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ABSTRACT

In this paper we propose a hybrid tracking method which
detects moving objects in videos compressed according to
H.265/HEVC standard. Our framework largely depends on
motion vectors (MV) and block types obtained by partially
decoding the video bitstream and occasionally uses pixel do-
main information to distinguish between two objects. The
compressed domain method is based on a Markov Random
Field (MRF) model which captures spatial and temporal co-
herence of the moving object and is updated on a frame-to-
frame basis. The hybrid nature of our approach stems from
the usage of a pixel domain method that extracts the color
information from the fully-decoded I frames and is updated
only after completion of each Group-of-Pictures (GOP). We
test the tracking accuracy of our method using standard video
sequences and show that our hybrid framework provides bet-
ter tracking accuracy than a state-of-the-art MRF model. ?

Index Terms— Object tracking, compressed domain
analysis, video surveillance, H.265/HEVC, Markov Random
Field (MRF)

1. INTRODUCTION

Video object tracking is an important component of many
applications in computer vision such as motion-based recog-
nition, human-computer interaction, automated surveillance,
and traffic monitoring [1]. Tracking can be defined as the
problem of estimating the trajectory of an object in the im-
age plane as it moves around a scene. A tracking algorithm
assigns consistent labels to the tracked objects at subsequent
frames in a video [2].

Tracking algorithms can be classified in two broad cate-
gories according to their domain of operation: pixel domain
and compressed domain. Pixel domain algorithms are charac-
terized by their high accuracy but can also have high compu-
tational complexity. Such high computational complexity can
limit their usage in scenarios requiring real-time processing
of several video streams in parallel. One example scenario
is the analysis of videos obtained from surveillance cameras.
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Fig. 1: Block diagram of the proposed method. Blue shaded area
shows the components of the ST-MRF model from [3], green shaded
areas show the added components that incorporate pixel domain in-
formation.

On the other hand, compressed domain algorithms operate
with the data encoded in compressed video bitstream such as
motion vectors, block coding modes or transform coefficients
of the motion-compensated prediction residuals. Compressed
domain approaches generally have lower computational cost
compared to pixel domain approaches since they avoid a
full decoding of the video, thereby reducing the amount of
processing and storage requirements significantly. However,
they usually perform worse in terms of tracking accuracy due
to the lack of full pixel information. A good compromise
between the respective advantages of pixel and compressed
domain algorithms can be achieved by a hybrid framework,
which resorts to pixel domain information sparingly, thereby
improving the tracking accuracy while still maintaining a low
computational complexity.

In this paper we present a hybrid object tracking method
which extends the compressed domain method [3] proposed
for tracking H.264/AVC videos using color information ob-
tained by fully decoding the I frames and apply our method
to H.265/HEVC video bitstreams. The results show that our



Fig. 2: Comparison of the tracking performance of [3] (top) and our proposed method (bottom) for frames 130, 190, 240, and 275 (left to
right) of the Mobile Calendar sequence. Blue denotes true positives detected by the respective methods. Our method manages to track the
ball fairly accurately along the sequence whereas [3] fails to distinguish between the ball and the train during some parts of the sequence.

method helps to overcome limitations of the original algo-
rithm in [3] and increases the tracking accuracy.

The remainder of this paper is organized as follows.
Section 2 presents some of the state-of-the-art compressed
domain and hybrid video object tracking algorithms. Sec-
tion 3 describes the proposed hybrid video object tracking
algorithm. Experimental results of our approach are reported
in Section 4, and Section 5 concludes the paper.

