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Abstract—Brain-computer interfaces (BCIs) are successfully
used in scientific, therapeutic and other applications. Remaining
challenges are among others a low signal-to-noise ratio of neural
signals, lack of robustness for decoders in the presence of
inter-trial and inter-subject variability, time constraints on the
calibration phase and the use of BCIs outside a controlled
lab environment. Recent advances in BCI research addressed
these issues by novel combinations of complementary analysis
as well as recording techniques, so called hybrid BCIs. In this
paper, we review a number of data fusion techniques for BCI
along with hybrid methods for BCI that have recently emerged.
Our focus will be on sensorimotor rhythm-based BCIs. We will
give an overview of the three main lines of research in this
area, integration of complementary features of neural activation,
integration of multiple previous sessions and of multiple subjects,
and show how these techniques can be used to enhance modern
BCI systems.

Index Terms—Brain-Computer Interface, data fusion, multi-
modal, hybrid BCI, EEG, NIRS, zero-training, mutual informa-
tion

I. INTRODUCTION

RAIN-COMPUTER interface (BCI) studies have tradi-

tionally focussed on predicting brain states in single
subjects and single feature types in isolation. Although this ap-
proach has been very productive and gave rise to a spectrum of
interesting research directions and applications [[1] [2], [3], [41,
[S1, (6, [7]], there were clear limits of this approach: Analyzing
just a single aspect or in technical terms a particular feature
set in a neural recording may miss important information, for
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example only looking at event-related potentials (ERPs) or
parts of the frequency spectrum would be insufficient to cap-
ture, say, a preparatory potential. In addition salient features
can differ from subject to subject, from day to day, sometimes
even from trial to trial. These challenges are among the prime
reasons why statistical learning methods have become very
popular in BCI research: Instead of specifying features a
priori, machine learning methods are used to extract signals
of interest automatically and could thus improve the decoding
accuracy significantly. Nonetheless there are still limits of
current state-of-the-art BCI systems that restrict their wide and
robust application in clinical and non-clinical contexts. The
signal-to-noise ratio of neural recordings is rather low [8]], [9]],
[10[, [L1], which is in part due to the high inter-subject and
inter-trial variability [12], [[13]], the limited amount of training
data available, measurement noise, artifacts from paradigms
and/or subject movements. In recent years BCI researchers
started to explore novel strategies in order to overcome these
limitations and to increase information transfer rates as well
as robustness of brain state decoders.

One such novel approach to BCI is driven by combinations
of complementary recording and analysis strategies. This ap-
proach is called hybrid BCI and was originally defined by the
authors of [[14] as a BCI system that must fulfill the following
four criteria: (i) The system must rely on brain signals, (ii)
it must be based on at least one brain signal that the user
can intentionally modulate, (iii) processing must occur in real-
time and (iv) feedback must be provided to the user. The
second criterion is often interpreted to mean more than one
brain signal, which directly leads to the problem of how to
optimally integrate multiple signals in order to derive a single
control signal. In sequential hybrid BCls, this task is overcome
by switching between different BCI systems such that only
one signal source drives the BCI at any given time, while
simultaneous hybrid BCIs are based on concurrent processing
of different inputs. In principle, both types of hybrid BCIs
can benefit from a segment of machine learning that is called
data fusion, because it subsumes techniques that combine
information from multiple signal sources as well as associated
databases [15], [16]].

Typical signal combinations employed in hybrid BCI set-
tings are electroencephalography (EEG) and electromyo-
graphy (EMG) [17], [18], event related desynchronization
(ERD) signals and steady state visually evoked potentials
(SSVEP) [19], [20], [21], ERD and P300 [22]], combination of
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SSVEP with the heart-rate [23]], or near-infrared spectroscopy
(NIRS) and EEG [24] among others.

In this article we examine techniques of combining multi-
ple information sources in general, such as several sessions,
several subjects or several underlying physiological processes.
The success of complementary recording concepts in BCI is
in line with their popularity in neuroimaging in general. In
the last decades, combinations of multiple modalities have
provided important insights into neural processing [25]], [26],
[27]. Combinations of data from multiple subjects enabled
researchers to explore novel research directions, in which
traditional methods fail as the stimuli used are too complex to
be modeled with traditional regression techniques [28]], [29].

In this review we will give an overview over the current
state-of-the-art in BCI research with a focus on data fusion
techniques for sensorimotor rhythm-based (SMR) BCIs. In
order to provide a broad overview we do not limit our
discussion to studies that fit the definition of hybrid BCIs as
given above. Instead we will cover research on data fusion in
the context of BClIs that is based on:

1) Different types of features:
Traditional BCIs have used only particular features
known to reflect certain cognitive processes, such
as EEG bandpower in a specific spatial location
or frequency band. Combinations of features from
multiple frequency bands and spatial locations can
increase information transfer rates.

2) Multiple sessions and subjects:
BCIs need a calibration phase to find features of
interest. But these features can change over sessions.
We review statistical learning techniques leveraging
data from multiple sessions and subjects to increase
robustness and reduce training time of BCIs.

3) Multiple imaging modalities:

Brain activity can be measured by different techniques,
e.g. changes in electromagnetic fields induced by neural
discharges are picked up by EEG electrodes — but
the energy demand of brain cells is not necessarily
reflected in EEG recordings. However some aspects of
brain metabolism can be monitored using near infrared
spectroscopy (NIRS). It is here where we find hybrid
BCI studies.

