that the samples of each modality
are correlated instantaneously. For neuroimaging data this
assumption does often not hold true. One solution is to embed
one modality in its temporal context and optimize a time-lag-
dependent projection wx(τ) for one modality, such that the
canonical correlation is maximized:

max
wx(τ),wy

Corr

(
Nτ∑
i

(wx(τi)
>x(t− τi),w>y y(t)

)
, (33)

for a given set of Nτ time lags {τ1, ..., τNτ }. The solution
to Eq. (33) can be conveniently obtained as the solution to
the standard CCA problem in Eq. (30) by applying the trick
of temporal embedding. Temporal embedding is achieved by
first creating Nτ copies of the dataset which is to be embedded
(here X), then shifting each copy by one of the specified time
lags, and finally stacking the time-shifted copies along the
spatial axis of the data matrix. Let the result of this embedding
be denoted X̃, then we have

X̃ =

 Xτ1
...

XτNτ

 ∈ RMx·Nτ×Tx , (34)

where Xτi denotes the copy of X that is shifted by time
lag τi. The optimal Nτ can be found using standard model
selection procedures such the Akaike Information Criterion
which was introduced for this purpose in the context of
CCA [126]. In practice however, it is sufficient to use the
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well established knowledge about the neurovascular coupling
dynamics to restrict the length of the temporal window to less
than 20 seconds. Using the definition above we can substitute
X̃ into the original CCA objective in Eq. (30) from which we
obtain a temporally embedded spatial filter wx(τ).

The spatio-temporal filter wx(τ) is recovered from w̃x as

w̃x =

 wx(τ1)
...

wx(τNτ )

 ∈ RMx·Nτ×1. (35)

Unfortunately if there are only a limited number of samples
available and at the same time the dimensionality of the data is
large, then this temporal embedding will lead to ill-conditioned
covariance matrices. However one can apply the kernel trick
and solve the dual formulation of the problem instead (see
Section VI). This approach is proposed as temporal kernel
CCA in [127].

Application:: Figure 4 shows an example of the pat-
terns obtained from recordings of spontaneous neural activity
in the anesthetized macaque monkey. Electrophysiological
signals were obtained by intracranial electrodes and high-
resolution fMRI data in a spherical region-of-interest around
the recording electrode was measured simultaneously. Exper-
imental details are described in [128]. Filters were estimated
using temporal kernel CCA and patterns were obtained using
Eq. (4). The structure of the fMRI pattern ay reflects a
smooth hemodynamic spatial response that is in line with
the anatomical structure around the electrode: the coefficients
along the cortical laminae are large and decay quickly per-
pendicular to the cortical laminae. Similarly, the coefficients
of the neurovascular time-frequency response pattern ax(τ)
reflect clearly the well known physiology of the neurovascular
response. The temporal profile shows a clear peak at 5 s and a
later undershoot at about 15 s. The frequency profile indicates
that the strongest hemodynamic response is in the high gamma
frequency range.

Also in the context of EEG-fMRI recordings, CCA has
become widely used. One of the major advantages of CCA
is that it is straightforward to extend to analyses of more than
one subject. This approach was taken e.g. in [129]. Here the
authors investigate amplitude modulations of event-related po-
tentials (ERPs) recorded with EEG simultaneously with fMRI
during an auditory oddball paradigm. After preprocessing, the
EEG data and the fMRI data were whitened and subjected
to a multi-way CCA analysis that finds those components that
maximally correlate between all pairs of subjects and between
the two modalities. Similar approaches in the field of unimodal
data analyses also make use of multi-way CCA in order to
integrate data from multiple subjects, see e.g. [123], [124].

C. mSPoC

In section IV-B2 we have seen that the co-modulation
between component power and a scalar target variable z
can be modeled using the SPoC objective function. Here
we extend this notion to the multimodal case by assuming
that the target function z is the time-course of a component
that is to be extracted from the other modality. Thus we set

Fig. 4. Application example of CCA. Here an intracranially measured elec-
trophysiology signal was fused with high resolution fMRI. A time-frequency
representation was derived from the univariate intracranial electrode signal.
This, now multivariate time-frequency signal, was temporally embedded and,
together with the fMRI signal subjected to CCA analysis. Shown are the
resulting activation patterns for the electrode on the left and the fMRI signal
on the right. The fMRI activation pattern was superimposed on an anatomical
scan. See main text for interpretation of the results.

