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Abstract19

Purpose: Coronary artery calcium (CAC) scoring is an independent marker for the20

risk of coronary heart disease events. Automatic methods for quantifying CAC could21

reduce work load and assist radiologists in clinical decision making. However, large22

annotated datasets must be acquired and labeled to achieve very good model per-23

formance, which is an expensive process and requires expert knowledge. By labeling24

only most informative samples, active learning can reduce the number of training data25

required. Multi-task learning techniques can improve model performance by joint26

learning of multiple related tasks and extraction of shared informative features.27

Methods: We propose an uncertainty weighted multi-task model for coronary cal-28

cium scoring in ECG-gated, non-contrast enhanced cardiac calcium scoring CT. The29

model is trained to solve the two tasks of coronary artery region segmentation (weak30

labels) and coronary artery calcification segmentation (strong labels) simultaneously31

in an active learning scenario to improve model performance and reduce the num-32

ber of required training samples. We compare our model with a single-task U-Net33

and a sequential-task model, as well as other state-of-the-art methods. The model is34

evaluated based on 1275 individual patients of three different datasets (DISCHARGE,35

CADMAN, orCaScore) and the relationship between performance and various influenc-36

ing factors (image noise, metal artifacts, motion artifacts, image quality) is analyzed.37

Results: The joint learning of multiclass coronary artery region segmentation and38

binary coronary calcium segmentation improves calcium scoring performance. Since39

shared complementary information can be learned from both tasks, the model reaches40

optimal performance with only 12% of the training data and one-third of the labeling41
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time in an active learning scenario. We identified image noise as one of the most im-42

portant factors influencing model performance, along with anatomical anomalies and43

metal artifacts.44

Conclusions: Our multi-task learning approach with uncertainty weighted loss im-45

proves calcium scoring performance by joint learning of shared features and reduces46

labeling costs when trained in an active learning scenario.47

48

Keywords: Coronary Artery Calcium Scoring, Deep Learning, Neural Networks, Active49

Multi-Task Learning, Uncertainty Weighted Loss50
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Abbreviations51

CAC Coronary artery calcification.52

CAR Coronary artery region.53

CCTA Contrast enhances CT.54

CSCT Calcium Scoring CT.55

CT Computed tomography.56

CVD Cardiovascular disease.57

HU Hounsfield unit.58

ICC Interclass correlation coefficient.59

LAD Left anterior descending artery.60

LCX Left circumflex artery.61

LM Left main artery.62

MTL Multi-task learning.63

PPV Positive predictive value.64

RCA Right coronary artery.65

I. Introduction66

Cardiovascular disease (CVD) is the global leading cause of death.1 Coronary calcium is67

commonly associated with coronary atherosclerosis and its absence is associated with a very68

low risk of adverse coronary events.2 In clinical practice, semi-automatic software is used to69

manually select coronary artery calcifications (CAC) in computed tomography (CT) image70

slices from automatically labeled candidates, which is a tedious and time-consuming process71

in large-scale studies.3 Typically, ECG-gated, non-contrast enhanced computed tomography,72

known as calcium scoring computed tomography (CSCT), is used to identify CAC.4 The73

Agatston score5 is the most common measure used to quantify CAC with the aim of defining74

appropriate cardiac risk categories. In recent years, deep learning models such as convolu-75

tional neural networks have been used to automatically quantify CAC based on 2D slices 3,476

or 2.5D/3D volumetric input data 6,7.77

Methods have been developed for different examination types such as non-contrast78

enhanced ECG-gated calcium scoring CTs,8 contrast-enhanced coronary CT angiography79

Abbreviations
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(CCTA)9 or a combination of both.3,10,11 Since the segmentation of the cardiac tree is very80

challenging in CSCT, methods using non-contrast enhanced and contrast enhanced CT usu-81

ally map spatial information about coronary arteries from the contrast enhanced CT to the82

non-contrast enhanced CT.10,12 Most methods perform segmentation of the calcified lesion83

to estimate the Agatston score and classify detected calcification based on the correspond-84

ing left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary85

artery (RCA), but some also perform regression directly.1386

Most of the current state-of-the-art methods only learn from sparse calcifications. Therefore,87

very large and heterogeneous datasets need to be acquired and labeled to train models that88

are robust and achieve satisfactory performance to be used in a clinical setting. Unfortu-89

nately, this is an expensive and time consuming process and requires expert knowledge. It90

calls for methods that can reduce labeling costs and improve performance by integrating the91

radiologist into the training process.92

Active learning techniques are able to reach higher performance while using a smaller num-93

ber of annotated training samples by active sample selection and therefore reduce labeling94

costs. In active learning, the learner (deep neural network) iteratively selects only the most95

informative samples based on a selection criterion such as uncertainty sampling, query by96

committee, expected error reduction, or expected model for labeling.14 The method inte-97

grates the radiologist into the training process and avoids labeling of uninformative samples.98

Spatial information about coronary arteries and corresponding coronary calcifications is very99

important to distinguish between coronary and extra-coronary calcifications. Calcifications100

are usually very sparse, which makes it difficult to extract features with spatial information.101

Extraction of spatial information about the coronary arteries in an auxiliary task can aid in102

the localization of coronary calcifications. Multi-task learning (MTL) is a technique which103

learns multiple related tasks together, to improve model performance by sharing complemen-104

tary information.15 In coronary calcium scoring, the spatial information of coronary arteries105

is closely related to the calcium scoring task and therefore learning of coronary artery regions106

serves as a good auxiliary task to support the original calcium scoring task. However, the107

optimization of multiple loss functions for multi-task learning is a crucial factor and tuning108

loss weighting by hand is difficult and computationally expensive. Many task balancing109

approaches for dense predictions such as static weighting, GradNorm16, dynamic weight av-110

erage17, dynamic task prioritization18 or uncertainty weighted loss19 have been developed111
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and have shown that the best optimization method should be selected on a per case basis.20112

The training of multi-task models in an active learning scenario can be challenging if the113

dataset is very small. In this work, we exploit a multi-task model (MTL-model) with114

uncertainty-weighted loss that outperforms a single-task U-Net and a sequential-model. The115

model achieves very good performance on small training sets and can therefore be used in116

active learning scenarios. The model performs as well as other state-of-the-art methods117

and achieves similar results compared to our statically-weighted MTL-model with optimally118

chosen weighting parameter. The contributions of this paper can be summarized as follows:119

• We propose a novel learning paradigm for coronary calcium scoring by simultaneous120

learning of multiple related tasks to increase data efficiency and model performance121

by leveraging auxiliary information through shared informative features.122

• We propose a multi-task encoder-decoder model for simultaneous coronary artery re-123

gions segmentation (multiclass) and coronary artery calcification segmentation (bi-124

nary) to improve model performance compared to single-task models.125

• We show that our model obtains optimal performance with substantially less training126

data (12%) and reduces annotation time to one-third in an active learning scenario127

compared to training on the full dataset.128

• We demonstrate the importance of loss weighting for optimal model performance of129

our multi-task model and show how uncertainty weighted loss can facilitate active130

multi-task learning.131

• We show that our model performs almost as well as the best state-of-the-art methods132

in terms of F1-score, intraclass correlation coefficient (ICC) and sensitivity of CAC133

volume, on a common benchmark dataset for coronary calcium scoring.134

II. Materials and methods135

In this Section we present our multi-task model which performs simultaneous segmentation of136

coronary artery regions and segmentation of coronary artery calcifications. In Section II.A. we137

describe the used datasets and corresponding annotation strategies. We introduce the mul-138

ticlass coronary artery region segmentation task II.B.1. and the binary lesion segmentation139

task II.B.2.. We propose the multi-loss optimization method using uncertainty weighted loss140

