
Investigating effects of different artefact types on Motor Imagery BCI

Laura Frølich1, Irene Winkler2, Klaus-Robert Müller3, Member, IEEE, and Wojciech Samek4, Member, IEEE

Abstract— Artefacts in recordings of the electroencephalo-
gram (EEG) are a common problem in Brain-Computer In-
terfaces (BCIs). Artefacts make it difficult to calibrate from
training sessions, resulting in low test performance, or lead
to artificially high performance when unintentionally used for
BCI control. We investigate different artefacts’ effects on motor-
imagery based BCI relying on Common Spatial Patterns (CSP).
Data stem from an 80-subject BCI study. We use the recently
developed classifier IC MARC to classify independent compo-
nents of EEG data into neural and five classes of artefacts. We
find that muscle, but not ocular, artefacts adversely affect BCI
performance when all 119 EEG channels are used. Artefacts
have little influence when using 48 centrally located EEG
channels in a configuration previously found to be optimal.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) allow a user to control
a computer through his or her brain activity. The brain ac-
tivity is often examined using electroencephalography (EEG)
recordings, which offer a high temporal resolution and can be
acquired with relatively low-cost, transportable equipment.

EEG signals show fluctuations of electrical acitivity as
measured from electrodes placed on the scalp. These are
also affected by electrical sources unrelated to brain activity,
referred to as artefacts, which often produce larger potential
differences than brain activity. Some artefacts are of physio-
logical origin, such as eye movements, muscle contractions,
the heartbeat etc. while others, such as loose electrodes and
the power grid, are technical artefacts.

A. Motivation

An often cited goal of BCIs is to enable paralysed patients
to communicate. Since healthy subjects are easier to recruit,
development of BCIs is usually carried out on healthy
subjects. If a BCI system developed on healthy subjects
turns out to be controlled by artefacts, it will be of little use
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in patients. Even if a BCI system is developed for healthy
subjects, artefacts may be problematic if the stimulus during
training induces other artefacts than those from online use.

Some artefacts may affect BCI training more than others
and the methods for remedying different artefacts’ effects
differ. By investigating artefacts’ influence on BCIs we aim
to identify those most detrimental to performance which can
then be targeted to gain the largest improvements.

B. Previous work on artefacts’ effects on BCIs

Only few studies have previously inspected the influence
of artefacts on motor-imagery based BCIs. McFarland et
al. inspected the presence of muscle artefacts in 10 BCI
sessions of novices [1]. Muscle artefacts either caused or
indicated frustration with lacking BCI control. Winkler et al.
investigated the performance of a motor-imagery based BCI
system as a function of the number of removed artefactual
data dimensions [2]. No substantial decrease in performance
was observed until fewer than 12 dimensions remained in
training data. Others have proposed variations of Common
Spatial Patterns (CSP) to cope with artefacts [3], [4], [5], [6],
[7]. To the best of our knowledge, no study has previously
attempted to quantify the influence of different types of
artefacts on motor-imagery based BCI.

C. Aim and research questions

We wish to learn how various artefact types affect motor-
imagery based BCI systems. Using data from an 80-subject
BCI study, we applied Independent Component Analysis
(ICA) to linearly transform EEG signals into a space of
independent source components (ICs). We then used the
recently developed multi-class classifier ’IC MARC’ to label
each component as neural activity or as one of five artefact
types (blinks, lateral eye movements, heartbeat artefact,
muscle artefact, or mixed artefact) [8]. Mixed artefacts are
artefacts that do not clearly belong to one of the other four
artefact classes and may also include traces of neural activity.
We answered the following research questions:

1) What types of artefacts are most common in training
data (after automatic removal of noisy channels)?

2) Do participants use information contained in artefac-
tual ICs to control the BCI system?

3) Does removing or regularising away from artefactual
ICA directions improve BCI performance?

4) Do the answers for the above questions differ de-
pending on whether all available EEG channels (119
channels) or only the 48 central channels found to be
optimal by Sannelli et al. [9] are used?