The neuroimaging approaches enumerated above have a
number of benefits. In the case of multiple modalities this
is most obvious: each individual neuroimaging method suffers
from particular limitations; EEG has high temporal resolution
but due to volume condition of the head it has rather low
spatial resolution; hemodynamic measurements as obtained
from functional magnetic resonance imaging (fMRI) or NIRS
can have high spatial resolution and measure changes in
metabolism that EEG is blind to, but these measurements
suffer from the delay of the vascular response limiting its
temporal resolution. Combining these complementary sources
of information, it becomes possible to partly overcome these

limitations of single modalities [30], [31], [24].

II. BRAIN-COMPUTER INTERFACING REVISITED

BClIs are based on volitional control of neural activity. Neu-
ral activation is reflected directly in electrophysiological sig-
nals and indirectly in terms of the metabolic response of neural
activation, most importantly changes in blood-oxygenation,
so called hemodynamic signals. Mentally controlled localized
changes in neural activity can be measured invasively and
non-invasively. Although invasive recordings can offer higher
signal-to-noise ratio, non-invasive recordings bear fewer risks
and are thus often preferred in BCls, in particular for healthy
human users. In the following we review a small number of
signatures of neural activity that are typically used in non-
invasive BClIs.

A. Electrophysiological Signatures Used for BCls

1) Sensorimotor Rhythms: One popular paradigm for vol-
untarily inducing different brain states is based on the mod-
ulation of sensorimotor rhythms. The p-rhythm (10-12 Hz)
and synchronized components in the 5-band (16-22 Hz) are
macroscopic idle thythms that prevail over the postcentral so-
matosensory cortex and precentral motor cortex, when a given
subject is at rest. Imaginations of movements as well as actual
movements, e.g. with the right or left hand or foot, are known
to suppress these idle thythms contralaterally. This change in
neural oscillation is also known as the ERD/ERSH effect [32]
and can be detected on single-trial basis when applying state-
of-the-art machine learning and signal processing methods.

2) Slow Cortical Potentials: Non-oscillatory physiological
signals that are related to movement preparation/execution are
the so-called slow cortical potentials (SCP) [33], [34]. SCPs
are negative deflections of the EEG prior to the onset of limb
movement and are also referred to as readiness potential (RP)
or contingent negative variations (CNV) [335] in the literature.
Interestingly, the cortical generators — and thus the spatial
topography as well as the spatio-temporal dynamics — of SCPs
are quite different from sensory motor rhythms [36], [37].
The resulting potential for additional information about the
brain state of the BCI user makes SCPs a prime candidate for
combination with SMR features.

B. Hemodynamic Signatures for BCI

Brain activations are changes in membrane potentials of
neurons. In order to restore their resting state potentials,
neurons consume energy, which is provided by nearby blood
vessels. The induced localized changes in oxygen are an often
used indirect measure of neural activity. Oxygenated blood
has different light absorption and magnetic properties, which
can be measured with optical and fMRI, respectively. While
fMRI offers an exquisite spatial resolution and is successfully
used for BCIs [38], the application of fMRI technology in
many contexts is somewhat difficult, due to the size of the
recording equipment. For BCIs used in everyday settings, near-
infrared spectroscopy (NIRS) is a popular alternative to fMRI,
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Fig. 1. Data fusion techniques can be applied in BCI systems that either integrate complementary features of neural activation, utilize data from previously
recorded sessions and additional subjects or combine the advantages of multiple imaging modalities. The main goal is to reduce calibration times, improve
classification accuracy, increase robustness or improve the BCI system performance according to other measures. The combination of multiple EEG features

or multiple neuroimaging modalities lies at the heart of hybrid BCI approaches.

as it is a relatively simple and cheap way of measuring blood
oxygenation non-invasively. Hybrid BCI studies have shown
that these measurements can yield information about neural
signals that is complementary to electrophysiological signals
obtained with EEG measurements.

III. INTEGRATION OF MULTIPLE FEATURES
A. Multiple frequency bands

A simplistic approach would be to compute features in one
specific frequency band at a single spatial location, selected by
looking at previous studies which showed that certain cognitive
processes of interest are associated with this particular feature.
This approach can be suboptimal. Motor imagery causes the
macroscopic idle rhythms to desynchronize. However, the
exact frequency range of this ERD effect is highly subject-
dependent and needs to be estimated. Already very early BCI
research showed that the estimation of a subject-depedent
frequency range leads to highly beneficial classification ac-
curacies [39], [40], [41]. A number of strategies have been
proposed for the successful estimation. Some more recent
methods include a heuristic [42], [43]], filter-banks [44], [45]
and a probabilistic Bayesian framework [46], [47]. The filter
bank CSP (FBCSP) algorithm [44] computes CSP features
in various frequency bands and applies a feature selection
method in order to identify the most informative bands.
Several strategies have been proposed for this task, among the
most common is the mutual information-based best individual
feature algorithm (MIBIF) [44]], [48]. An extensive evaluation
of this algorithm on two BCI data competition IV data sets has
recently demonstrated that a data fusion BCI approach based
on integration of multiple frequency bands significantly out-

performs single-feature systems in terms of classification ac-
curacy [49]]. In contrast to the FBCSP algorithm, the Bayesian
framework [46] does not rely on predefined filter banks (which
may be chosen suboptimally), but directly constructs discrim-
inative features in a data-driven manner. Mathematically, this
approach models the frequency band as a random vector and
applies particle-based approximation methods to maximize its
posterior probability.