z(e) = w>y y(e) and formulate the objective function for the
multimodal source power co-modulation analysis (mSPoC)
[130] as

max
wx,wy

Cov
(
φwx(e),w>y y(e)

)
(36)

s.t. Var
(
w>x x(t)

)
= Var

(
w>y y(e)

)
= 1,

where φwx was defined in Eq. (23). Note that here we require
y to be indexed by the epoch index e and thus have Y ∈
RMy×Ne , where Ne denotes the number of samples of the y
modality that can be aligned to short epochs in the x modality.
Figure 5 illustrates the ideas underlying mSPoC.

Unlike the SPoC or the CCA objective, the mSPoC objective
does not lead directly to generalized eigenvalue problem. How-
ever, it turns out that the mSPoC objective can be broken down
into sub-problems that each have straight forward solutions
which have been discussed above.

To see this, let us assume that wx is already known. Then
φwx evaluates to a row vector and the mSPoC objective be-
comes the regression objective given in Eq. (21) and the weight
vector wy is obtained through Eq. (20). Now let us assume
that wy is known. In this case w>y y(e) evaluates to a scalar
function of epoch-index e and the mSPoC objective reduces
to the previously discussed SPoC objective (see Eq. (24)) and
can be solved by means of the corresponding generalized
eigenvalue problem shown in Eq. (27). Thus a simple way
to optimize the mSPoC objective is to randomly initialize wx

and then iterate Eq. (20) and Eq. (27) until convergence [130].
In order to model non-instantaneous interaction between

bandpower dynamics of a component in x and the time course
of a component in y the mSPoC objective can be extended
to include a convolution of the bandpower dynamics. This
is done by introducing a finite impulse response (FIR) filter
wτ ∈ RNτ , the coefficients of which can either be set using
prior knowledge or estimated from the data.

Using the trick of temporal embedding that we have seen
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Fig. 5. Illustration of multimodal source power correlation (mSPoC) for
multimodal fusion, exemplary for two datasets x and y (shown on the left and
right panels, respectively). Two modality specific source spaces are assumed.
One of the source spaces (here the x-source space) contains at least one
oscillatory source with variable amplitude dynamics that are correlated to
the time-course of a corresponding source in the other source space. In
this example, the amplitude modulations of sx,1 are correlated to the time-
course of sy,1, while sx,2 (and its amplitude dynamics) as well as sy,2
are uncorrelated to all other sources. The source signals are projected to
the recording channels according to Eq. (1) with modality specific activation
patterns, i.e. matrices Ax and Ay , respectively. mSPoC optimizes spatial
filters wx and wy such that the correlation between the amplitude dynamics
of w>

x x(t) and the time-course of w>
y y(t) are maximized.

in the discussion of CCA, we express the convolution as a
the product of the vector wτ and the matrix that contains
the temporally embedded φwx , which we denote by Φ̃wx ∈
RNτ×Ne . Then the objective function of a temporal mSPoC,
expressed in matrix notation for K = 1, reads

max
wx,wτ ,wy

w>τ Φ̃wxY
>w>y (37)

s.t. w>x XX>wx = w>τ Φ̃wxΦ̃>wx
wτ = w>y YY>wy = 1.

Note that this modeling approach does not assume the
dynamics of the hemodynamic activation to be identical for
all positions in the brain, which would imply the existence of
location-independent canonical hemodynamic response func-
tion (HRF). Instead, by optimizing wτ anew together with
each component pair wx and wy, the temporal mSPoC ap-
proach explicitly models a potentially space-varying and non-
instantaneous coupling between EEG bandpower dynamics
and fMRI activations. This is in line with the known variability
of the HRF across space and subjects [131], [132], [128].

Similar to before, the weight vectors in this objective can be
optimized by reducing the optimization problem above to sub-
problems to which we have already seen the solution. If wτ is
to be estimated from the data, the temporal mSPoC objective
can be solved by starting with a randomly initialized wx and
then iterating the CCA objective and the SPoC objective until a
suitable convergence criterion is met. In applications in which
wτ is known, optimizing the mSPoC objective reduces to
alternating SPoC and regression.