2. RELATED WORK

Several moving object detection and tracking approaches in
compressed domain were proposed over the years with recent
work focusing on H.264/AVC video bitstreams [4]. Poppe et
al. [5] introduced a syntax level algorithm based on the size
of a macroblock (MB) in bits. In an initial training phase,
their algorithm creates a background model, and in the fol-
lowing steps new images are compared with this model to
determine MBs that correspond to moving objects. Laumer
et al. [6] proposed an algorithm that is solely based on MB
types in H.264/AVC video bitstream to detect moving objects.
They exploit the inherent motion information contained in
MB types based on encoder’s motion estimation process, and
define MB type weights for all possible MB types. Assigned
weights indicate the probability that a MB belongs to a mov-
ing object in the scene. In a following work [7], Laumer et al.
extended their approach by creating spatio-temporal weight
maps using MB type information, and additionally used quan-
tization parameters (QP) of macroblocks to apply individual
thresholds to the block weights in order to segment the video

frames.
Approaches that combine pixel and compressed domain

were also presented in the literature. Wojaczek et al. [8] used
MB type information as a pre-processing step for fast evalua-
tion of video streams. Upon detection of an object, a pixel
domain person detector is employed to obtain a finer seg-
mentation. By fusing information from the two domains, full
video decoding is only performed when necessary. You et al.
[9] proposed a tracking algorithm using probabilistic spatio-
temporal MB filtering to segment and track multiple objects
in real-time. First, they use clustering to all non-skip MBs
in P frames. Then they apply spatial filtering to discard iso-
lated MBs followed by temporal filtering to remove erroneous
MBs. To refine the object trajectory, they further employ
background subtraction in I frames and motion interpolation
in P frames.

One of the earliest works that employed a Markov Ran-
dom Field (MRF) model for tracking was published by Zeng
et al. [10]. They merge similar motion vectors (MV) into
moving objects through minimization of the MRF energy and
define different MV types. Then they treat the tracking prob-
lem as a Markovian labeling procedure on the classified MV
field. Their MRF model considers the spatial continuity and
temporal consistency of MVs to track moving objects. How-
ever, their method does not take into account the potential
camera motion. Hence, it is only suitable for tracking ob-
jects captured by fixed cameras [4]. One of the prominent
works using an MRF model was presented in [3] by Khatoon-
abadi & Bajić. Instead of first classifying MVs into multi-
ple types as in [10], their method uses MV observations di-



rectly to compute a motion coherence metric. Furthermore,
they employ global motion compensation to deal with cam-
era movements and propose a new method to assign MVs to
intra-coded blocks based on the MVs of their neighbouring
blocks.

3. PROPOSED METHOD

Khatoonabadi & Bajić [3] treat the tracking problem in a
Bayesian framework. MV information in video bitstream is
used to infer the block labels ωt ∈ {0, 1} in frame t given
the labels ωt−1 in frame t − 1. The maximum-a-posteriori
solution (MAP) for ωt is found by maximizing

ωt = argmax
ω

Pmc(ωt−1 |ω, κt)︸ ︷︷ ︸
motion

coherence

Psc(κt |ω)︸ ︷︷ ︸
spatial

compactness

Ptc(ω)︸ ︷︷ ︸
temporal
continuity

(1)

where κt is the observed motion information. The three terms
in Eq. (1) correspond to three fundamental characteristics of
rigid objects: motion coherence, spatial compactness, and
temporal continuity. Motion coherence is defined as the rel-
ative consistency of the MVs belonging to an object. The
ST-MRF model of [3] characterizes the object’s motion by
a single representative MV and computes the deviation of a
MV of a block from this representative object MV. Spatial
compactness measure is based on the observation that most
rigid objects have a compact shape. Therefore, chance of a
block belonging to an object is high if its spatial neighbours
are known to belong to that object. Accordingly, ST-MRF
model quantifies compactness by computing a weighted sum
of labels assigned to the neighbourhood of the current block.
Temporal continuity measures the overlap between the label-
ing of the previous frame.

Although [3] displays a state-of-the-art tracking accuracy
for many standard test sequences, it fails to distinguish be-
tween two nearby objects with very similar MVs. One ex-
ample case is illustrated in Figure 2 for the Mobile Calendar
sequence. At around frame 100 the ball touches the train,
and they start to move in the same direction. Thus, they are
both assigned very similar MVs by the encoder. As a result,
a part of the train is also detected as the target object, and the
ST-MRF model starts to track that part of the train as well.
As the ball detaches from the train, the method stops tracking
the ball completely and starts to track only a part of the train.
Obviously, MVs are not informative enough to resolve such
tracking ambiguities.