II.B.3. and give a detailed description of our implemented network architecture and training141
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procedure II.B.4.. In Section II.B.5. we introduce a single-task U-Net and sequential model as142

comparison models. In Section II.C. we introduce our active learning approach in which we143

use only the most informative samples to decrease annotation costs and propose our hybrid144

sampling strategy.145

II.A. Datasets146

For the evaluation of our multi-task learning approach, we compare the performance on three147

different datasets. A detailed flowchart about the dataset selection process can be found in148

the supplementary material.149

The DISCHARGE-trial is a prospective multi-center randomized controlled trial to150

examine for which patients with suspected coronary artery disease based on stable chest151

pain, cardiac CT or cardiac catheterization is best suited.21,22 Our DISCHARGE dataset152

consists of calcium scoring CTs (CSCT) from 1262 patients (708 male, 554 female) of the153

trial. Image data were acquired from 26 clinical sites using 14 different scanner types.154

Annotations for coronary artery calcification were acquired for all scans. Weak annotations155

of coronary artery regions were only acquired for 215 randomly selected scans and randomly156

divided into 140 CT scans (6721 slices) for training (65%) and 75 CT scans (3636 slices) for157

validation (35%). All remaining 1047 CT scans (57452 slices) were used as test set. Only158

one CSCT from each patient was selected for the dataset. The reconstruction of the CT159

scans was performed using filtered back projection method (383) and iterative reconstruction160

methods (879). To keep the data as close as possible to real-life clinical data, diagnostic CTs161

including scans with metal artifacts (pace-maker, artificial valves, etc.), scans with severe162

motion artifacts, high level of noise or anatomical abnormalities were not excluded. Note,163

annotations of coronary artery regions (CAR) and coronary artery calcifications (CAC) are164

available for training and validation set. For the test set, only CAC annotations are available.165

The annotations were performed by two observers. Observer one was a trained physician166

who annotated coronary calcifications, observer two was a trained medical imaging scientist167

who annotated coronary artery regions. Available contrast-enhanced CT scans (CCTA) were168

not included because the overall goal of the method is to predict coronary heart disease risk169

without the need to inject a contrast agent.170

The second dataset consists of CT scans from the publicly available orCaScore challenge171

II.A. Datasets
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on (semi-)automatic coronary calcium scoring.23 The framework provides 72 pairs of CSCT172

and corresponding contrast-enhanced CT angiography (CCTA) from the same patient ac-173

quired at four academic hospitals. The data has been divided into a 32-scan training set174

and a 40-scan test set. For the training set, a reference standard by two expert observers, a175

radiologist with > 12 years of experience in CAC scoring and a research physician, are pro-176

vided. CT scans with anatomical abnormalities, intracoronary stents, and metal implants177

as well as CTs showing severe motion artifacts or extremely high levels of noise determined178

by visual inspection were excluded. Annotations of CAR were additionally acquired for the179

training set.180

The third dataset consists of CSCT from the single-center randomized controlled Coro-181

nary Artery Disease Management (CAD-Man) study.24 The dataset consists of 156 CT scans182

and annotations were only acquired for CAC. The dataset serves as an additional test set.183

The reconstruction of the CT scans was performed using filtered back projection method.184

Reference standards are provided by one expert observer. The annotations of coronary185

calcifications and artery regions were performed by a trained medical imaging scientist.186

Differences between the three datasets regarding distribution of candidate lesions are187

shown in Table 1. A candidate lesion is defined as connected 3-D image voxels (6-188

connectivity) with intensities greater than 130 HU.189

# scans LAD LCX RCA OTHER_CAR Candidates
per scan

DISCHARGE Training 140 344 168 338 865k 6183
DISCHARGE Test 1047 2375 1042 1872 6254k 5978
DISCHARGE Validation 75 198 118 221 432k 5768
orCaScore Training 32 103 21 56 138k 3454
orCaScore Test 40 - - - - -
CADMAN Test 156 335 151 156 1400k 8980

Table 1: Number of candidate lesions (connected 3-D image voxels with intensities greater
than 130 HU) distributed in the DISCHARGE training set, validation set and test set,
orCaScore training set and CADMAN test set. Candidate lesions are distributed over cal-
cified coronary artery lesions (LAD, LCX, RCA) and other structures such as bones or
extra-coronary calcifications (OTHER_CAC). Since the orCaScore test set is not public, no
information about distribution of candidate lesions is available.

II.A. Datasets
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II.A.1. Annotation procedure190

The coronary artery tree is divided into three sub-trees corresponding to the left anterior191

descending artery (LAD), left circumflex artery (LCX) and right coronary artery (RCA)192

including main branch (LM) and its side-branches. The left main artery (LM) is included193

in the sub-tree of the LAD. The training of the multi-task model requires annotations for194

the two task of coronary artery calcification (CAC) segmentation and coronary artery region195

(CAR) segmentation.196

II.A.2. Annotation of coronary artery calcifications (CAC)197

The annotation of the CAC was performed by thresholding and highlighting all voxels with198

a density above 130 HU (candidate lesions). The observer annotates all highlighted voxels of199

calcified lesions and assigns a class according to the corresponding coronary artery (“LAD”,200

“LCX”, “RCA”). Calcified lesions corresponding to multiple arteries (e.g. calcified lesions201

in bifurcations) were divided by annotating the voxels according to the arteries. For model202

evaluation, lesions where defined as connected voxels (6-connectivity) with a minimum lesion203

volume of 1.5mm3 All remaining candidate lesions were annotated as “OTHER_CAC”. The204

annotations of coronary artery calcifications were performed using an in-house developed205

semi-automatic segmentation module for 3D slicer 25.206

II.A.3. Weak annotation of coronary artery regions (CAR)207

The annotations of CARs are acquired using weak annotations (scribbles), since a precise208

segmentation of the vessel tree is impossible in non-contrast CTs due to the missing contrast209

between arteries and surrounding tissue. To overcome the problem of misleading labels, we210

did not label regions between arteries and surrounding tissue which are difficult to distinguish211

or a precise labeling of the boundary would be extremely time-consuming. To facilitate and212

speed up the annotation process, we used an in-house semi-automatic segmentation mod-213

ule developed for 3D Slicer 25. At first, the annotator was using a scribble to annotate the214

three main arteries in each slice. In the second step, an additional scribble (closed contour)215

was used to surround the arteries and isolate the annotated artery scribble from the tissue.216

In the third step, connected component analysis was performed to divide the annotations217

II.A. Datasets
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into different components. The largest component (background) was joint with the closed218

contour scribbles and labeled as OTHER_CAR. If no coronary artery was seen in the slice,219

the annotator only placed a single scribble for OTHER_CAR in the image. Examples of the220

performed annotations can be seen in Figure 2.221

II.B. Multi-task segmentation network with uncertainty weighted222

loss223

We propose a multi-task segmentation network following an encoder-decoder structure with224

skip connections, inspired by the U-Net architecture.26,27 The multi-task network archi-225

tecture is illustrated in Figure 1 and performs multiclass coronary artery region (CAR)226

segmentation and coronary artery calcifications (CAC) segmentation at the same time. Fea-227

tures extracted by the encoder are shared with the two decoders for the tasks of multiclass228

coronary artery region segmentation (TR) and binary segmentation of calcified lesions (TL).229

Since the information of predicted coronary artery regions is a useful prior information for230

segmentation of calcified lesions, feature maps extracted by the decoder for coronary artery231

region segmentation are shared with the decoder for binary segmentation of calcified lesions.232

To utilize this prior information about candidate lesions, we concatenate the image slice (512233

px x 512 px) with a candidate lesion mask to form the input tensor. The candidate lesion234

mask was created by thresholding the image using a constant threshold of 130 HU. During235

training, the losses of both task LR (loss for task TR) and LL (loss for task TL) are combined236

using an uncertainty weighting loss,19 to jointly optimize the model parameters.237

II.B.1. Coronary artery region segmentation task238

The network aims to learn coronary artery regions from weakly labeled regions, as shown in239

