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ABSTRACT

Recent approaches to compression of deep neural networks,
like the emerging standard on compression of neural networks
for multimedia content description and analysis (MPEG-7
part 17) , apply scalar quantization and entropy coding of the
quantization indexes. In this paper we present an advanced
method for quantization of neural network parameters, which
applies dependent scalar quantization (DQ) or trellis-coded
quantization (TCQ), and an improved context modeling for
the entropy coding of the quantization indexes. We show that
the proposed method achieves 5.778% bitrate reduction and
virtually no loss (0.37%) of network performance in average,
compared to the baseline methods of the second test model
(NCTM) of MPEG-7 part 17 for relevant working points.

Index Terms— dependent scalar quantization, trellis-
coded quantization, entropy coding, arithmetic coding, neural
network compression

1. INTRODUCTION

Deep neural networks have become a major element in the
field of machine learning. Recent advances, especially due to
the availability of large amounts of data and growing com-
putational resources, as well as novel algorithms and model
architectures [1], enabled more and more complex machine
learning tasks but also lead to an exponential growth in the
number of parameters over the past years [2]. Implicitly,
the models are also becoming more complex with respect
to memory requirements [3]. Particularly, this can be prob-
lematic for different scenarios with constrained memory re-
sources or bandwidth-limited communication channels, e.g.,
on mobile devices or in distributed learning applications [4].

However, this problem can be addressed by applying
model compression techniques, such as DeepCABAC [5], an
entropy coding method based on Context-Based Binary Arith-
metic Coding (CABAC) [6] originally developed for state-
of-the-art video coding standards like H.265/HEVC (High
Efficiency Video Coding) [7] or the emerging H.266/VVC
(Versatile Video Coding) [8]. Most recently, DeepCABAC

was adopted as part of the upcoming standard on compression
of neural networks for multimedia content description and
analysis (MPEG-7 part 17) [9], currently developed within
ISO-MPEG (Moving Picture Experts Group).

DeepCABAC (as in [9]) specifies scalar quantization with
a uniform reconstruction quantizer (URQ), for which the ad-
missible reconstruction values are completely determined by
the quantization step size ∆ and the mapping of quantization
indexes q to reconstructed weight parameters w′ = q · ∆.
For an increased compression efficiency, the quantization in-
dex selection at the encoder aims at minimizing a Lagrangian
function D+λR with distortion D and number of bits R that
are required for representing each quantization index [10].

Applying some form of vector quantization instead, can
further improve the coding efficiency, since the admissible
reconstruction vectors are denser packed in the high dimen-
sional signal space. Due to its complexity, unconstrained
vector quantization is not suitable, but there are variants with
reasonable encoder and decoder complexity like dependent
scalar quantization (DQ) also referred to as trellis-coded
quantization (TCQ) [11]-[14]. DQ has been investigated in
image (see [15]) and video coding and is currently part of the
emerging video coding standard VVC [8]. In the following,
a neural network parameter coding design with dependent
scalar quantization and DeepCABAC is described. The cod-
ing efficiency is evaluated by integrating the approach into
the neural network compression test model (NCTM) [10] of
MPEG-7 part 17.

2. DEPENDENT SCALAR QUANTIZATION

Dependent scalar quantization (DQ, or trellis-coded quanti-
zation (TCQ) ), first described in [11], can be considered as
a vector quantizer for very large dimensions, but with a re-
stricted set of values for the vector components. From a de-
coder point of view, it specifies two quantizers and a proce-
dure for switching between them. Commonly, the admissi-
ble reconstruction values are denoted by integer multiples of
a quantization step size ∆ for both scalar quantizers. The
switching process can be represented by a state machine with



Fig. 1. The scalar quantizers Q0 and Q1 used in the chosen
DQ design. All reconstruction values represent integer mul-
tiples of the quantization step size ∆. The labels above the
circles show the associated quantization indexes.

2K states (K ≥ 2), where each state is associated with one
of the scalar quantizers. The current state, and hence the ap-
plied quantizer, is uniquely determined by the previous state
and the value of the previous quantization index.

For encoding, the potential transitions between the two
scalar quantizers can be illustrated by a trellis with 2K states
per sample. Thus, selecting the optimal sequence of quan-
tization indexes is equivalent to finding the trellis path with
minimum rate-distortion cost. Principally, this problem can
be solved optimally, using the well-known Viterbi algorithm
[16]. The packing density in the high-dimensional signal
space, and thus the coding efficiency, for long sample se-
quences is maximized by choosing the state transitions (state
machine) properly. Furthermore, the achievable packing den-
sity, but also the encoding complexity, increases with the
number of states.

2.1. Quantizer Design

The structure of the two scalar quantizers Q0 and Q1, used
in the proposed method, is depicted in Fig. 1. As it can be
seen, Q0 contains all even multiples of the quantization step
size ∆ and Q1 contains all odd multiples of the quantization
step size ∆. Additionally, both quantizers include the value
of zero which generally improves the low rate performance
of DQ [12, 17]. Analogous to [14] (and thus different from
[12, 17]), symmetric quantizers are chosen due to higher cod-
ing efficiency in the conducted experiments. However, in-
teger quantization indexes q indicate the reconstruction val-
ues, whereas the quantization index equal to zero is associated
with reconstruction value equal to zero.