We propose a hybrid approach to video object tracking
which relies on MV information, but also takes into account
the color information (Figure 1). Our approach assumes that
the color of the tracked object does not change too much over
the video. Parallel to the partial decoding of P-frames and
processing of MVs extracted from them, I frames in the bit-
stream are fully decoded. As the user selects the tracking ob-
ject in the first frame to initialize the labels for the ST-MRF

model, we utilize the first frame to create a Gaussian Mixture
Model (GMM) based on the color distributions of the object
pobj and the background pback. For this, we use the median
intensity values of 4 × 4 pixel blocks in YCbCr color space.
We found out that four Gaussians are sufficient to model the
intensity distributions in each color channel. We assume that
the estimated color probabilities stay (more or less) constant
throughout the sequence and calculate the posterior probabil-
ity that a block color χ(k) belongs to the object in terms of
inter-frame likelihood with respect to the frame 0.

pcol(χ(k)) =
pobj(χ(k))

pback(χ(k))
(2)

Note that for efficiency reasons we compute χ(k) only for I
frame blocks k. For every I frame we regularize the MAP
solution by adding the following color term to Eq. (1)

Pcol(ω) =
∏

n:Ψ(n)=1

pcol(χ(n)) (3)

where Ψ represent the candidate labeling. For efficiency rea-
sons we do not compute color information from P-frames, i.e.,
Pcol(ω) is set to a constant. We optimize for ωt using the It-
erated Conditional Modes (ICM) algorithm [11].

Fig. 3: Tracking accuracies of [3] (left) and the proposed approach
(right) in frame 51 of the Hall Monitor sequence. Green, blue, and
red colors denote true positives, false positives, and false negatives,
respectively.

4. EXPERIMENTS

4.1. Experimental setup

We consider the standard test video sequences listed in Ta-
ble 1. The sequences are provided in raw (YUV420) for-
mat. We carry out our accuracy evaluations on parts of the
sequences for which the ground truth is available (up to 100
frames). As a benchmark for our experiments, we used the
H.264/AVC (JM 18.0) encoded videos provided by the au-
thors of [3]. They are encoded in H.264/AVC high profile
with the GOP structure IPPP, i.e. with only one I frame at
the beginning and subsequent P frames. In order to evalu-
ate the performance of the ST-MRF and our proposed method



Table 1: Averages of precision, recall, and F-measure values attained by [3] and our proposed method, respectively, over various test se-
quences encoded with QP=28.

Method Encoder Measure Mobile
Calendar

Coast
guard

Stefan
(SIF)

Hall
Monitor

Flower
Garden

Table
Tennis City Foreman Avg.

ST-MRF [3] H.264/AVC Precision 75.2 50.6 66.7 65.9 65.4 89.6 86.1 91.1 73.8
JM 18.0 Recall 84.2 91.6 69.3 83.6 86.1 88.7 97.5 90.2 86.4

F-Measure 78.5 63.9 67.0 73.4 73.4 89.0 91.4 90.4 78.4

ST-MRF [3] H.265/HEVC Precision 75.3 55.9 63.2 69.6 45.8 92.9 82.4 91.8 72.1
x265 Recall 85.3 90.9 63.5 79.4 92.8 85.5 98.0 89.1 85.6

F-Measure 79.5 68.6 62.1 74.0 58.3 88.8 89.5 90.4 76.4

Proposed H.265/HEVC Precision 84.6 63.2 81.9 77.9 61.0 92.9 92.0 93.9 80.9
x265 Recall 83.7 89.6 46.9 72.6 88.0 85.5 87.8 85.6 80.0

F-Measure 83.5 73.3 56.9 74.9 70.5 88.8 89.2 89.4 78.3

on H.265/HEVC encoded videos, we made slight modifica-
tions to the ST-MRF to accommodate the block structure of
H.265/HEVC. We encoded all test sequences to H.265/HEVC
using x265 software with a GOP structure of IPP...IPP. We
adopted this GOP structure since our method needs I frames
to periodically regularize the MAP solution. We chose the
GOP size as 25 to compromise between the computational
cost of fully decoding the I frames and improved tracking ac-
curacy (due to frequent update of the color information). We
retained the same cost coefficients from ST-MRF related to
motion coherence, spatial compactness, and temporal conti-
nuity. Furthermore, we found out in a pre-study that assign-
ing MVs to intra-coded blocks (based on MVs of their neigh-
bours) as in [3] does not noticeably improve tracking. Thus,
we did not include this technique in our analysis.