Applications: The utility of mSPoC has been demon-
strated in [130] in the context of fusing EEG and fNIRS
measurements. mSPoC was shown to outperform CCA in

terms of obtained correlations between the modalities by
extracting physiologically plausible components.

Here we further illustrate the application of mSPoC for
the fusion of simultaneously recorded EEG and fMRI during
transient hand movements of the right hand. For this purpose
one subject was placed in an 3 T MRI scanner and instructed
to squeeze a soft ball five consecutive times with a frequency
of 1 to 2 Hz each time an auditory brief tone was presented.
31-channel EEG was simultaneously recorded. mSPoC was
applied to investigate the co-modulation between induced
power dynamics of the sensorimotor rhythm (here in the β
band, i.e. 16 to 25 Hz) and BOLD signal changes. After
mSPoC analysis, spatial activation patterns were computed for
EEG and fMRI according to Eq. (4).

The brain region generating the EEG mSPoC component
was localized using Eq. (7), that is by estimating a source-
space equivalent fx of the EEG sensor-space activation pattern
ax provided by the mSPoC algorithm. Thus, similar to the
multiple signal classification (MUSIC) approach [58], we
scanned through Rx = 74, 661 dipole locations on the tesse-
lated cortical surface and measured, using the corresponding
part of the lead field, to what extent a single dipole at each
location can explain the activation pattern ax.

Figure 6 shows the activation pattern of the coupled EEG
and fMRI component as estimated by mSPoC. The largest
activation cluster covered the left sensorimotor cortex, with
maximal activations in the premotor cortex, primary motor
cortex, and primary somatosensory cortex. This is in line with
previous studies showing that the strength of the sensorimotor
rhythm is inversely correlated with activity in motor and
somatosensory cortex [48]. The EEG activation pattern was
best approximated by a dipole in the left primary motor
cortex (right-most panel of Fig. 6). The EEG source was thus
estimated to be less than 2 cm away from the corresponding
fMRI activation in primary motor cortex and the best-fitting
dipole almost perfectly explained the mSPoC activation pattern
(v = 98 % explained variance).

VI. EXTENSIONS

In this section we discuss concepts to extend the methods
presented in the previous sections in order to incorporate non-
linear interaction and to robustify them. Note that, due to space
limitations, we only exemplified these concepts here, rather
than working out the details of these extensions for all analysis
approaches.

A. Nonlinear interactions

In many real-world settings, the interaction between ob-
servables (and non-observables) is of nonlinear nature. These
relations are thus not adequately modeled by methods that
assume linear relations, such as regression or CCA, for exam-
ple. Here we discuss some approaches to deal with non-linear
interactions.

1) Nonlinear mapping and explicit modeling of non-linear
interaction: A simple but efficient trick is to map the data
into a nonlinear feature space and apply the linear approach
therein, assuming a linear relationship between the nonlinearly
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Fig. 6. Application example of mSPoC. Bandpower modulations of EEG were fused with simultaneously measured fMRI in a motor task (transient right
hand movement). EEG was bandpass filtered to amplify oscillations in the β band (16 Hz to 25 Hz). The left panel shows the sensor space activation pattern
of the EEG mSPoC component and the middle panel shows the fMRI activation pattern of the corresponding mSPoC component. These components were
identified based on task-induced co-modulation of amplitude dynamics in the EEG and the time-course of BOLD dynamics in the fMRI. The right panel
shows an estimate of the source-space pattern of the EEG component based on the the sensor space pattern, computed using the the MUSIC algorithm [58].
See main text for further discussion.

transformed variables. While this approach is often successful,
it does come with certain caveats – in particular in light of the
reviewed duality between filters and patterns and the source-
space localization of sensor-space patterns.

As an example, let us re-visit the SPoC setting. In this
setting we assume co-modulation between a target variable
z and the bandpower of a component in the data. Note that
computing bandpower is a nonlinear feature of the oscillatory
signal. However, here it is wrong to first compute bandpower
at each recording channel and then try to find a projection
using linear regression. Let φ(X) denote the data matrix
in which bandpower time-courses have been computed for
each recording channel. If regression is applied to find a
filter w such that w>φ(X) maximally co-modulates with
z, then the spatial pattern that corresponds to w cannot be
source localized. Therefore, it is more appropriate here to
explicitly model the nonlinearity in the objective function
and compute power on the temporal signature of the to-be-
extracted component, as is the case in SPoC and mSPoC.