B. Multiple spatial locations

EEG measurements are known to have a very high tem-
poral resolution, but poor spatial resolution due to volume
conduction. Combining EEG features from multiple spatial
locations can reverse the volume conduction effects to some
degree. Such spatial filters for band-power features computed
in narrow frequency bands are the basis for classification in
SMR-based BCI systems. Using a z-transform notation for
digital signals, for any trial, the band-power is computed as

y(2) = var[W " H(z) x(2)] (D

where var[-] denotes the variance operator, x is the raw EEG
signal, H(z) is a diagonal matrix of identical band-pass filter
transforms and the columns of matrix W represent spatial
filters. A popular technique for computing spatial filters is
termed Common Spatial Pattern (CSP) [42], [50], [S1], [52]
and allows one to focus on spatial locations with the highest
ERD/ERS effect. Mathematically a CSP filter is a projection
that maximizes the variance of one class, while minimizing the
variance of the other class simultaneously. In order to compute
W the CSP algorithm jointly diagonalizes the covariance
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where [ is an identity matrix and D is a diagonal matrix with
entries d; (0 < d; < 1). As eigenvalue d; is equal to the power
ratio of signals of class 1 by class 2 in the corresponding
CSP filter (¢-th column of matrix W), best discrimination is
provided by filters with very high (i.e. near 1) or very low (i.e.
near 0) eigenvalues. Typically one would retain projections
corresponding to two or three of the highest eigenvalues d;,
i.e., CSP filters for class 1, and projections corresponding to
the two or three lowest eigenvalues, i.e., CSP filters for class
2. For a more detailed description of CSP and its application
to BCI we would like to refer the reader to [42].

The temporally and spatially filtered data may then be
classified by means of simple linear classifiers, such as linear
discriminant analysis (LDA). LDA assumes the classes to be
normally distributed with different means p; and p, but with
an identical covariance matrix X of full rank. Assuming these
quantities to be known, the hyperplane, given by the normal
vector w, can be calculated by:

w=X""(u — p2) 3

Given that these assumptions hold, the separating hyperplane
is Bayes optimal.

The above approach computes band-power in multiple spa-
tial locations (specified by different CSP filters), however,
it is based on one global (in the sense of all electrodes)
CSP computation. The authors of [53] extended this basic
approach and proposed to locally compute spatial filters,
termed CSP patches, for multiple locations. The integration
of features computed from local neighborhoods has several
important advantages such as robustness and has been shown
to outperform the global CSP baseline.

C. Multiple physiological processes

Although extracted both from EEG recordings, SMR and
SCP features are very different and often analyzed indepen-
dently. Perhaps the first successful attempt to combine SMR
and SCP feature was reported in [54], in the context of the
BCI competition 2003. The authors used a simple classification
approach (LDA), which was trained on the concatenated
feature vectors of gamma band activity and slow cortical
activity from only two EEG channels each. The proposed
approach outperformed classifiers based solely on features of
either domain.

Dornhege et al. [S5] then systematically investigated sev-
eral fusion strategies to combine SMR features (extracted
by standard CSP) with features obtained from SCP. Based
on an independence assumption between the two involved
physiological processes and modeling the extracted features
using Gaussian distributions, the Bayes optimal classifier was
derived. Using this classifier, performance gains (measured via
information transfer rate (ITR)) of up to 50% were achieved
in offline analysis, outperforming classifiers based only on
SMR or SCP alone, as well as outperforming the simple

feature concatenation approach presented in [54]. The results
presented in [S35]], were then replicated by the authors of [S6],
which underlines the potential increase in BCI performance
that can be achieved by using machine learning to optimize
the combination of SMR and SCP features.

Most recently, a BCI framework that employs integration of
SMR (multiple frequency bands), beta rebound, as well as SCP
features was presented in [57]. This study was conducted with
severely motor-impaired patients. Thus, a strong emphasis
was placed on high flexibility of the BCI processing system
in order to quickly adapt it to the requirements of each
individual participating patient. Multiple oscillatory features
of several frequency bands were automatically combined into
a single classifier output. In a concurrent processing stream,
the spatial-temporal features of the SCPs were channeled into
a separate classification output. The classifier outputs of the
two physiological processes were then combined by a meta
classifier.

When a user recognizes an erroneous system response,
a so-called error related potential (ErrP) can be detected
by the EEG [38], [59], [60], [61]. Detecting this ErrP in
real-time feedback sessions allows to improve the robust-
ness and speed of EEG-based communication. The ErrP
has initially been successfully detected in choice reaction
tasks [61], [62], [63], [64], but also for BCI related paradigms,
such as motor imagery [63]], [66], ERP-based spelling [67]
and more recently for neuroprostetic applications, such as
controlling an artificial arm [68]].

In summary, multiple physiological processes, such as
ERD/ERS, SCPs as well as ErrPs can occur during real-time
motor imagery feedback sessions. Ideally all these processes
are monitored and their information combined for optimal
feedback performance. Another recent line of research has
focussed on combining multiple feedback paradigms, each of
which depending on different physiological processes. Here
the subject needs to focus on two (or more) mental tasks
simultaneously. The combination of an SMR-based paradigm
with SSVEP has previously been employed for the application
of a brain switch [19], [69]. While the SSVEP signal quality
remained unchanged, it lead to impaired ERD effects [20].
Nonetheless, the authors of [20], [21] find that this type of
hybrid approach is beneficial for the majority of subjects,
especially for those with poor prior classification accuracy
(so-called BCI illiterates or weak BCI performers [70], [[71]).
A number of researchers have also looked into the pos-
sibility of combining motor imagery with a P300 based
paradigm [72], [22], [73] for applications such as 2D cursor
control and wheelchair operation, among others.