II. METHODS & MATERIALS

A. Data
Data stem from Blankertz et al. [10], who recorded 80

BCI-novices in a classical motor-imagery paradigm. Subjects
were paid 8 EUR per hour for participation [10]. Participants
first performed motor imagery with the left hand, right hand
and both feet in a training measurement. Every 8 s, the
requested BCI task of the current trial was indicated by a
visual cue. Following calibration of the system, the test data
were recorded using the two classes that provided best dis-
crimination. Participants controlled a 1D cursor application.
For the training data 75 trials for each motor condition were
recorded, while the test data contained 150 trials from each
condition. All BCI performance tests were performed on test
data for each participant, while ICA demixing and training
of the BCI-classifier were based on calibration data.

EEG data were recorded from 119 electrodes placed
according to the extended 10-20 system at a frequency of
1000 Hz. For our offline re-analysis, data were band-pass
filtered between 8-30 Hz. Epochs were defined as 0.75-3.5 s
after event markers. In the training data, channels with
excessively low or high variance were automatically rejected.

B. Determining effects of artefacts on BCI performance
1) Common Spatial Patterns: Common Spatial Patterns

is a standard feature extraction method for motor-imagery
based BCIs [11]. CSP extracts spatial filters as linear channel
combinations, w, for which the variance differs most be-
tween conditions. Formally, CSP filters are the eigenvectors
corresponding to the largest (and smallest) eigenvalues λ of
the generalized eigenvalue problem C1w = λC2w, found
as:

argmax
w

wTC1w

wTC2w
. (1)

The channel × channel matrix Ci is the average of covari-
ance matrices from condition i trials. We used the filters from
the three highest and lowest eigenvalues for classification.

2) Automatic classification of independent components:
For each subject, we ran an ICA on the concatenated training
data epochs. We used the extended Infomax algorithm in
EEGLab [12] to extract enough ICs to account for 99.9%
of data variance. Each IC consists of its time course and a
spatial pattern which expresses the IC’s influence on scalp
electrodes. Subsequently, we used the previously developed
automatic classifier “IC MARC” to classify ICs [8].

IC MARC uses multinomial regression to assign proba-
bilities to ICs of belonging to each of six classes (blinks,
lateral eye movements, electrical heartbeat, muscle, neural,
or mixed artefact). We used features of the scalp maps for
classification. This is, to the best of our knowledge, the only
existing classifier allowing distinction between both ocular
and muscular artefacts. Most other classifiers can distinguish
between different ocular, but not muscular artifacts (e.g. [13],
[14]), or cannot be used in a multi-class setting.

ICs were classified as belonging to the class for which the
highest probability was predicted, except if the highest prob-
ability was for an ocular artefact class and that probability

was less than 80%. Such ICs were classified as mixed. Fig. 1
shows patterns from ICs classified by IC MARC.1

For the analysis presented here, we consider three groups
of artefactual ICs: 1) muscle artefacts, 2) ocular artefacts
(eye blink and horizontal eye movements), and 3) all non-
neural components (eye blink, electrical heartbeat, lateral eye
movement, muscle, and mixed artefacts).

3) EEG channel configuration: If only central channels
are kept it is likely that some artefacts become less pro-
nounced or disappear, as e.g. muscle artefacts affect outer
electrodes most (see Fig. 1). Since artefacts may affect
electrode configurations differently we analysed both the full
electrode configuration and the electrode configuration found
to be optimal by Sannelli et al. that consists of 48 centrally
located electrodes [9].

4) BCI performance on artefactual and non-artefactual
data: We applied CSP to the activity contained in artefactual
ICs to quantify the amount of class-discriminative informa-
tion in artefacts. We also investigated the BCI performance
when different groups of artefacts were projected out.

5) BCI performance when artefacts are regularised
against: Since artefactual ICs may contain traces of neural
activity, we might expect CSP performance to increase when
we regularise against artefactual directions instead of com-
pletely removing them. This should allow the CSP algorithm
to find spatial filters in the artefactual directions if there is
enough class-discriminative information to warrant this.