We quantify this notion using a realistic simulation of EEG,
in which we compare the two approaches, i.e. (i) regression
on channelwise bandpower features (i.e. z ≈ w>φ(X)) and
(ii) source power co-modulation (i.e. z ≈ φ(w>X)). The
simulated EEG is generated according to the generative model
in Eq. (1). The target function z is chosen to be the bandpower
modulation of one of the simulated sources. Further details of
the simulation can be found in [99] and [133]. The results
are depicted in Fig. 7 as a function of sensor-space signal-to-
noise ratio. The SPoC approach yields better approximation
of the target function. More importantly however, the sensor-
space pattern of the SPoC component is more similar to the
true target component than is the case for the “power pattern”
obtained for regression. This is reflected by a better dipole fit
and less source reconstruction error for SPoC patterns.

Thus, while nonlinear mappings can be used to “linearize”
nonlinear relations, care has to be taken with respect to
interpretation of the model parameters. Explicit modeling of
nonlinearity, if feasible, may preserve interpretability.

Fig. 7. A simulation that illustrates potential problems with parameter
interpretation if the assumptions of the generative model are not respected.
In this EEG simulation the task was to extract a bandpower signal that co-
modulates with a given target function z. The target signal corresponds to
the true amplitude modulation of one of the simulated source components.
Regression was applied to channelwise computed bandpower φ(X) and
estimated z as φw = w>φ(X). SPoC was applied to the sensor signal
and estimated z as φw = φ(w>X). Sensor-space patterns were obtained for
both methods using Eq. (4). Note that φ(w>X) 6= w>φ(X) because the
computation of bandpower is a nonlinear operation. The left panel shows that
SPoC yields better estimation of the target variable, compared to regression.
More importantly, the resulting sensor space patterns show high similarity
with the pattern of the true source only in the case of SPoC (middle panel).
Source localization of the sensor-space patterns using dipole fitting reveals that
SPoC patterns can be well explained by dipoles that are close to the location
of the true simulated dipole (right panel). The simulation were repeated with
new data 100 times for each signal-to-noise ratio (SNR). The results shown
were obtained on test data that was not used to train (i.e. to optimize the
parameters of) the algorithms. Lines correspond to means over repetitions,
errorbars to 10 · SE.

2) The kernel trick: Another approach to extend the pre-
sented methods to nonlinear domains is based on the so-
called kernel trick [134], [135]. The essence of this trick is
to implicitly map the variables into a higher (possibly infinite)
dimensional feature space F and to apply the linear machinery
there. Practically, this can be achieved by substituting the lin-
ear inner product in the original formulation of the algorithm
by kernel functions k(·, ·) which represent inner products in
feature space

k(x,y) = 〈ξ(x), ξ(y)〉F (38)

Thus the resulting algorithm can be interpreted as running
the original algorithm on the (nonlinearly) mapped objects
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ξ(x) and ξ(y). The choice of the kernel largely influences the
algorithm’s ability to model particular types of nonlinearity.
A popular kernel which works very well in practice is the

Gaussian kernel k(x,y) = e−
||x−y||2

2σ2 .
Many algorithms have been “kernelized” including PCA

[135], CCA [127], FDA [136], [137] and ICA [138]. For kernel
CCA one can show that the objective is of the same type as
the one in Eq. (32), but the covariance matrices are substituted
by kernel matrices which implicitly model the correlation
between variables in feature space. Mathematically, the kernel
CCA filters are obtained by solving the following generalized
eigenvalue problem[

0 Kxy

Kyx 0

] [
Wx

Wy

]
= Λ

[
Kx 0
0 Ky

] [
Wx

Wy

]
, (39)

where k(xi,xj) is the ij-th element of Kx and the other kernel
matrices are defined analogously.

3) Higher moments: A third avenue towards nonlinearity
is based on the analysis of higher moments. Since many
factor models we discussed use second-order moments to
measure relationships between variables, they implicitly as-
sume Gaussianity and linear mappings. By considering higher
moments, however, this restriction is relaxed. One popular
higher moment based measure of dependency is the Mutual
Information (MI), introduced in Eq. (17).