IV. INTEGRATION OF MULTIPLE SESSIONS AND SUBJECTS

In recent years a number of approaches have been es-
tablished, that enable users to start a high-speed BCI feed-
back session without the need of recording any calibration
data [44], [48], [74], [73], [76]. These so-called zero-training
BCI systems have large advantages for patient studies where
any additional recording session is associated with significant
costs and patient effort. Apparently many other applications,



e.g. computer games, also benefit from off-the-shelf BCI
technology that works with any user at any time. Besides
the development of zero-training BCI systems there are also
other reasons why one would profit from integration of data
from multiple subjects and sessions, e.g. robustness to artifacts
and nonstationarity. The following paragraph will review a
number of recent approaches that improve robustness and
reduce calibration time leveraging data from multiple subjects
and sessions.

A. Session-to-session transfer

The first of such approaches aimed at reusing spatial filters
from previous sessions of the same user, a so-called session-
to-session transfer [[74]. Since CSP filters are subject-specific,
similar filters should be found across different sessions for a
given subject. It can be assumed that regions with a high den-
sity of CSP filters, so-called clusters, contain examples which
are particularly stable and informative across sessions [77],
[78]). Since CSP filters are solutions to a generalized eigenvalue
problem and any multiple of the eigenvector is also a solution,
it is therefore sufficient to consider only normalized CSP filters
on the (C — 1) dimensional hypersphere [74]. The CSP space
is inherently non-euclidean and an appropriate metric between
two columns w; and w, of a CSP filter matrix W is the angle
between the two lines these vectors form:

Wlw2) 4)

m(wy, Wy) = arccos (
(Wl [we

These distances can then be used to find clusters within the
CSP filter space. Points that are located at cluster centers can
then be selected as typical CSP filters by using a so-called
~-index [74].

An alternative approach to construct session-independent
spatial filters is based on regularization. The authors of [79]
recently proposed a divergence-based framework for spatial
filter computation and showed that different regularization
schemes can be easily implemented within this framework.
Mathematically spatial filter computation reduces to the fol-
lowing maximization problem:

argmaxy (1 —A)D (z; || z2) — AA ®)
and To N (0, WTZQW)

where A is a regularization term, A is a trade-off parameter,
D(p || q) is a symmetric divergence between probability
distributions p and ¢ and NV (0; W TXW) denotes a zero mean
Gaussian distribution with covariance matrix W 7T XW. The au-
thors of [79] prove that this formulation reduces to CSP when
using symmetric Kullback-Leibler divergence and A = 0.
Spatial filters can be computed solely on historical sessions
by setting A to 1 and using the following regularization term

A== DWW (0;WTS{W) ||V (0;WTSW))  (6)

where X! and X} are class-covariance matrices from the ith
historical session. The spatial filters maximizing the above

objective try to maximize the average ERD/ERS effect on the
historical recordings.

Unfortunately, this approach is not very robust to “outlier
sessions”, i.e. instead of finding spatial filters that work well
for the majority of the sessions one may obtain a solution
which works extremely well for few outlier sessions (e.g.
due to artifacts) but fails for the majority of other sessions.
By using a different divergence, namely the symmetric Beta
divergence [/9]], we can significantly robustify the solution.
Note that conceptually this approach is related to the clustering
method (which is also robust to outliers) that we presented
before.

Robust filters obtained with the above methods allow to
construct Zero-Training classifiers, which use calibration data
recorded days before the actual BCI experiment. However, for
optimal feedback performance the bias of the classifier needs
to be adjusted. Since the mental state of the user can be very
different during the feedback phase compared to the calibration
phase, also the non task related brain activity differs [80],
[81]], [82]]. The authors of [74] showed that by using the first
20 trials for bias adaptation one can construct zero-training
systems that show no significant difference in the feedback
accuracy compared to calibration-based systems.

Another approach to more robust spatial filters, the invari-
antCSP method [83]], aims to increase robustness to artifacts
such as eye movements or blinks by utilizing recordings from
a so-called artifact session. The spatial filters computed on
the calibration data are regularized away from activity which
occurs in the artifact session, i.e. when explicitly inducing
different types of artifacts in the EEG.

B. Subject-to-subject transfer

The previous section discussed session-to-session transfers.
With these type of algorithms is it possible for expert BCI
users to start feedback sessions without the need of recording
any prior calibration session. In the following section we will
review more recent algorithms that enable expert as well as
novice BCI users to start feedback sessions without any prior
subject-dependent calibration data.

For high-speed real-time feedback it is of paramount im-
portance to identify a subject-dependent optimal band-pass
filter. While a number of methods have been proposed, if
a calibration dataset is available [42], [43], [46], [47], these
cannot be applied when there is no calibration data present.
One possibility would be to choose a broad-band filter or one
that is centered around the p-rhythm, but previous work has
shown that any one specific filter will lead to sub-optimal
performance, if applied to a number of subjects [75]. An
alternative that has proven successful is an ensemble based
framework, which construct finite collections of individually
weak classifiers from potentially very large ensembles [84],
[I83]], [I86l. Here, a large number of basis functions are gener-
ated from a database of many subjects to generate a subject-
independent Zero-Training classifier [[73], [87], [88l].