Figure 2. Weak labels28 are defined as segmentations, which are imprecise but less costly to240

obtain than pixel-level annotations. Since in non-contrast enhanced CT scans the spatial241

boundary between the vessels and the surrounding tissue cannot be determined precisely,242

pixels x of an image i are either annotated and belong to the annotated pixel set ΩR,i with243

one of the CAR classes {LAD,LCX,RCA,OTHER_CAR}, or are not annotated. The244

pixel-wise softmax function 26 and focal loss 29 are used to deal with large class imbalance245

II.B. Multi-task segmentation network with uncertainty weighted loss
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Figure 1: Multi-task model for coronary artery calcification (CAC) scoring. The image and
the CAC candidate lesion mask are concatenated to form the input tensor. The model
consists of one encoder that shares feature maps with two decoders of the multiclass coro-
nary artery region (CAR) segmentation task TR and binary CAC segmentation task TL.
Predictions are combined by multiplying binary CAC segmentation with multiclass CAR
segmentation to perform multiclass calcification segmentation

between background pixels (OTHER_CAR) and pixels of coronary artery regions.246

LR,i =
∑

x∈ΩR,i

4∑
cR=1

−wcRycR(x)(1− pcR(x))
γR log(pcR(x)) (1)247

The γR parameter smoothly adjusts the rate at which easily segmented pixels are down-248

weighted and wR balances the loss. pcR(x) and ycR(x) are the pixel-wise softmax output and249

the reference class of pixel x ∈ ΩR,i, respectively. The pixel set ΩR,i contains all labeled pix-250

els. Unlabeled pixels (gaps) x /∈ ΩR,i, as shown in Figure 2, are ignored and not used for loss251

calculation. The parameter wcR is a weighting parameter that balances the importance of252

the classes and handles the data imbalance problem. The parameter cR is the channel of the253

corresponding CAR class.254

II.B.2. Binary lesion segmentation task255

The lesion segmentation network performs a binary segmentation of candidate coronary256

artery lesions into the classes {CAC,OTHER_CAC}. Feature maps extracted by the de-257

coder for the coronary artery region segmentation are shared with the decoder for the binary258

II.B. Multi-task segmentation network with uncertainty weighted loss
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lesion segmentation. The binary focal loss LL,i defined as (2) is calculated based on all voxels259

from candidate lesions grouped in the set ΩL,i.260

LL,i =
∑

x∈ΩL,i

2∑
cL=1

−wcLycL(x)(1− pcL(x))
γL log(pcL(x)) (2)261

The parameters pcL(x), ycL(x) as well as x ∈ ΩL,i and wcL are defined analogouesly to262

the region segmentation in Subsection II.B.1.. The output of the binary CAC segmentation263

decoder is multiplied (channel-wise) with the output of the CAR segmentation decoder to264

perform multiclass CAC segmentation.265

Figure 2: Multi-task annotations of an image slice with coronary artery calcifications (CAC)
in the left anterior descending artery (LAD), left circumflex artery (LCX) and right coronary
artery (RCA) (A). Weak annotations of coronary artery regions (CAR) for the LAD - red,
LCX - yellow, RCA - blue and OTHER_CAR - green (B). Strong annotations of coronary
artery calcifications in the LAD - red, LCX - yellow, RCA - blue and other objects with
density higher 130 HU (OTHER_CAC) - green (C).

II.B.3. Uncertainty based weighted loss266

The performance of a multi-task network depends strongly on the weighting of the losses. The267

most commonly used loss weighting strategy for multi-task learning is static weighting, which268

computes a weighted sum of the losses using balancing parameters αi. The static weighted269

loss of our multi-task model is the weighted sum of the losses for multiclass segmentation270

of coronary artery regions LR and the binary segmentation of coronary calcifications LL, as271

shown in Equation (3).272

Ltotal(W) = αLR(W) + (1− α)LL(W) (3)273

II.B. Multi-task segmentation network with uncertainty weighted loss
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This method is simple but unfortunately computationally expensive to fine tune.30 The de-274

termination of the optimal weighting parameter value α is even more challenging in active275

multi-task learning, since the model is initially trained with a very small number of anno-276

tated training data. Other methods are based on dynamic weight average (DWA) using277

task-specific feature-level attention17 or use gradient normalization16 to balance losses.278

For our multi-task calcium scoring model, we use the uncertainty weighted loss method of279

Cipolla et al.19. The uncertainty based weighting uses homoscedastic uncertainty to weight280

loss functions of each task.19 We combine the outputs of the last layers (softmax output)281

from the decoders based on the homoscedastic uncertainty. To model the uncertainty, we282

introduce the positive scalar σR for coronary artery region segmentation task and σL for the283

binary calcification segmentation task. The parameters can be interpreted as Boltzmann284

distributions (also called Gibbs distribution) where the input is scaled by σ2
R and σ2

L respec-285

tively. The total loss Ltotal in Equation (4) is an uncertainty weighted loss of LR and LL286

where W represents the parameters of the multi-task network. A detailed deviation can be287

found in the supplementary material.288

289

Ltotal(W, σR, σL) =
1

σ2
R

LR(W) +
1

σ2
L

LL(W) + log σR + log σL (4)290

This loss is smoothly differentiable, and is well formed such that the task weights will291

not converge to zero. For practical reasons, we predict the log variance log σ2, which is more292

stable and avoids any division by zero.19293

II.B.4. Multi-task network architecture and training procedure294

To train the multi-task network, we oversample slices with calcifications to form balanced295

mini batches (20% samples with calcifications, 80% without calcifications). The encoder con-296

sists of eight downsampling blocks, each block consists of two convolutional layers, dropout297

layer, batch normalization 31 and ReLU activation function.32 The two decoders consist of298

eight upsampling blocks, where each block consists of a bilinear upsampling layer and two299

convolution layers, dropout layer, batch normalization layer and ReLU activation function,300

respectively. The feature maps of the upsampling block of the coronary artery region (CAR)301

segmentation decoder are shared with each upsampling block of the coronary calcification302

II.B. Multi-task segmentation network with uncertainty weighted loss
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segmentation decoder, but not vice versa, to follow the causal relation between coronary303

artery regions and coronary artery calcifications. Skip connections between the encoder304

and the two decoders are implemented as concatenations and used to share feature maps305

from the respective downsampling block.26 The model was trained with a batch size of 8,306

the Adam 33 optimizer, an initial learning rate of 5e-04, learning rate decay of 0.95 after307

every 5 epochs and L2 weight decay. During training, the dropout rate of the inner layer308

between the encoder and decoder was set to 0.5, and the dropout rate for all other lay-309

ers was set to zero. During our experiments, we found that the convergence of the static310

weighted loss MTL-model depends strongly on the initial learning rate but due to high311

training times, we did not perform further detailed hyper parameter analysis. We use focal312

loss for both training tasks. The focal loss parameters of task TR were set to γR = 2.0,313

αOTHER_CAR = 0.01, αLAD = 1.0, αLCX = 1.0, αRCA = 1.0. The loss parameters of the coro-314

nary calcification segmentation task were set to γL = 2.0, αCAC = 1.0, αOTHER_CAC = 0.01.315

To train the network, we augmented the image slices by small translations to prevent over-316

fitting. To perform multiclass calcification segmentation, the predictions of the two tasks are317

combined by multiplying the binarized calcification segmentation with the coronary artery318

region segmentation. To avoid overtraining, we use early stopping based on the perfor-319

mance of the validation set. The training stopped after approximately 200k iterations (240320

epochs), where one iteration corresponds to a batch of 8 slices. Training was performed321

on an NVIDIA Tesla V100, 32GB and PyTorch framework. More details and a pretrained322

model can be found at (https://github.com/Berni1557/MTAL-CACS).323

II.B.5. Single-task model, sequential-task model and multi-task model324

We compare our multi-task model with a single-task and a sequential-task model in Figure 3325

to show that simultaneous training of related tasks can extract informative shared features326

and improve model performance. The single-task model consists of a multiclass U-Net26 with327

the same downsampling and upsampling block architecture as in the multi-task network.328