With this measure the correlation in objective function of
(nonlinear) CCA can be replaced by MI and formulated as

max
wx,wy

DKL(p(w>x X,w
>
y Y) || p(w>x X)p(w>y Y)) (40)

The authors of [139] showed that when p is the Gaussian dis-
tribution, then the divergence formulation in Eq. (40) reduces
to the CCA problem introduced in Section V-B. In the general
case the Mutual Information based version of the algorithm
considers nonlinear dependencies and can not be solved as
generalized eigenvalue problem. The authors of [139] pro-
posed an algorithm based on kernel density estimation for
solving this type of optimization problems.

B. Robustifying

Finally we address the issue of robustifying the presented
approaches against the tendency to overfit and the adverse
impact of outliers. Since factor models such as the ones
discussed in this paper maximize an objective on a dataset
with finite (sometimes very small) sample size, they do not
necessary find a solution which works well in general but a
solution which is optimal (with respect to some possibly non-
robust error measure) on the particular dataset. This poses
a severe problem especially when analyzing neuroimaging
data because generalization is a key property of neurophys-
iologically meaningful solutions. The lack of generalization is
termed overfitting and may have two reasons.

First, overfitting occurs when the complexity of the solution
is too high relative to the sample size. In other words,
there is not enough data to reliably fit the complex model.
One way to avoid the overfitting problem in this case is to
restrict the complexity of the solution [140], e.g., by adding a
regularization term to the objective function of the algorithm

[141]. One popular choice, the Tikhonov regularization term
[142], penalizes the complexity of the solution. Tikhonov
regularization is often called L2-norm regularization, which
refers to the mechanism used to stabilize the algorithm. The
key idea is to impose a penalty on the euclidean norm (i.e.
the L2-norm) of the subspace to be found. This penalty
can be easily incorporated into the standard formulations of
most algorithms discussed above by adding a ridge to the
diagonal of the covariance matrices, hence the regression case
of Tikhonov regularization is often called ridge regression. The
solution obtained by Eq. 20 becomes in the case of Tikhonov
regularization

w =
(
XX> + Iλx

)−1
Xz>, (41)

where λ controls the amount of regularization, the higher, the
smaller the norm of w will be. Effectively this smaller norm
constraint will lead to more similar and smaller coefficients of
w. Taking a probabilistic perspective on the regularized least
squares regression setting, it is easy to derive, that the amount
of regularization translates directly into the noise assumed
to be present in the data, see e.g. [93]. Analogously in the
case of CCA, the L2 regularized version of CCA results in a
generalized eigenvalue equation just like in Eq. 32, with the
slight modification that a ridge of height λx, λy is added to
the covariance matrices on the right hand side of the equation,
such that

[
0 Cxy

Cyx 0

] [
Wx

Wy

]
=

Λ

[
Cx + Iλx 0

0 Cy + Iλy

] [
Wx

Wy

]
, (42)

where λx, λy are the regularizers for each modality, re-
spectively. For an introduction to the relationship between
standard CCA and regularized CCA see [143]. Similarly to the
case of regression, also in regularized CCA the regularization
constants are proportional to the amount of noise assumed in
the data, see for instance [118].

Next to these simple cases of euclidean norm constraint
regularizations, there is a spectrum of other approaches to
regularize the solutions of factor models. Many approaches
impose a mixture of L2 and L1 norms, this is often referred
to as elastic net regularization. Other methods penalize the L1

norm of the factor subspace or on the sources themselves. This
approach is popular in the dictionary learning community, see
e.g. [144], [145]. More sophisticated regularization schemes
impose structured sparsity constraints on the solution [146].

Other regularization strategies minimize nonstationarity
[147], apply shrinkage [55], early stopping [148], weight decay
[149] or asymptotic model selection criteria [150] have also
been successfully used in the past.

Another reason for overfitting are outliers. If an analysis
model is parametric, i.e., assumes a particular distribution of
the variables and requires parameter estimation, the presence
of outliers deviating from the assumptions may heavily bias the
solution. Robust parameter estimators such as M-estimators
[151] can minimize the impact of outliers and largely improve
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the quality of the solution. For algorithms that can be formu-
lated as divergence maximization problems there exist also
an alternative way of reducing the impact of outliers, namely
the usage of robust divergence. For instance, the objective
function presented in Eq. (40) can be significantly robustified
when using Beta divergence [152] instead of KL-divergence.
This robustification strategy has been applied to CCA [139],
[153] and to other algorithms such as Common Spatial Patterns
[154], [155], and Independent Component Analysis [156].