Each dataset is first preprocessed by a number of predefined
temporal filters (i.e. band-pass filters) in parallel (see upper
part of Fig. [J). These temporal filters are chosen with prior



knowledge from neurophysiology: most of them lie within the
p-band, some in the [-band, some in between p and S-band
and one broadband 7 — 30 Hz filter is included. For each basis
function a spatial filter (CSP) as well as a linear discriminant
analysis (LDA) classifier is estimated. The appropriate weight-
ing of the basis functions is highly important for obtaining a
low generalization error on unseen subjects and needs to be
estimated only on the training data, termed leave-one-subject-
out (LOSO) cross-validation (see lower part of Fig. 2). In order
to ensure maximal interpretability ¢, regression with a £, norm
as a regularizer is chosen, which is known to lead to a high
level of sparsification [89], [90]:

arggl)in Z (hio(x) — y(x))?
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where ¢;;(x) € [—o0;00] is the continuous classifier output,
before thresholding, obtained from the session j by applying
the bandpass filter ¢, B is the number of frequency bands, .S
the complete set of sessions, X the complete data set, Sy the
set of sessions of subject k, X, the dataset for subject k, y(x)
is the class label of trial  and wfj in equation are the
weights given to the LDA outputs. The hyperparameter « in
equation (7) is varied on a logarithmic scale and multiplied
by a dataset scaling factor which accounted for fluctuations
in voting population distribution and size for each subject.
The dataset scaling factor is computed using c¢;;(z), for all
x € X \ X,. For computational efficiency reasons the hyper-
parameter can be tuned on a small random subset of subjects
whose labels are to be predicted from data obtained from other
subjects such that the resulting test/train error ratio is minimal,
which in turn affects the choice (leave in/out) of classifiers
among the basis functions. Following this methodology allows
to obtain a very sparse set of voting classifiers which perform
as well as standard, state-of-the-art subject calibrated methods.
While spatial and temporal filters can be estimated for unseen
subjects, the bias still needs to be set, prior to the start of an
online experiment. This could be done similarly as previously
discussed in Sec.

As explained in utilizing data from other subjects may
also be valuable for reasons such as robustness. The authors of
[911], 1921, [93]], [94] use other subjects’ data as regularization
target for covariance matrix estimation and demonstrate signif-
icant improvements when data is scarce. The authors of [95]]
jointly train the spatial filters of several subjects by applying a
multi-task learning algorithm. A Bayesian method for subject-
to-subject information transfer has been proposed in [96], [97].
An unsupervised BCI based on inter-subject information has
been proposed in [98]]. Finally, as mentioned before the authors
of [99]], [79] transfer information about nonstationarities in the

data between subjects.

C. Integration of multiple subjects in the absence of stimulus
information

An avenue that is less pursued and yet rather promis-
ing is the unsupervised training of subject-specific models
by integrating information from multiple subjects or from
multiple concurrent processes present in individual subjects.
Traditionally, neuroscientific studies, including BCI research,
need a target variable, in order to analyze brain activity.
In many settings, we cannot model this target variable. A
prominent example are complex stimuli, such as naturalistic
movies. Despite decades of research on the visual system, how
exactly a movie is processed, i.e. which stimulus features are
relevant for neural processes evoked by subjects watching a
movie, remain unclear. This is why analysis of brain data in
response to realistic stimuli is still an active area of research.
A popular approach to these kind of experiments is to assume
that whatever neural activity is evoked by complex stimuli, it
is fair to assume that the temporal signature of these neural
processes is similar across subjects. Using this assumption,
models can be trained to decode the mental states of subjects
exposed to complex stimuli without modeling the stimulus
explicitly.

Inspired by the works of [28]], the authors of [100], [LO1],
and [29] apply canonical correlation analysis (CCA) [102]], or
versions thereof, to find components in the neuroimaging data
that exhibit maximally correlated activation across subjects. In
these examples, part of the brain activity is correlated across
subjects because the subjects were exposed to the same stim-
ulus. Note that these approaches make no assumption about
the relation between stimulus and brain response. Relevant
components are extracted solely based on the assumption that
brain activity be consistent across subjects. This assumption
is formalized in the following objective function:

argmax = COIT (WXTX,WyTy), )

Wx,Wy

where x and y are data points which can be from two subjects
who were exposed to the same stimulus, or data from a single
subject but from two separate expositions to the same stimulus
(e.g., two viewings of the same movie). The coefficients of
w, and w, are optimized such that the projections w, 'x
and w, ' x yield maximal (positive or negative) correlation.
The objective presented in Eq. () can be transformed into
a generalized eigenvalue problem and thus solved efficiently
using standard software packages.

In the studies presented in [[100] and [[101]], the authors con-
strained w, and wy, to be identical. Using this variant of CCA,
the authors were able to extract physiologically meaningful
components from ongoing EEG activity of several subjects
who viewed the same movie stimuli. Interestingly, peaks in
time-resolved intra- and inter-subject-correlation between the
extracted EEG activity co-occurred with arousing moments in
the movie stimuli and thus point to markers of emotionally
laden attention. In a follow-up study on expression of interest
in television programs, the authors of [101] were able to show
a strong correspondence between inter-subject-correlations on
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the one side and social media activity as well as audience
ratings on the other. Using hemodynamic signals obtained by
functional magnetic resonance imaging and a methodology
based on CCA, the authors of [29] show that inter-subject-
correlations are predictive of the degree of immersion and thus
a marker of how strongly a stimulus is experienced by human
observers. Taken together, these findings lay the foundation for
Brain-Computer Interfaces and mental state monitoring based
on correspondence between signals of groups of subjects,
rather than individual subjects.