The last layer consists of four channels (OTHER_CAC, LAD, LCX, RCA) for multiclass329

segmentation of coronary calcifications. The sequential model consists of two separated330

models. The first model is trained for multiclass coronary artery region (CAR) segmentation.331

After the training has finished, the predictions are used for the training of the coronary332

calcification (CAC) segmentation network. Therefore, the CAR predictions are concatenated333

II.B. Multi-task segmentation network with uncertainty weighted loss

https://github.com/Berni1557/MTAL-CACS
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with the image and CAC candidate mask and serve as input for the binary segmentation334

network for coronary calcifications. The goal of the sequential model is to follow the causal335

relation between CAR and CAC.336

Figure 3: Single-task model, sequential-task model and multi-task model architecture com-
parison. The single-task model (lower, left) consists of a multiclass U-Net. The sequential
model (upper) consists of a model for multiclass coronary artery region (CAR) segmentation
whose predictions are used to train the coronary artery calcification (CAC) segmentation
network. The multi-task model (lower, right) consists of one encoder and two decoders for
the prediction of coronary artery region (CAR) segmentations and coronary calcification
(CAC) segmentations which are combined for multiclass segmentation of CAC.

II.C. Active learning with uncertainty weighted multi-task model337

Labeling of coronary calcifications in CT scans is a laborious and time-consuming task and338

requires significant expert knowledge.34 Labeling for MTL methods tends to be more expen-339

sive since each task requires its own annotations. Active learning is able to reduce the costs340

II.C. Active learning with uncertainty weighted multi-task model
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by iteratively labeling only most informative samples thus achieving optimal performance341

with a smaller number of samples.35 In multi-task learning with static weighting parameter342

α, the best performing parameter has to be determined, which is a difficult and expensive343

process19 and is often performed using grid search on the entire annotated dataset. In active344

learning, the estimation of a static weighting parameter α is even more challenging to tune,345

since the data distribution changes after each sampling round and thereby the optimal value346

of parameter α changes as well. Moreover, the estimation on small datasets can be very347

sensitive to the randomly drawn initial training samples.348

We simulate active learning to investigate whether our uncertainty weighted loss model can349

overcome these problems. There are several approaches for active multi-task learning such350

as active learning via bandits,36 active learning frameworks for adaptive filtering37 or value351

of information based methods.38352

For our approach, we developed a sampling strategy based on uncertainty sampling and353

random sampling, which we call the hybrid sampling strategy. First, we apply monte carlo354

dropout (MCD) 39 during inference for all samples which are not in the training set, predict355

segmentation maps and repeat this process NMCD = 10 times. Dropout rate was set to 0.01356

for all dropout layers. Based on the predictions, we estimate the MC sample variance40 for357

each pixel, corresponding to candidate calcifications (pixel with density values greater than358

130 HU) and calculate the average variance for each sample. We sort all samples in descend-359

ing order and randomly sample from the top 20% with highest variance. Selected samples360

and respective annotations are added to the training set. We use this simple strategy, since361

it is not our goal to improve sampling strategies, but rather to investigate their general362

applicability. This sampling strategy has low computational complexity and increases the363

diversity of batch query samples.35. We compare our hybrid sampling method with the364

random sampling method, where we randomly select samples from the unlabeled dataset for365

labeling and training.366

II.C. Active learning with uncertainty weighted multi-task model
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III. Results367

In this Section we first introduse used performance metrics compare the performance of our368

proposed multi-task model with the singe-task U-Net and sequential-task model trained on369

the full DISCHARGE training set III.B.. In Subsection III.C., we compare our multi-task370

model with other state-of-the-art models. In Subsection III.D., we analyze our uncertainty371

weighted multi-task model in an active learning scenario and show that the number of372

required training samples and annotation time can be reduced compared to labeling the373

full training set. Finally, we analyze the influence of image noise, metal artifacts, motion374

artifacts and image quality on model performance in Subsection III.E..375

III.A. Performance metrics376

The performance of our models for coronary calcium scoring in Table 2 was evaluated on377

volume and lesion level with binary and multiclass segmentation metrics41. For the eval-378

uation of the multiclass coronary artery region segmentation task TR, we use the Micro379

F1-score on volume level. The Micro F1-score is the harmonic mean of Micro precision and380

Micro recall based on the the coronary arteries, excluding the OTHER_CAR class (5). For381

the Micro precision and Micro recall, the number of true positives (TPsum) is the number382

of all correctly classified pixels of the coronary artery regions, excluding pixels of the class383

OTHER_CAR. The number of false positives (FPsum) is the number of pixels belonging384

to the class OTHER_CAR but being misclassified as one of the coronary arteries, plus all385

pixels of coronary arteries that are incorrectly assigned to another artery. The number of386

false negatives (FNsum) is the number of pixels belonging to the coronary arteries but being387

misclassified as OTHER_CAR, plus all pixels of coronary arteries that are incorrectly as-388

signed to another artery. Therefore, misclassifications between arteries are counted as false389

negatives and false positives.390

Micro F1-score = 2 ∗ Micro-precision ∗ Micro-recall
Micro-precision + Micro-recall (5)391

Micro-recall = TPsum

TPsum + FNsum

(6)392
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Micro-precision =
TPsum

TPsum + FPsum

(7)393

The evaluation of the binary coronary calcification task TL was evaluated based on394

the positive predictive value (PPV), sensitivity and F1-score. The evaluation of the result-395

ing multiclass calcification segmentation was evaluated based on the F1-score calculated396

irrespective of the artery-specific label, to be comparable with other methods. For the com-397

parison with other methods, we use to intraclass correlation (ICC), sensitivity and F1-score398

in Table 4 and 3.399

To evaluate our active learning method in Figure 5, we used the Micro-F1 score of the re-400

sulting multi-class calcification segmentation.401

The risk categorization performance in Table 5 was evaluated based on the linearly weighted402

Cohen’s kappa as a measure of agreement between the reference category and the catego-403

rization based on the MTL-model.404

III.B. Comparison of single-task, sequential-task and multi-task405

model406

We trained all three models described in Section II.B.5. on the full DISCHARGE training set407

and evaluate the performance based on the DISCHARGE test set. In Table 2 we compare408

results for coronary artery region (CAR) segmentation task TR in terms of Micro F1-score409

and binary coronary calcification (CAC) segmentation task TL in terms of F1-score, positive410

predictive value and sensitivity. The Micro F1-score is reported for the resulting multiclass411

calcification segmentation. For TR we report Micro F1-scores only for the validation set,412

since annotations of the DISCHARGE test set were not available for CAR. For the static-413

MTL model we set weighting parameter to the optimal value α = 0.4, determined based on414

the maximum Micro F1-score for calcification segmentation using grid-search method. Un-415

certainty weighted loss MTL-model and static weighted MTL-model with optimal weighting416

parameter value reached similar performance of F1-score=0.881 and F1-score=0.882, re-417

spectively. Both MTL-models (static weighted MTL and uncertainty weighted loss MTL)418

outperform the single-task model (F1-score=0.804) and sequential model (F1-score=0.769).419

The performance of the multi-task models is very good at the volume level, but lower at lesion420

level, due to a false positive predictions caused by misclassification of noise. As expected,421

III.B. Comparison of single-task, sequential-task and multi-task model
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CAR
segmentation
task TR

Binary calcification
segmentation
task TL

Multiclass
calcification
segmentation

Micro F1
(Vol)

PPV
(Vol/Num)

Sen.
(Vol/Num)

F1
(Vol/Num)

F1
(Vol)

Single-task
(U-Net) - 0.900

(0.219)
0.726

(0.923)
0.804

(0.353) 0.775

Sequential-task
model 0.472 0.916

(0.231)
0.663

(0.871)
0.769

(0.365) 0.740

Static weighted
MTL-model
(α = 0.4)