VII. DISCUSSION AND CONCLUSION

late fusion scenarios

features
of interest

amplitude modulations
of oscillatory sources

ERPs, hemodynamics

suggested
methods

SPoC, CSP, ICA, PCA Regression, GLM,
LDA, ICA, PCA

early fusion scenarios

features
of interest

amplitude modulations
of oscillatory sources +
hemodynamics

ERPs + hemodynamics

suggested
methods

mSPoC CCA/PLS, jICA

TABLE II
SUGGESTIONS FOR WHEN TO CHOOSE WHICH OF THE METHODS WE

DISCUSSED.

Multimodal data contains a wealth of information that
reflects different aspects of underlying physical processes.
While it may appear very promising to capture multiple
characteristics of such a process, a number of challenges
have to be addressed to make practical use of the multimodal
data sources before we can finally fuse them to obtain more
accurate results and better insight. Data sources to be fused
will inevitably contain different signal-to-noise characteristics,
a different percentage of outliers, the spatial and temporal sam-
pling as well as the dimensionality may disagree, moreover,
the underlying physics may give rise to a high variability in
how the modalities might be coupling (e.g. linear vs. non-
linear) and finally, multimodal analysis tools may in practice
only be useful if they can be interpreted and thus allow better
understanding. We have contributed here by placing these
generic challenges of multimodal data analysis into the context
of neuroimaging and reviewed a set of tools that we consider
of practical use.

The following enumeration summarizes how these chal-
lenges are addressed by the methods presented in this paper.

Spatio-temporal sampling: Different spatial and temporal
resolution can be addressed by computing PCA or ICA along
either the spatial or the temporal dimension, depending on
which dimension has a more favorable ratio of number of input
dimensions vs number of samples. This way, dimensionality
can be reduced to a set of components while preserving
relevant information and inference can be conducted in the
component space (sections IV and V).

Non-instantaneous coupling: Temporal embedding, as
was shown for tkCCA [127], can model non-instantaneous
interactions. Alternatively, time-lagged interactions can be
modeled explicitly by including a convolution operator in the
model as is the case in mSPoC [130] (sections V-B and V-C).

Nonlinear coupling: The kernel trick (cf. [157], [135],
[134]) can be applied in order to model nonlinear interactions,
thereby mapping input variables into a feature space in which
the interaction is more linear. Alternatively, a similarity rela-
tion can be employed that does not assume linear relations.
One example is mutual information (section VI).

Signal-to-noise and robustness: Robust estimates of
model parameters can be achieved by regularization [158],
[159] or, alternatively, by using robust divergences such as
beta divergences [154], [155]. All backward models discussed
here are inherently multivariate, which means they integrate
information from all recording channels by means of filters
and thus yield higher SNRs than univariate approaches (sec-
tion VI).

Interpretation and source localization: For filters ob-
tained from backward models, corresponding activation pat-
terns can be obtained by virtue of Eq. (4) [95], [55], [54]. This
makes their parameters interpretable in the context of gener-
ative forward models. When applying multimodal analysis it
should be emphasized that the underlying generative models
should be respected. That is, when studying correlations or
nonlinear couplings these should be computed in source space,
as reviewed in the context of SPoC/mSpoc (see section IV-B2)
[99]. Failure to respect the underlying generative models may
lead to systematic estimation errors, loss of robustness and
also to inaccuracies in localization of the results of multimodal
analysis (sections III-D, III-E, and VI as well as Fig. 7) .

Note that throughout this paper, we have used the term
multimodal in the context of multiple measurement modalities.
However, the term could also be interpreted in a wider sense,
namely that the data to be fused may come from different
sources, irrespective of the physical measurement modality.
For example, multimodal models may be used to combine
information from different subjects or experiments. The in-
vestigation of inter-subject-correlations (ISC) [160], [161],
[162], [163] or hyperscanning [164], [165] in the context of
social neuroscience are actively researched fields. Here, the
application of multivariate fusion techniques such as the ones
reviewed in this paper, have the potential to increase under-
standing of the involved cognitive processes, as for instance
in [124], where the authors used CCA to extend the concept
of ISCs to that of canonical-ISCs in order to investigate the
neural underpinnings of 2D vs 3D perception. Similarly, an
extension of the SPoC technique presented in [133] allows to
asses inter-subject-envelope-correlations of neural oscillations.