A nonlinear version of canonical correlation analysis is
the recently developed canonical source power correlation
analysis (cSPoC, [103]). Similar to CCA, cSPoC finds a
set of spatial filters that maximize a correlation coefficient.
However, the crucial difference between CCA and cSPoC is
that in case of cSPoC, the correlation coefficient is not defined
between the projected signals but between nonlinear functions

thereof. Specifically, cSPoC optimizes the correlation between
the envelopes of the projected signals, which is useful if
the recorded data is of oscillatory nature and the changes
in spectral properties are the informative aspects. The cSPoC
objective reads:

argmax = Cy - COIT ((I)(WXTX), ‘D(WyTy)) , (10)

Wx; Wy
where x and y are band-pass filtered multivariate datasets, the
constant ¢,, € {+1, —1} decodes whether positive or negative
correlations are desired and the function ®(-) represents the
envelope of its argument.

The structure of classical SMR-based BCI paradigms in-
duces negative correlations between the spectral power of brain
rhythms. This is due to the fact that ideally during a given
trial only the neural source coding for the desired class of
this trial should exhibit an ERD/ERS, while the neural source
coding for the other class should be in an idle state, and vice-
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versa for trials of the other class. The authors of [103]] make
use of this fact to show that relevant physiological sources
can be extracted from the EEG even without knowledge of
class labels. Instead, they optimized spatial filters using the
cSPoC objective in Eq. (I0) to maximize negative correlations
between the envelopes of the extracted components. Figure
shows the three most class-discriminative components ob-
tained with CSP and cSPoC from a representative subject.
The resulting components bear strong similarity with those
obtained from standard CSP (which requires label information)
and yield comparable — though not improved — classification
accuracy in a population of 80 subjects. Nonetheless, these
results point to an interesting alternative approach in order
to extract oscillatory neural sources that can drive a BCI
application.

V. INTEGRATION OF MULTIPLE IMAGING MODALITIES

There are many ways in which recording brain activity with
one neuroimaging modality alone can lead astray researchers’
conclusions. EEG measurements require neural discharges to
happen in a highly synchronized manner across large popula-
tions of neurons, and EEG will only detect these discharges
if the population has a certain orientation with respect to the
recording electrode. Certain cell types, which do not have an
appropriate morphology cannot be measured at all. But no
matter how neurons are oriented, neural activation will induce
metabolic activity which can be measured in the hemodynamic
signal. This does not mean that it would be better to use
hemodynamic activity only — many changes in hemodynamic
activity are not related to neural activity at all; hemodynamic
signals are largely affected by changes in blood pressure,
blood volume and blood oxygenation that is simply due to
breathing or also to the amount of coffee drunken before
the experiment [104]. Because these neuroimaging modalities

offer complementary views on neural activation, combinations
of neuroimaging techniques have become increasingly im-
portant in basic research and clinical applications. In basic
research integration of multiple modalities were extremely
important to establish a better understanding of what the
single modalities actually measure [25]], [26], [27]. In clini-
cal research, multi-modal neuroimaging is a very promising
approach for better localization of epileptic seizures: EEG
has the spatial resolution to detect the seizure, and fMRI
offers the spatial resolution to localize it. These needs for
multi-modal recordings in clinical and basic research were the
basis for the advances in recording technology [105], [106],
[107] and analysis strategies [108], [109] that gave rise to
their increasing popularity in BCI research [110], [111]. A
recently proposed multi-modal setup for BCI combines EEG
with NIRS [24]], [112]]. Both recording setups are relatively
cheap and do not require expensive infrastructure, as is the
case for fMRI. In the following we review some work that
illustrates the advantages of multi-modal recordings for BClIs.

A. NIRS-EEG

The successful combination of data from multiple domains
has motivated researchers to also examine the potential bene-
fits of combining near-infrared spectroscopy (NIRS) with EEG
for the purpose of BCI [24]]. NIRS measures concentration
changes of oxygenated and deoxygenated hemoglobins ([HbO]
and [HbR]) in the superficial layers of human cortex. The
concentration of [HbO] is expected to increase after focal
activation of the cortex due to higher blood flow, while [HbR]
is washed out and decreases [[113], [114]]. NIRS measures a
comparable effect to the blood oxygenation level dependent
(BOLD) contrast in fMRI, since also for fMRI the washout
of [HbO] is the major constituent [10S]. At the same time it
compares favorably to fMRI in terms of low costs, portability
and easiness to handle [115].

In a recent study, simultaneous measurements of NIRS and
EEG (Fig. ] A+B) were recorded during a real-time SMR-
based BCI feedback experiment (Fig. ] C) [24]. The feedback
during recording was EEG-based, but in offline simulations the
classification results for each signal domain were evaluated
separately, and in addition also for their combination. The
combination was achieved by means of meta-classifiers, which
weight the linear classifiers of the individual measurements
according to training data samples [24]. While the EEG clas-
sification accuracy across subjects is superior, when compared
to [HbO] as well as [HbR] (see FigE] D), the results show that
usage of meta-classifiers, combining features from EEG and
NIRS, can improve the classification accuracy of SMR-based
BCI systems (Fig. ] E). This increase is obtained in over 90%
of the considered subjects and led to a significant performance
increase of 5% on average.