0.459 0.937
(0.412)

0.833
(0.883)

0.882
(0.562) 0.850

Uncertainty
weighted loss
MTL-model

0.451 0.924
(0.413)

0.842
(0.880)

0.881
(0.562) 0.849

Table 2: Performance comparison of the single-task model (U-Net), sequential-task model,
static weighted MTL-model and uncertainty weighted loss MTL-model. Evaluation is based
on Micro F1-score for coronary artery region segmentation task TR (only available for DIS-
CHARGE validation dataset) and F1-score, positive predictive value (PPV) and sensitivity
(Sen.) for binary calcification segmentation task TL and Micro F1-score for the combined
multiclass calcification segmentation of the DISCHARGE test dataset on volume and lesion
level.

the best performing model for coronary artery region segmentation task TR is the sequential422

model (Micro F1-score=0.472), since the first of the two sequential networks performs only423

this task. Figure 4 shows an example for the predictions of CAR and CAC by the multi-task424

network. We compare the multi-task predictions for severe noise in Figure S3 (supplemen-425

tary material) to show how the uncertainty weighted loss MTL-model outperformed the426

sequential model.427

III.C. Performance comparison with other methods428

To compare our model (uncertainty weighted loss MTL-model) against other methods, we429

evaluate the performance based on the orCaScore test set described in Section II.A.. The430

orCaScore dataset does not provide any reference annotations for the test set and is therefore431

well suited for model comparison. For a fair comparison we trained our model twice: once432

on the DISCHARGE training set and once on the orCaScore training set. Results on the433

orCaScore test set compared with other methods are shown in Table 3. The results of434

III.C. Performance comparison with other methods
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Figure 4: Visualization of overlap between predicted coronary calcifications (CAC) and
coronary artery regions (CAR). Coronary calcifications in the left anterior descending artery
(LAD), left circumflex artery (LCX) and right coronary artery (RCA) (A). Predicted coro-
nary artery regions of the LAD - red, LCX - yellow and RCA - blue (B) and 3D surface
model of the segmented CAR (C).

our model evaluated on the DISCHARGE test set and CADMAN test set is compared with435

methods evaluated on other non-public datasets in Table 4. Note that results are not directly436

comparable due to unknown data distributions.437

We can see that our model trained on the DISCHARGE training set (F1-score=0.958)438

performs very good using only CSCTs. The best performing method of Gogin et al.7 (F1-439

score=0.975) is using an ensemble of 3D CNNs to perform calcium scoring. Other methods440

are using CCTA to map segmentations from cardiac structures (heart, aorta, coronary ar-441

teries) in the CCTA to the CSCT 7 or use preprocessing by cylindrical cropping around442

an initial automatic segmentation of the ascending aorta.3. In the work of D. Eng et al.443

45, two deep learning models were used to automate CAC scoring using gated unenhanced444

coronary CTs and non-gated unenhanced chest CTs, but reported performance metrics are445

not comparable with those in Table 4.446

Note that our model performs well on the full DISCHARGE test set (F1-score=0.881),447

however due to the large variability in the dataset and inclusion of scans with motion and448

metal artifacts, the performance is lower than on the orCaScore test set (F1-score=0.958).449

Similar dataset dependent performance differences can be seen in Table 3 and 4 by Wolterink450

et al.3 and Zhang et al.8. In Section III.E. we analyze different influencing factors to find451

reasons for these surprising findings.452

The per patient risk categories were predicted based on the estimated agatston score of453

III.C. Performance comparison with other methods
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Methods Interaction Dataset
# scans (train, test)

ICC
(Vol)

Sen.
(Vol)

F1.
(Vol)

Observer 13 Manual CSCT (-, 40) 0.998 0.985 0.9860
Observer 23 Manual CSCT (-, 40) 0.984 0.998 0.975
Shahzad et al.42 Automatic CSCT+CCTA (209, 40) 0.971 0.621 0.893
Yang et al.10 Semi-Auto. CSCT+CCTA (40, 40) 0.992 0.940 0.968
Kelm et al.43 Automatic CSCT+CCTA (32, 40) 0.980 0.838 0.943
Kondo et al.8 Semi-Auto. CSCT+CCTA (32, 40) 0.621 0.513 0.623
Durlak et al.44 Automatic CSCT (32, 40) 0.989 0.835 0.951
Wolterink et al.43 Automatic CSCT (373, 40) 0.986 0.845 0.947
Zhang et al.8 Automatic CSCT (129, 40) 0.991 0.911 0.954
Gogin et al.7 Automatic CSCT (783, 40) 0.995 0.968 0.975
Proposed network
(DISCHARGE train) Automatic CSCT (215, 40) 0.994 0.955 0.958

Proposed network
(orCaScore train) Automatic CSCT (32, 40) 0.984 0.961 0.928

Table 3: Performance comparison between our model and other state-of-the-art methods for
automated coronary calcium scoring in cardiac CT on the orCaScore test set. Comparison
is based on interclass correlation coefficient (ICC), Sensitivity (Sen.) and F1-score for CAC
volume. The first block shows the performance of the two observers on the orCaScore test
set. The second block shows results of all methods using non-contrast enhanced CT (CSCT)
and contrast-enhanced coronary CT angiography (CCTA) on the orCaScore test set. The
third block shows results of all methods using only CSCT on the orCaScore test set.

III.C. Performance comparison with other methods



Active MTL-Model for CAC Scoring page 19

Methods Dataset
# scans (train, test)

ICC
(Vol.)

Sen.
(Vol.)

F1
(Vol.)

Kurkure et al.46 CSCT (100, 105) - 0.921 -
Is̆gum et al.47 CSCT (228, 76) - 0.738 -
Brunner et al.48 CSCT (30, 30) - 0.863 -
Shahzad et al.42 CSCT (209, 157) - 0.839 -
Zhang et al.8 CSCT (129 with 5-fold CV) 0.986 0.905 0.946
Wolterink et al.43 CSCT (373, 530) 0.96 0.79 0.85
Vos et al.13 CSCT (373, 530) 0.97 - -
Zeleznik et al.49 CSCT (129, (441, 663, 4021)) 0.89, 0.80, 0.792 - -
Velzen et al.50 CSCT (373, 529) 0.970 - -
Proposed network
(DISCHARGE train)

CSCT (215, 1047)
-DISCHARGE test 0.955 0.841 0.881

Proposed network
(DISCHARGE train)

CSCT (215, 154)
-CADMAN test 0.847 0.941 0.822

Table 4: Results of state-of-the-art methods for automated coronary calcium scoring in car-
diac CT on non-public datasets. Results are compared in terms of interclass correlation
coefficient (ICC), Sensitivity (Sen.) and F1-score. The method ”Proposed network (DIS-
CHARGE train)” refers to the proposed uncertainty weighted MTL-model trained on the
DISCHARGE training set. The proposed network was evaluated on the DISCHARGE test
set and CADMAN test set.

III.C. Performance comparison with other methods
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the CAC segmentations and compared with the risk categories based on the reference an-454

notations. The confusion matrices of risk category predictions and corresponding linearly455

weighted Cohen’s kappa (κ) for all three datasets are shown in Table 5. We use a linearly456

weighted kappa because risk categories are on an ordinal rating scale and the deviations457

are weighted differently depending on their size. It shows that κ is much higher for the458

orCaScore dataset (κ=0.97) compared to the DISCHARGE (κ=0.80) or CADMAN dataset459

(κ=0.80). Misclassifications of the risk category occurs mainly between category I and II460

because of false positive predictions.461

a) DISCHARGE test set, κ = 0.80 b) orCaScore training set, κ = 0.97
Automated risk category

Risk I II III IV Total
I 267 159 8 7 441
II 3 284 21 5 313
III 0 2 108 10 120
IV 0 0 2 171 173

Total 270 445 139 193 1047

Automated risk category
Risk I II III IV Total

I 7 1 0 0 8
II 0 8 0 0 8
III 0 0 8 0 8
IV 0 0 0 8 8

Total 7 9 8 8 32
c) CADMAN test set, κ = 0.80

Automated risk category
Risk I II III IV Total

I 39 16 4 0 59
II 0 49 3 2 54
III 0 1 18 2 21
IV 0 0 1 21 22

Total 39 66 26 25 156

Table 5: Confusion matrices show the agreement in CVD risk for the DISCHARGE test set
(a), orCaScore training set (b) and CADMAN test set (c). Categorization is based on the
total Agatston score with I: 0, II: [1,100), III: [100,300), IV: > 300.