By introducing a channel × channel regularisation matrix
K (and a regularisation parameter λ ∈ R) in the CSP
objective as follows, spatial filters that cause large variance
along the directions of K are discouraged [15]:

argmax
w

wTC1w

wT ((1− λ)C2 + λK)w
. (2)

To regularise against artefactual directions, normalised
patterns of artefactual ICs were collected as columns in a
matrix, Aart. Analyses not reported here showed no signif-
icant difference in performance between making patterns or
time series of ICs have norm one.

The penalty matrix K was set equal to AartA
T
art to find

spatial filters w such that ||wTAart|| is minimal, where || · ||
denotes the euclidean norm. This choice can be understood
by looking at the ICA decomposition of the EEG data X ,
given as X = AartSart + AneuroSneuro, where S contains
the time courses of ICs in rows and the subscript neuro
denotes neural ICs. The source activity extracted by a spatial
filter w, given as w>X , contains minimal contributions from
artefactual activity Sart if ||wTAart|| is minimized. (For
more information on the interpretation of patterns and filters
we refer the reader to [16].)

For each subject, the regularisation parameter λ was
chosen in a five-fold cross-validation on calibration data from
the values 0, 2−16, 2−15, . . ., 2−1, 0.6, 0.7, . . ., 1.

1Except for the heartbeat class, the examples are good demonstrations of
what one would expect in each class. Difficulty with the heartbeat class was
also found during the development of IC MARC and CORRMAP [8], [13].
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Fig. 1: Left: Examples of patterns of automatically classified ICs. Right: Locations of most active electrode in muscle ICs from all
subjects. Dot sizes represent the number of times electrodes were the most active in muscle ICs.

III. RESULTS

A. Most common artefacts
Mixed and muscle artefacts were the most and second

most common artefact classes, respectively. Using all chan-
nels, out of 6428 (range over subjects: 39-107) ICs, 33 (0-14)
were classifed as blinks, 1854 (4-43) as neural, 57 (0-4) as
heartbeats, 80 (0-9) as lateral eye movements, 1773 (8-45) as
muscular, and 2631 (5-86) as mixed. On the 48 channels, out
of 2925 (range: 22-45) ICs, 7 (0-4) were classifed as blinks,
1320 (6-25) as neural, 21 (0-4) as lateral eye movements,
276 (0-12) as muscular, and 1301 (5-33) as mixed.

B. Class-discriminative information in artefacts
Using the Wilcoxon signed rank test we found that error

rates significantly differed from chance (50%) when CSP was
trained on muscular or all non-neural ICs (p < 0.0001, both
channel configurations). When trained on ocular artefacts, the
performance did not differ from chance (p-values of 0.39 and
0.75 for the all- and 48-channel configurations, respectively).
This shows that only the muscle and non-neural artefact
groups contain class-discriminative information.

We used a sign test to compare the performance for each
subject when muscle artefacts were removed to the baseline
by looking at whether each trial was correctly or incorrectly
classified. On the full channel configuration, the performance
of 19 subjects significantly changed when muscle artefacts
were removed, 6 getting worse. On the 48-channel configura-
tion the performance of 17 subjects changed, 9 getting worse.
When removing all non-neural ICs, the performance of 12
and 17 subjects significantly decreased on the all-channel and
48-channel configurations while 10 and 12 subjects improved
on the two configurations, respectively.

C. Does removing or regularising away from artefactual ICA
directions improve BCI performance?

Table I shows error rates obtained from baseline CSP, CSP
trained on non-artefactual activity, and CSP with artefact
regularisation for all three artefact groups. Significance tests
were calculated using the Wilcoxon signed rank test. Since
subjects with the same performance in two methods are
not included in the comparision, some differences between
medians may be higher than others without showing cor-
responding significance. On the full channel configuration,

the only significant difference from baseline CSP was ob-
tained when regularising against muscle ICs, which improved
performance. Removing muscle ICs did not result in a
significant difference from the CSP baseline although the
median performance was better than that obtained with
regularisation. This shows that regularising gives a more
consistent improvement across subjects. With regularisation,
however, artefactual activity could still be used to gain
artificially high levels of BCI control.