4.2. Results

In our evaluation, we analyse two different factors that might
affect the performance of the considered methods: encoder
choice and pixel domain information introduced by our pro-
posed method. For the first analysis, we investigate the track-
ing performance of [3] over standard test sequences encoded
with H.264/AVC and H.265/HEVC, respectively. For the sec-
ond analysis, we compare the tracking accuracy of our pro-
posed method on H.265/HEVC videos to the tracking accu-
racy of [3] on H.265/HEVC and H.264/AVC videos, respec-
tively. Table 1 shows the obtained precision, recall, and F-
measure values at QP=28. Results show that the overall per-
formance of ST-MRF with H.264/AVC and H.265/HEVC are
comparable. Hence, it is shown that the ST-MRF method of
[3] (with slight modifications) can track objects accurately
with H.265/HEVC encoded videos as well.

Secondly, our proposed color-ST-MRF method improves
precision and F-measure values significantly for most of the
test sequences. Figure 3 illustrates the reduction of the false
positives through our method in the Hall Monitor sequence.
Considering the fact that our method updates the ST-MRF
based labelling once at every I frame (which happens 2-3

times for most of the sequences), boosting effect of the color
information on tracking accuracy is remarkable. Figure 2 dis-
plays how our proposed method outperforms [3] in the Mo-
bile Calendar sequence. As discussed in Section 3, ST-MRF
method of [3] fails to track the ball during a certain part of
the sequence. Our proposed method exploits color informa-
tion to mitigate this issue and tracks the ball fairly accurately.
However, in some sequences, the addition of color informa-
tion comes with the drawback of a decreased number of true
positives in cases where parts of the tracking object and back-
ground have similar colors. Hence, we observe a slight degra-
dation in recall values compared to ST-MRF in such cases.

As a further analysis, we investigate how different QP
values affect the tracking accuracy of our proposed method
and compare the results to [3]. Figure 4 shows that our pro-
posed method consistently outperforms [3] in precision and
F-measure for QPs ∈ {16, 20, · · · 40}. We observe a de-
crease in precision for both methods at higher QPs. Since
high quantization levels decrease the visual quality, perfor-
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Fig. 4: Comparison of average Precision ( ), Recall ( ), and
F-Measure ( ) values of the proposed algorithm and ST-MRF
method of [3] (dashed) over various quantization parameters (QP).



mance of the block-based motion estimation is degraded at
higher QPs. Thus, less accurate MVs are allocated to individ-
ual prediction blocks which leads to reductions in precision.
Interestingly, we also observe that recall values improve at
higher QPs. We believe that this is caused by the increased
coarseness of MVs which causes the ST-MRF model to label
a much larger area as part of the object. Hence, the number of
false negatives decreases drastically increasing recall, at the
expense of reduced precision.

5. CONCLUSION

In this paper, we proposed a hybrid object tracking method
by combining a compressed domain spatio-temporal MRF
model with a pixel-domain color-consistency measure based
on the color information obtained from I frames of H.265/HEVC
encoded videos. Our experimental results show that for the
considered standard video sequences, our method has a better
average tracking accuracy in terms of precision than the pure
compressed domain ST-MRF model of [3]. Our approach
is especially useful in video sequences in which the motion
vectors of multiple objects are very similar to each other, such
as Mobile Calendar. The promising results of our approach
on I frames can be further improved by incorporating textual
features on regions in which color is not discriminative with
respect to the background. Such future enhancements are
expected to increase the tracking accuracy also in terms of
recall.
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