III.D. Active learning evaluation with uncertainty weighted loss462

MTL-model463

We evaluate our uncertainty weighted loss MTL-model in an active learning scenario by464

conducting two experiments. In the first experiment, we analyzed the model performance465

trained in an active learning scenario for different loss weighting strategies (uncertainty466

weighted loss, static weighted loss) and sampling strategies (random sampling, hybrid sam-467

pling) described in Subsection II.C.. We initially trained the model with only 100 randomly468

III.D. Active learning evaluation with uncertainty weighted loss MTL-model
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selected samples (slices) and double the number of samples in each sampling round. Instead469

of retraining the model from scratch after each round, we continue training with the larger470

dataset and a reduced initial learning rate to 1e-04 compared to 5e-04 for the initial training.471

We useed early stopping based on the validation set to avoid overtraining in each sampling472

round. The Micro F1-score of the multi-class calcification segmentation is used to compare473

different models. As shown in Figure 5 with uncertainty weighted loss and hybrid sampling474

method, the model required only three sampling rounds and 800 annotated slices (12% of475

the training set) to achieve similar performance (Micro F1-score=0.846) as when trained on476

the full training set (Micro F1-score=0.849).477

Figure 5: Performance comparison between different loss weighting methods (static weighted
loss and uncertainty weighted loss) as well as different sampling methods (random sampling
and hybrid sampling) in an active learning scenario.

To compare the model performance based on the used loss weighting strategy and sam-478

pling method after three sampling rounds, we compare the model performance proportion479

(compared to uncertainty weighted model on the full dataset) in an active learning scenario480

in Table 6. It can be seen that the uncertainty weighted loss outperforms static weighting for481

random and hybrid sampling by 6.4% and 4.9%, respectively. This can be explained by the482

III.D. Active learning evaluation with uncertainty weighted loss MTL-model
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fact that the data distribution of the training set is changing in each sampling round and483

especially during the first sampling rounds. The uncertainty weighted loss method can com-484

pensate for this distribution shift, but static weighted loss cannot. It can also be seen that485

hybrid sampling outperforms random sampling for static weighted and uncertainty weighted486

loss by 5.4% and 4.0%, respectively. The hybrid sampling method selects only the most487

informative image slices and can therefore reduce number of required samples.488

Random sampling Hybrid sampling
Static-weighted loss 89.28% (0.758/0.849) 94.70% (0.804/0.849)
Uncertainty-weighted loss 95.64% (0.812/0.849) 99.65% (0.846/0.849)

Table 6: Model performance proportion of the active learning model after three sampling
rounds compared to the performance of the uncertainty weighted loss MTL-model trained
on the full dataset.

The labeling of the additional coronary artery region annotations requires extra time,489

even if the annotation process is an efficient semi-automatic process described in Sec-490

tion II.A.3.. An approximation of the required annotation time for 1) coronary calcifications,491

2) coronary calcifications and coronary artery regions and 3) only informative slices of coro-492

nary calcifications and coronary artery region was investigated empirically and is shown in493

Table 7. It shows that annotation of CAC and CAD with active learning reduces the an-494

notation cost to approximately one-third, compared to labeling of calcifications on the full495

training set, even though labeling CAC and CAD is more time consuming.496

Annot. time
per slice [s]

Number of
labeled slices

Annot. time
training set [s]

Improvement
ratio

CAC 4.0 6721 26884 1.0
CAC + CAR 12.0 6721 80652 3.0
CAC + CAR + AL 12.0 800 9600 0.36

Table 7: Approximated annotation time for annotation of coronary artery calcifications
(CAC) compared to annotation of coronary calcifications and coronary artery regions
(CAC+CAR) and annotation of coronary calcifications and coronary artery regions using
active learning (CAC+CAR+AL).

In a second experiment, we analyzed the impact of the number of training samples on497

the estimated optimal weighting parameter α in Equation (3) using a grid search method.498

Therefore, we trained the static weighted loss model multiple times with varying weighting499

parameter α from 0.1 to 0.9 and step size of 0.1 for a very small randomly selected dataset500

III.D. Active learning evaluation with uncertainty weighted loss MTL-model
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(only 100 samples) and compared the results when trained on the full dataset. It turns out501

that the estimated optimal parameter of the full dataset α = 0.4 does not match with the502

optimal weighting parameter of the small dataset α = 0.2 because the small dataset does not503

represent the data distribution of the full dataset. If a non-optimal parameter value would504

have been selected after the first sampling round of the active learning method, optimal per-505

formance would not have been achieved. Alternatively, α could have been redetermined in506

each sampling round, but this would be computationally very expensive. A detailed analysis507

can be found in Figure S2 in the supplementary material.508

III.E. Influence of image noise, metal artifacts, motion artifacts and509

image quality on the model performance510

The performance rises by 4.6% if CT scans with severe image noise, metal artifacts, motion511

artifacts and image quality are excluded. We can see in Table 3 and Table 4 that the test512

performance on the orCaScore test set (Micro F1-score = 0.961) is much higher compared to513

the test performance on the DISCHARGE dataset (Micro F1-score = 0.881). To explain the514

performance difference, we analyzed the influence of four factors 1) image noise, 2) metal515

artifacts, 3) motion artifacts, 4) image quality. We estimated the noise using a method516

similar to Christianson et al..51 First we segmented the CT image into the heart-related517

tissue types (–200 to 140 HU), second, a noise image filter52 was applied to the segmented518

region, third, a histogram was generated and the highest peak was selected as noise level.51519

The noise levels of all CT scans of the test dataset were normalized using z-score53 and the520

most noisy 20% were labeled as noisy CT scans. Metal artifacts and motion artifacts were521

determined visually and scans were labeled according to their presence or absence. Image522

quality was visually assessed by a high level of disturbance or anatomical abnormalities and523

labeled as good or bad quality, accordingly. Note that none of the CT scans in the test524

set were deemed as nondiagnostic (unsatisfactory for diagnosis) by a radiologist. Examples525

for the four influencing factors are shown in Figure 6. It shows that the Micro F1-score526

ranges from 0.881 including all scans in the test set to 0.927 if all noisy scans, scans with527

metal or motion artefact and poor quality images are excluded. When only noisy images are528

excluded, performance increases by 3.1%. Surprisingly, when we exclude images with severe529

motion artifacts, performance drops only by 0.02%. This can by explained by the fact that530

in motion artifacts, calcifications appear very large, resulting in a high number of “falsely”531

III.E. Influence of image noise, metal artifacts, motion artifacts and image quality on the
model performance
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Figure 6: Image examples with severe image noise (A), metal artifacts (B), motion artifacts
(C), low image quality (abnormality provoked by hiatal hernias) (D).

labeled true positives in the data set. Excluding samples with motion artifacts decreases the532

number of true positives and thus the corresponding Micro F1-score. A detailed analysis533

of the influencing factors and its influence on the model performance can be found in the534

supplementary material.535

IV. Discussion536

In this paper, we have proposed an MTL-model with uncertainty weighted loss for coronary537

calcium scoring in ECG-gated, non-contrast enhanced cardiac CTs. The model can be trained538

in an active learning scenario and requires only 12% of the training data and approximately539

one-third of the annotation time to achieve the same performance as when trained with the540

full dataset.541

To the best of our knowledge, our model is the first that performs segmentation of coronary542

artery regions (CAR) based on weak annotations and segmentation of coronary calcifications543