On the 48-channel configuration muscle artefacts were not
as prominent, which is reflected by the lack of performance
improvement with regularisation against muscle ICs. In line
with the observation that ocular artefacts did not contain
class-discriminative information for either channel config-
uration, we observed that regularising against or removing
ocular ICs did not significantly impact performance.

Fig. 2 shows the relationship between improvements in
performance when removing non-neural ICs and the CSP
classification performance when training only on those
non-neural ICs, on the 48-channel configuration. A higher
error rate from training on artefacts implies less class-
discriminative information in the artefacts. Hence removing
such artefacts should make the neural signal clearer without
removing class-relevant data. This is indeed what the figure
shows since the improvement with artefact removal increases
with the error rate from training on artefacts.

When artefacts contain class-discriminative information it
could be due to traces of neural activity in the artefacts or to
the user employing artefacts to control the BCI. Fig. 3 shows

TABLE I: Error Rates

Muscle Ocular All non-neural
48 channels

CSP 28.25 (1.7)
CSP no artefacts 27.17 (1.7) 27.67 (1.7) 28.50* (1.7)
CSP IC regularised 29.50* (1.7) 29.17 (1.7) 28.83* (1.7)

All channels
CSP 31.75 (1.8)
CSP no artefacts 29.08 (1.8) 32.33 (1.8) 35.00 (1.7)
CSP IC regularised 31.42* (1.8) 33.50 (1.8) 32.00 (1.8)

Median error rates over 80 subjects from baseline CSP, CSP
trained on non-artefactual activity, and CSP with artefact
regularisation for three artefact groups (standard deviations in
parentheses). * indicates differences from baseline CSP (p <0.05).



an example indicating that artefacts were used to control the
BCI since performance decreased after artefact removal and
muscular artefact contamination is seen in the last two CSP
patterns before artefact removal but not after.

IV. CONCLUSION

We investigated the influence of different artefacts on
motor-imagery based BCIs. Using data from an 80-subject
BCI study and a recently proposed multi-class IC classifier,
we found that muscle artefacts alone and all non-neural
artefacts as a group have a small impact on the BCI system.
In contrast, ocular artefacts alone had no significant influ-
ence, probably because eye artefacts mostly affect frequency
ranges below those containing the motor-imagery µ-rhythm.

More specifically, we observed above-chance performance
when CSP was trained on muscular or mixed artefacts, but
not if trained on ocular artefacts. Up to 9 subjects used
muscle artefacts to improve their BCI control. This may be
problematic if healthy participants use artefacts to operate
a BCI system which should be transferable to severely
motor-impaired patients. However, we note that the overall
contribution of muscle artefacts was significant, but small.

When removing artefacts, BCI performance did not im-
prove, which is consistent with previously published analyses
that used a different automatic classifier of ICs [2], [17].
Regularising against muscle artefacts significantly improved
BCI performance when all available 119 channels were used
but significantly impaired performance for the more suitable
48-channel configuration.

Error rate when training is on artefactual ICs
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Fig. 2: Error decrease when CSP was run on neural ICs relative to
the performance on artefactual ICs. The circled dot represents the
subject whose CSP patterns are shown in Fig. 3.

After artefact removalBefore artefact removal

Fig. 3: The three most discriminative CSP patterns for class one
from all data and neural ICs only on the all-channel configuration.
Artefact removal increased the error rate from 11.67% to 17%.

We conclude that it is difficult to improve CSP perfor-
mance on the 48-channel configuration by artefact process-
ing. We conjecture that this difficulty may mainly arise from
using the motor-imagery paradigm which relies on activity
in the motor cortices, recorded from central scalp positions.
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