To examine the degree of independence between the NIRS
and EEG-based classifier outputs, their outputs can be re-
stricted to values 0 and 1 and their mutual information Z can
be estimated. Mutual information is an information theoretic
measure, which estimates the information that two random
variables share. It can be expressed in terms of conditional



entropies of random variables X and Y:

I(X;Y) = H(X) - H(X|Y) = HY) - HY|X) (D)

The conditional entropy H(X|Y) quantifies the remaining
entropy of X, after the value of Y is known. If H(X|Y) =
H(X), then Z(X;Y) = 0: the variables are independent. On
the other hand, if X and Y are identical, then H(X|Y) =0
and hence Z(X;Y) = H(X). Z(X;Y) is symmetric and its
values are in the range of 0 and 1: Z(X;Y) = Z(Y; X) €
[0; 1] [LL6].

The left part of Fig. 4| F shows Z(EEG;NIRS) as a
function of classification accuracy of [HbO] and [HbR]. The
mutual information rises with increasing accuracy of the NIRS
chromophores. Similarly, the mutual information also rises
with increasing EEG accuracy (not shown here, please refer
to [24]). This makes intuitive sense, since with increasing
accuracy both classifier outputs will correctly predict and thus
share the majority of class labels. However, please note that
the mutual information does not reach values above 0.4 bit for
any subject. To investigate, whether EEG and NIRS classifiers
misclassify the same trials, the EEG classification accuracy
of all trials is plotted in relation to the EEG classification
accuracy of trials, where [HbO] was correct/incorrect (see
Figl] F, right part). As can be seen the EEG classification is
largely invariant to the classification performance of [HbO]
(and [HbR], not shown). In other words, EEG and NIRS
mostly misclassify different trials. It can therefore be deduced
that the individual methods in fact complement each other in
terms of information content.

A more recent study [112] investigated long-term training
effects of SMR-based BCIs and found significant enhancement
of activation patterns in form of an [HbO] increase (NIRS) as
well as a stronger ERD in the upper 5-band (EEG) over the
course of 10 sessions.

B. EEG-EMG

While BCI technology has seen swift advances in recent
years, information transfer rates are still not on-par when
compared to non-BCI control. For patients who still retain
some control of their body, these functions should be employed
in parallel with the BCI system in order to increase robustness
and interaction speed of their communication with the outside
world. In their paper Leeb et al. [17], [L8] examine the
possibility of parallel usage of EEG and electromyographic
(EMG) activity, whereby the control abilities of both channels
are fused. In their synchronous SMR-based BCI paradigm they
test two fusion techniques: one where the classifier outputs of
both modalities are balanced equally and another, where they
are combined with naive Bayesian approach [117]. According
to Bayes’ rule:

P(C|01,05) & P(C)P(0;,05[C) (12)

where C' denotes the class (left or right) and O, and O,
are the classifier outputs of EEG and EMG, respectively. If
independent sources are assumed Eq. [I2] becomes:

P(01,0,|C) = P(0,|C)P(0,|C) (13)

Then
Cout = argmax P(C = ¢)P(0,|C = ¢)P(0,|C =¢) (14)

where ¢ € left, right. The prior P(C = ¢) can be assumed to
be equal, if classes have similar size and P(O,|C = ¢) and
P(O,|C = ¢) can be estimated from the training data.

Their results show that the multi-modal fusion approach
of muscular and brain activity yielded better and more stable
performance compared to the single conditions [18]. In addi-
tion they show that increasing muscular fatigue leads only to
moderate degradation of performance, a common phenomenon
for early stage amyotrophic lateral sclerosis patients. The
system thus offers users reliable BCI control, even though
she/he is getting more and more exhausted or fatigued during
the day.

VI. WHICH HYBRID BCI AND/OR WHICH DATA FUSION
TECHNIQUES SHOULD BE SELECTED WHEN?

Let us now briefly analyze and discuss hybrid BCIs from
an abstract systems perspective. When do we expect a BCI,
which relies on combinations of complementary analysis as
well as recording techniques, to perform better or worse than
a classical unimodal system? What are the essential factors
for this and how can a practitioner extract this information to
design the setup which is required of his hybrid BCI from the
given BCI data?

Let us consider two (complementary) variables X; and Xs,
that are driven by some unknown neural process Z. Then
X, and X, can be combined to predict a target variable
Y € {£1}, which drives the latent neural process, if their
mutual information is low but they both carry meaningful
information Z with respect to the target Y. Mathematically,
these two conditions can be summarized as

(1) Z(Xy,X,) is low
(ii) Z(X,,Y) and Z(X,,Y) are high

where 7 denotes the mutual information between variables,
see Eq. (TI).