(CAC) in an end-to-end framework. We compared our multi-task models with a single-544

task model (multiclass U-Net) and a sequential model. It can be seen in Table 2 that the545

multi-task models outperform other models in terms of positive predictive value, sensitiv-546

ity, F1-score and Micro F1-score. The benefits of an MTL-model compared to a multiclass547

U-Net and a sequential model are the shared information between coronary artery region548

segmentation task TR and calcification segmentation task TL. In contrast to the multiclass549

U-Net, the MTL-model is able to learn important spatial information from weakly labeled550

samples and is able to transfer this knowledge for segmentation of coronary calcifications.551

Explanation techniques such as layer wise relevance propagation54 could lead to a deeper552

understanding about different prediction strategies but they are beyond the scope of this553
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paper.554

To investigate the uncertainty weighted loss, we compared the performance with a MTL-555

model trained using static weighted loss. When using optimal weighting parameter, the556

performance is similar, but it is important to note that the determination of the optimal557

weighting parameter value is a challenging and expensive process and even more difficult to558

estimate in an active learning scenario.559

To reduce labeling costs, we investigated our uncertainty weighted multi-task network in an560

active learning scenario and could show that our model reaches optimal performance with561

substantial less training samples. The uncertainty weighted loss MTL-model is able to bal-562

ance losses when the data distribution is changing after each sampling round. We compared563

different active learning scenarios and could show in Figure 5 that uncertainty weighted loss564

outperforms static weighted loss in random sampling and hybrid sampling. The biggest dis-565

advantage of static weighting is the estimation of weighting parameter α, which is difficult566

to obtain and sensitive to the size of the training set shown in Figure S2 (supplementary567

material). In contrast to T. Gong et al.55, we did not notice more instability issues when568

our uncertainty weighted loss model was trained on small datasets.569

We compared our uncertainty weighted MTL-model with other methods in Table 3 on the570

orCaScore dataset and could show that our model performs very good in terms of F1-571

score, ICC and sensitivity using only CSCT. To compare the performance with respect to572

the dataset, we tested our model on three different datasets. To our surprise, the model573

trained on the DISCHARGE training set performed better on the orCaScore test set (Mi-574

cro F1-score=0.958) than on the DISCHARGE test set (Micro F1-score=0.881). The test575

performance on the CADMAN dataset (Micro F1-score=0.822) was even lower than on the576

DISCHARGE test set due to a higher number of false positive predictions. This can be577

explained by a higher level of noise in the CADMAN dataset, since it contains only filtered578

back projections. The influence of noise can also be reflected in the higher number of lesion579

candidates per scan in Table 1 for the CADMAN and DISCHARGE dataset.580

The predictions of cardiovascular disease (CVD) risk categories based on the segmentations581

in Table 5 show a very good agreement of κ = 0.97 for the orCaScore dataset but a lower582

agreement of κ = 0.80 for the DISCHARGE test set. Mislabeled noise leads to a high583

false positive rate between risk category I (total Agatston score is 0) and II (total Agat-584

ston score between 1 and 100) and similar findings have been made in R. Zeleznik et al..49585
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We also trained our model on the orCaScore training set with additional annotations for586

CAR and reached only slightly lower performance (Micro F1-score=0.928). To gain a better587

understanding of the different influencing factors (exclusion criteria) related to model per-588

formance, we compared the performance after exclusion of scans due to 1) image noise, 2)589

metal artifacts, 3) motion artifacts and 4) image quality). If all exclusion criteria were met,590

the Micro F1-score increased from 0.886 to 0.931. We have also shown that image noise is591

one of the most influencing factors on model performance beside metal artefacts and image592

quality. Scans with motion artifact had no effect on performance, which can be explained593

by visual expansion of the lesion area due to motion, mainly in the proximal RCA, leading594

to overestimation of the lesion volume in both the labeling phase by the radiologist and the595

prediction phase by the network.596

IV.A. Limitations597

We have seen that the convergence of the MTL-model trained with static weighted loss was598

more sensitive to changes of the learning rate compared to uncertainty weighted loss when599

trained on a small datasets. Nevertheless, training time requires several hours which makes600

tuning of the hyper-parameter challenging and limits the possibility to draw general conclu-601

sions.602

Our method is processing 2D axial CT slices. The usage of 3D-information might be benefi-603

cial as shown in Zhang et al. 8 and recently published methods based on 3D-CNN ensembles604

7 achieved very good results. Since our active learning approach is based on the labeling605

of only the most informative slices the 3D-annotations would be sparse. Learning dense 3D606

segmentations from sparse annotations can be challenging in a multi-task network 56 there-607

fore we leave a 3D extension of our method for future work.608

Furthermore, reference standards for the DISCHARGE and CADMAN datasets were pro-609

vided by only one experienced observer for coronary calcifications and coronary artery re-610

gions. Independent annotations from a second observer and clarification of discrepancies611

by consensus would improve the quality of the dataset but since the annotation process re-612

quires expert knowledge and is tedious and time-consuming, we leave this improvement of613

the dataset for a further research project.614

The analysis of influencing factors is limited to four factors (image noise, metal artifacts, mo-615

IV.A. Limitations
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tion artifacts, image quality), yet other factors such as reconstruction method, scanner type,616

slice thickness or slice spacing are known to influence model performance but are beyond617

the scope of this work and will be investigated in future work.618

IV.B. Further research directions619

With respect to our results, we have to critically reflect the question which loss and per-620

formance metrics are best suited for risk prediction of coronary heart disease events. Our621

model performs well on F1-scores, ICC and sensitivity of CAC volume but lacks precision622

on CVD risk agreement. In further analysis we will investigate how a direct prediction of the623

risk categories 13 can be integrated into our model to improve risk categorization. A major624

focus will be on improving the prediction of patients with zero calcium score. We also plan to625

extend our model from 2D input data to 3D to take advantage of 3D context information and626

overcome our limitations. We evaluated the uncertainty weighted MTL-model in an active627

learning scenario using our hybrid sampling method and believe that the model is also ap-628

plicable with other sampling strategies but leave further analysis as future work. Additional629

future work may investigate how radiologist-in-the-loop frameworks might use explanations630

to guide a more efficient active learning based labeling process for coronary calcium scoring.631

A deeper understanding of the model behavior supported by explanations and quantification632

of model uncertainties would enable the radiologist to understand predictions and assist in633

medical decision making.634

V. Conclusions635

In this work we have proposed a multi-task model with uncertainty weighted loss for coronary636

calcium scoring. The model improves calcium scoring performance by extracting shared637

informative features from the two tasks of coronary artery region (CAR) segmentation and638

coronary artery calcifications (CAC) segmentation. The model performance was evaluated639

using a large multi-center dataset of the DISCHARGE trial (1047 CSCTs), a single-center640

dataset of the CAD-Man study (156 CSCTs) and the multi-center orCaScore test set (40641

CSCTs). When trained in an active learning scenario, the model achieves optimal perfor-642

mance with only 12% of the training samples, reduces annotation time to one-third and643

IV.B. Further research directions
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enables the integration of the radiologist into the training loop. The good performance644

and the reduction of required annotated image slices might enable the training of models645

applicable in a clinical setting.646
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Active Multi-Task Learning with Uncertainty Weighted Loss for940

Coronary Calcium Scoring941

Supplemental Materials942

I. Dataset selection process943

Figure S1 shows the selection process for the DISCHARGE and CADMAN datasets.944

For the DISCHARGE dataset, we considered all 3883 patients (Np = 3883) of the DIS-945

CHARGE trial as potential eligible patients. First, we excluded all patients who were not946

part of the study CT cohort. Second, at the date of 2020-09-01, all patient without any non-947

contrast enhanced cardiac CTs (CSCT) of 3.00 mm were excluded. Third, for each patients948

with multiple CSCT reconstructions, we randomly selected one of the reconstructions and949

excluded the rest. Fourth, we excluded all CSCTs with a slice spacing ̸= 3.0 mm.950

For the CADMAN dataset, we considered all 340 patients of the CADMAN trial as potential951

eligible patients. First, we excluded all patients who are not part of the study CT cohort.952

Second, we excluded all patients without CSCT. Third, we excluded all CSCT scans with a953

slice thickness ̸= 3.0 mm or slice spacing ̸= 3.0 mm.