We would like to point out that the methods reviewed here
can (and perhaps should) be combined for the synthesis of
new and improved analysis approaches. mSPoC [99] can be
considered an example for this, because it combines the ideas
of SPoC and CCA. Further examples are the combination of
CCA with jICA presented in [166] or the combination of jICA
with PCA presented in [167]. This shows that the fusion of
analysis approaches can be just as fruitful as the fusion of
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multiple data modalities.
Given the multitude of analysis approaches available, the

most relevant question for the practitioner is of course which
method to choose. Unfortunately there is no unique answer to
this, because it depends on (i) the preferred analysis scenario
(e.g. late fusion vs early fusion), (ii) the assumptions being
made about the data (e.g. what type of coupling between
modalities), (iii) the features of interest in the analysis (e.g.
spectral features or time-domain features), (iv) what additional
information is available (e.g. condition/class labels), and other
aspects. However, in order to narrow down the possible choices
we present a systematic overview over the methods presented
in this paper in table II.

While this work has reviewed a number of generic tools
for multimodal data analysis in neuroimaging, the authors
firmly believe that these analysis techniques are applicable
beyond the realm of neuroscience, where similarly structured
challenges are known to occur. For example in social media
analysis vast communication statistics are being recorded,
here, tkCCA has allowed to fuse geostatistical information
and tweet patterns to quantify the information spread of news
[168].

A number of open problems remain: If the data is nonsta-
tionary (cf. [169], [147]), how can we extract similar types of
stationary or non-stationary processes from multimodal data
sources? How can symbolic modalities be combined with
other continuous measurements, in particular in the context of
non-sampling errors? How can we perform causal inference
across modalities? And, finally – here transfer learning and
multimodal data analysis become very related – how can
multiple trained models be of use for enhancing the statistical
power of multimodal data.
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[59] M. S. Hämäläinen and R. J. Ilmoniemi, “Interpreting magnetic fields
of the brain: minimum norm estimates,” Medical & Biological Engi-
neering & Computing, vol. 32, pp. 35–42, 1994.

[60] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution
electromagnetic tomography: a new method for localizing electrical
activity in the brain,” International Journal of Psychophysiology,
vol. 18, pp. 49–65, 1994.

[61] B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki,
“Localization of brain electrical activity via linearly constrained min-
imum variance spatial filtering,” IEEE Transactions on Biomedical
Engineering, vol. 44, no. 9, pp. 867–880, 1997.

[62] J. C. Mosher and R. M. Leahy, “Source localization using recursively
applied and projected (RAP) MUSIC,” IEEE Transactions on Signal
Processing, vol. 47, no. 2, pp. 332–340, 1999.

[63] J. Gross, J. Kujala, M. Hmlinen, L. Timmermann, A. Schnitzler, and
R. Salmelin, “Dynamic imaging of coherent sources: Studying neural
interactions in the human brain,” Proceedings of the National Academy
of Sciences, vol. 98, no. 2, pp. 694–699, 2001.

[64] S. Haufe, V. V. Nikulin, A. Ziehe, K.-R. Müller, and G. Nolte,
“Combining sparsity and rotational invariance in EEG/MEG source
reconstruction,” NeuroImage, vol. 42, pp. 726–738, Aug 2008.

[65] L. Ding and B. He, “Sparse source imaging in EEG with accurate
field modeling,” Human Brain Mapping, vol. 29, no. 9, pp. 1053–1067,
2008.

[66] S. Haufe, V. V. Nikulin, A. Ziehe, K.-R. Müller, and G. Nolte, “Esti-
mating vector fields using sparse basis field expansions,” in Advances in
Neural Information Processing Systems 21 (D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, eds.), pp. 617–624, Cambridge, MA: MIT
Press, 2008.

[67] S. Haufe, R. Tomioka, T. Dickhaus, C. Sannelli, B. Blankertz, G. Nolte,
and K.-R. Müller, “Large-scale EEG/MEG source localization with
spatial flexibility,” NeuroImage, vol. 54, pp. 851–859, 2011.

[68] A. Gramfort, D. Strohmeier, J. Haueisen, M. Hämäläinen, and
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