Note that if both variables X would be more and more
correlated then the gain achieved to predict Y will become
lower and lower due to their dependencies. Similarly X; and
X, could contain different signal to noise ratios, an optimal
predictor combining both will gauge them according to this in-
formativity. In the extreme only the high SNR variable will be
considered while the low SNR variable will be ignored. If SNR
and information content are known, then Bayesian inference
allows for optimal combination. Under the assumption that
the variables X, and X, are Gaussian distributed with equal
covariances, one can show that the expected misclassification
risk r; of the variable X is

5)
(16)

Ty = Q(Mz‘/Ui) (17)

with

o(2) = \/% /_Ooo exp <—;(a: _ z)Q) do (18)
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where p; and o, are the parameters specifying the Gaussian
distribution of classification scores under the optimal Bayes
classifier. The constructed classifier for the combined features
is also Gaussian distributed with expected misclassification
risk

r=g(ni/V2) =g (g_l(rl) +g_1(r2>> (19)

V2
Thus, if both variables have the same misclassification risk
r, = 1y, then the SNR increases as v/2. If on the other hand
one variable is very uninformative due to low a SNR, then
it does not contribute to the decrease of r and should thus
not be included. Finally, X; and X, may be informative with
respect to Y but with different temporal signature, i.e. NIRS
and EEG for BCI. Then it is important to find a predictor
that makes optimal use of combining informative high SNR
in time. A suboptimal timing in combining the variables may
in the extreme render one variable useless.

To examine the potential benefits of the proposed combi-
natory approaches in terms of mutual information we would
like to point the readers’ attention to Fig. [5] where correlation
coefficients (top row) as well as mutual information (bottom
row) is depicted for a number of feature combinations. The left
column shows the combination of channel-wise band-power
of Common Spatial Pattern components (CSP), channelwise
band-power (BP), and slow cortical potential (SCP) features
(as previously described in Sec. [[lI-C). As one may expect,
CSP and BP features show relatively high correlation coef-
ficients/mutual information, while CSP and BP do not share
information with SCP. The middle column shows features from
a subject-to-subject transfer. The considered trials stem from
subject 3 (S3). While features derived from subject 3 themself
have high correlation coefficients/mutual information with
each other, features derived from other subjects’ spatial filters
and classifiers (please refer to Sec. for more details on
this procedure) have mostly low correlation coefficients/mutual
information. In contrast, features from subjects S5, S8 and
S4 show high correlation coefficients/mutual information with
S3. In other words, the features derived from the data of
these subjects are viable candidates for predicting trials of
S3. The right column shows feature combinations from the
hybrid neuroimaging study. Band-power features have low
correlation coefficients/mutual information with [HbO] as well
as [HbR]. As can be seen in the upper part [HbO] and [HbR]
are anticorrelated, which is in line with current knowledge
from neurophysiology. Note that this effect is not visible in
the lower part.

Let us now briefly discuss the BCI systems presented in
this paper in the light of the systems reasoning put forward
in this section. Multi-modal neuroimaging as in NIRS-EEG
or fTMRI-EEG result in significantly increased costs, setup-
times and possibly calibration times. Their benefits in terms of
classification accuracy should therefore be carefully evaluated.
In extreme cases, where BCIs serve as a communication
tool for severely disabled or patients in a vegetative state
these costs should of course be a minor concern. While
the classification accuracy of NIRS-EEG systems have been
shown to be superior to sole EEG, the intrinsic hemodynamic

delay of NIRS (and fMRI) pose significant constraints on the
information transfer rates of such systems. However, some
very recent results indicate that this intrinsic delay may be
diminished substantially [118], [119], [111], [120]. The NIRS-
EEG hybrid BCI had to be carefully gauged to reflect the
two signals different spatio-temporal resolution and reliability.
Generically EEG is the main resource for decoding, although
NIRS can be very usefully added to catch difficult trials and
to correct errors.

VII. DISCUSSION AND CONCLUSIONS

Integrating complementary sources of information about
neural activity in a meaningful way can significantly increase
the overall amount of information extracted. This is why data
fusion techniques have been highly successful in neuroimaging
in general and in Brain Computer Interfacing in particular. For
BCI this amounts to performance gains in subject communi-
cation and cognitive state decoding. Neuroimaging in general
can leverage multi-modal recording and analysis setups for
better medical diagnosis or an improved understanding of
neurophysiological processes.

In this paper we examined how gathering data from
different sources and applying data fusion techniques can
improve BCI performance as well as our understanding
of the underlying physiology. Classically the term hybrid
BClIs [14] implies the usage of multiple signal types/sources
(e.g. different aspects of EEG only, or combinations of
EEG and EMG, or NIRS and EEG etc.). While not all
systems that employ fusion techniques strictly fall into the
hybrid BCI category, we have seen that exploiting comple-
mentary information that was previously analyzed in isola-
tion can boost the performance (e.g. [S5], [20], [L7], [24]),
robustness (e.g. [94], [57], [99], [79]) and ease of use
(e.g. [44l, (741, 1751, [761).

While we have mainly focused on sensorimotor rhythm-
based BCI paradigms, the concepts introduced and reviewed
do also transfer to other BCI systems (such as e.g. ERP based
BCIs). Note furthermore that many of the concepts discussed
in this review are ubiquitous in signal processing, robotics
and machine learning, under keywords such as information
integration [121]], [122], sensor fusion [123[], [124], [125],
[L6], or simply as data fusion [[126]], [127], [[16]], [128], among
others.

Finally, we have outlined systematic information theoretic
measures that can be used to judge and quantitatively reason
upon the usefulness and limits of systems based on data fusion
in general and hybrid BCIs in particular. Future work will
focus on developing a generic BCI framework in the spirit
of [129]] and on also including concepts such as nonstationar-
ity [130], [131] and transfer learning [[132], [133], [[134]] into
such a framework.
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