(a) Flowchart of the dataset selection process for
the DISCHARGE dataset

(b) Flowchart of the dataset selection process for
the CADMAN dataset

Figure S1: Flowchart of the dataset selection process for the DISCHARGE dataset and
CADMAN dataset.954



page 2 Föllmer et al.

II. Dependency between model performance and loss955

weighting parameter956

The estimation of the optimal weighting parameter is challanging when trained in a active957

learning scenario. In Figure S2 we see the dependency between model performance (Micro958

F1-score) and static weighting parameter value α, trained on a small, randomly selected959

training set (100 samples) and the full training set (6721 samples). The model was train960

with varying weighting parameter α from 0.1 to 0.9 and step size of 0.1. It shows, that961

the optimal parameter value α = 0.2 of the small training does not match with the optimal962

parameter value α = 0.4 of the full training set.963

Figure S2: Dependency between model performance and loss weighting parameter value α
for a very small training set with 100 samples and the full training with 6721 samples.
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III. Comparison of model predictions between the se-964

quential model and the uncertainty weighted loss965

MTL-model966

To analyze different prediction strategies of the sequential model and the uncertainty967

weighted loss MTL-model, we compared the predition results of an image with severe image968

noise. The uncertainty weighted MTL-model performs both task simultaneously and extracts969

joint informative features which helps to avoid false positive predictions of calcifications in970

noisy image slices. Figure S3 shows that the sequential model has problems to distinguish971

noise from micro calcifications and predicts more false positive than the uncertainty weighted972

MTL-model.

Figure S3: Comparison of model predictions for the uncertainty weighted MTL-model and
sequential model. The first row shows the image slice (A) with a high level of noise, predicted
coronary artery regions (CAR) (B) and coronary calcifications (CAC) (C) of the uncertainty
weighted MTL-model. The second row shows the predicted coronary artery regions (CAR)
(D) and coronary calcifications (CAC) (E) of the sequential model. In contrast to the
sequential mode, joint learning of the two tasks and extraction of shared features, supports
the ability to predicts fewer false positive calcifications in noisy images.
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973

IV. Dependency between model performance and im-974

age noise, metal artifacts, motion artifacts and im-975

age quality976

The model performance of the test set is strongly dependent on the selection criteria of977

the included CT scans. To analyze the influence of the four factors 1) image noise, 2)978

metal artifacts, 3) motion artifacts, 4) image quality, we performed a subset analysis of the979

DISCHARGE test set. Each row in Figure 1 corresponds to a subset of the DISCHARGE980

test set. The columns Noisy scan, Metal artifact, Motion artifact and Image quality are981

exclusion criteria according to which the scans are included (3) or excluded (7).

# Scans Noisy
scan

Metal
artifacts

Motion
artifacts

Image
quality F1-score Sen. PPV κ

1047 3 3 3 3 0.881 0.842 0.924 0.800
924 7 3 3 3 0.914 0.887 0.942 0.834
1030 3 7 3 3 0.886 0.851 0.923 0.804
910 7 7 3 3 0.920 0.899 0.941 0.839
1025 3 3 7 3 0.878 0.833 0.929 0.795
907 7 3 7 3 0.914 0.881 0.950 0.828
1009 3 7 7 3 0.884 0.843 0.929 0.798
893 7 7 7 3 0.922 0.895 0.950 0.833
1028 3 3 3 7 0.886 0.851 0.924 0.809
910 7 3 3 7 0.919 0.897 0.942 0.839
1012 3 7 3 7 0.891 0.861 0.924 0.813
897 7 7 3 7 0.925 0.909 0.941 0.845
1006 3 3 7 7 0.884 0.843 0.930 0.804
893 7 3 7 7 0.920 0.892 0.951 0.833
991 3 7 7 7 0.890 0.854 0.929 0.807
880 7 7 7 7 0.927 0.905 0.950 0.839

Table 1: Dependency between model performance and exclusion criteria (image noise, metal
artifacts, motion artifacts, image quality) on volume level for the DISCHARGE test dataset
(3- included, 7- excluded).

982
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V. Deviation of the uncertainty weighted total loss983

We derive our total loss function based on the uncertainty weighted loss method of Cipolla984

et al.19. The outputs of the coronary calcification segmentation decoder and coronary artery985

region segmentation decoder are defined as fW
cL

(x) and fW
cR

(x), respectively. In the derivation986

of the total loss in Cipolla et al., a scaled version of the output fW(x) is squashed through987

a softmax function.988

p
(
y | fW(x)

)
= Softmax

(
1

σ2
fW(x)

)
=

exp( 1
σ2f

W
c (x))∑

c′ exp(
1
σ2fW

c′ (x))
(E1)989

The log likelihood for class c can be writte as990

log p
(
y = c | fW(x), σ

)
=

1

σ2
fW
c (x)− log

∑
c′

exp

(
1

σ2
fW
c′ (x)

)
(E2)991

with fW
c (x) the c’th element of the vector fW(x).992

We define the likelihood to factorise over the two outputs with the scaling parameters993

σR and σL, hence994

Ltotal(W, σR, σL) =− log p
(
yR = cR,y

L = cL | fW(x)
)

= log(Softmax(yR = cR | fW, σR) · Softmax(yL = cL | fW, σL))

=− log
exp( 1

σ2
R
fW
cR

(x))∑
c′R

exp( 1
σ2
R
fW
c′R

(x))
− log

exp( 1
σ2
L
fW
cL

(x))∑
c′L
exp( 1

σ2
L
fW
c′L

(x))

(E3)995
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∑
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σ2
2

(E4)996

With the simplification19 in equation (E4) we get:997

Ltotal(W, σR, σL) =− log
exp( 1

σ2
R
fW
cR

(x))

σR(
∑

c′R
exp(fW

c′R
(x)))

1

σ2
R

− log
exp( 1

σ2
L
fW
cL

(x))

σL(
∑

c′L
exp(fW

c′L
(x)))

1

σ2
L

=− 1

σ2
R

log
exp(fW
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exp(fW

c′R
(x))

+ log(σR)

− 1

σ2
L

log
exp(fW

cL
(x))∑

c′L
exp(fW

c′L
(x))

+ log(σL)

(E5)998
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Analogous, we propose our total loss based on the focal losses defined in (1) and (2)999

claimed on the basis of our experiments.1000

Ltotal(W, σR, σL) =− 1

σ2
R

(log
exp(fW

cR
(x))∑

c′R
exp(fW

c′R
(x))

wcR(1−
exp(fW

cR
(x))∑

c′R
exp(fW

c′R
(x))

)γR) + log(σR)

− 1

σ2
L

(log
exp(fW

cL
(x))∑

c′L
exp(fW

c′L
(x))

wcL(1−
exp(fW

cL
(x))∑

c′L
exp(fW

c′L
(x))

)γL) + log(σL)

=
1

σ2
R

LR(W) +
1

σ2
L

LL(W) + log σR + log σL

(E6)1001

with the two losses:1002

LR(W) = − log(Softmax(yR = cR | fWcR ))wcR(1− Softmax(yR = cR | fWcR ))γR (E7)1003

LL(W) = − log(Softmax(yL = cL | fWcL ))wcL(1− Softmax(yL = cL | fWcL ))γL (E8)1004

The final weighted loss depends on the model parameters W and the two task specific1005

scalars σR and σL.1006
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