Typically, layers of deep neural networks contain a large
number of parameters, but depending on the layer or network
type, a significant amount of the parameters is equal to zero.
In order to address these properties adequately, a DQ design
with 8 states is chosen, which provides a good trade-off be-
tween complexity and coding gain. This DQ design and the
quantizer selection process are illustrated in Table 1. Since a
current state is determined by the previous state and the value
of the previous quantizer index, the neural network parame-
ters of a layer have to be reconstructed in a pre-defined order,
which shall be indicated by the indexes k = 0, 1, . . . . The
initial state s0 is set to zero. Then, given a current state sk

Table 1. State transitions for quantizer selection. pk repre-
sents the parity of the current quantizer index qk

state sk 0 1 2 3 4 5 6 7

quantizer used Q0 Q0 Q1 Q1 Q0 Q0 Q1 Q1

next state pk = 0 0 4 5 1 6 2 3 7
sk+1 pk = 1 4 0 1 5 2 6 7 3

and the value of the current quantization index qk, the next
state sk+1 is uniquely determined by the current state sk and
the parity pk of the current quantization index qk.

As shown in table 1, for neural network parameters, that
are associated with the states sk equal to 0, 1, 4 and 5, Q0

is used, and for the parameters, associated with the states sk
equal to 2, 3 , 6 and 7, quantizerQ1 is used. As a consequence
of the state transition process, the quantization indexes for
each quantizer are partitioned into two subsets, one with par-
ity 0 and the other with parity 1, indicated by filled and hollow
circles in Fig. 1.

2.2. Reconstruction Process for Network Parameters

The proposed DQ design requires that the neural network pa-
rameters of a layer are reconstructed sequentially in a pre-
defined order, chosen equal to the coding order of the quanti-
zation indexes, since the knowledge about the selected quan-
tizer can be exploited in the entropy coding (sec. 3). Here, the
reconstruction is processed in row-first order (left to right, top
to bottom). Then, the algorithm for obtaining the N recon-
structed parameters w′ of a layer, given the quantization in-
dexes qk, where k indicates the reconstruction order, is given
with the pseudo code:
s0 = 0
for k = 0 to N − 1 do
w′k(qk, sk) =

(
2 · qk − ((sk � 1) & 1) · sgn(qk)

)
·∆

sk+1 = sttab[ sk ][ qk & 1 ]
end for

Note that, ∆ is the quantization step size, sgn(·) denotes the
signum function, and the 2-D array sttab[·][·] represents the
state transition given in Table 1. The parity pk of the quantiza-
tion index qk can be obtained by applying the bit-wise ”and”
operator & (two’s complement arithmetic) according to qk&1.
The operator “�” represents a bit shift to the right.

3. ENTROPY CODING

In order to achieve a higher coding efficiency, the entropy
coding of the DeepCABAC approach in [10] is modified.
Specifically, an improved context modeling is applied, such
that it better exploits the conditional statistics of the param-
eters, induced by the DQ method. Prior to encoding, each
quantization index is decomposed into a series of binary



decisions, so-called bins, according to the binarization proce-
dure of DeepCABAC (see [5], [9]), which enables adaption
to typical distributions of neural network parameters, where
usually most of parameters are close to the value 0. Since the
binarization is not changed for DQ, only a short summary is
given.

First a bin, SigFlag (Significance Flag), is encoded which
determines whether a quantization index is non-zero, fol-
lowed by another bin (SignFlag), which denotes the value of
the sign, and subsequently a series of bins (AbsGr(ni)Flags,
with ni = 0, 1, . . . , 10) indicating if the current quantiza-
tion index is greater than ni. Whenever the SigFlag or a
AbsGr(ni)Flags is equal to zero, encoding for a current quan-
tization index is terminated. Finally, if there is a remainder, it
is encoded using an Exponential Golomb code [18]. Usually
the bins, i.e. SigFlag, SignFlag, AbsGr(ni)Flags and the
unary part of Exponential Golomb code (ExpGoUnary(la),
a = 0, 1, . . . ), are coded using probability models (regular
mode), also denoted as context models, which enable the
entropy coder to adapt to the source statistics. All other bins
use a bypass mode without probability models.

For bins in regular mode, a probability model is selected
from a set of possible candidates, based on a so-called context
(e.g. previously coded bins in a local neighborhood), in order
to better exploit local statistics. The selected context models
for SigFlag and SignFlag, where each has three possible can-
didates, depend on the value of the quantization index directly
preceding the current quantization index within the same row.
For the AbsGr(ni)Flags and ExpGoUnary(la), the selection
is based on the value of the preceding SignFlag, where each
flag has a set of two possible models.

However, due to the quantizer design in DQ, the distances
between zero and the first non-zero reconstruction values are
different for Q0 and Q1. For the SigFlag, this suggests to use
distinct sets of context models for each quantizer. Here, ex-
periments indicated that assigning an own set of context mod-
els for each state value yields even higher coding efficiency.
Consequently, the number of context models for the SigFlag
is increased from 3 up to 24. There are no changes in the con-
text modeling for other bins. For further details on context
modeling and binarization of DeepCABAC, refer to [9], [5].

4. QUANTIZER INDEX SELECTION

In order to maximize the coding efficiency, the selection of
quantization indexes qk in the encoder aims at minimizing a
Langrangian cost function J = D + λR of the distortion D,
measuring the mean-squared error (MSE), and the number of
bits R required for transmitting the quantization indexes. The
Lagrange multiplier λ depends on the quantization step size
∆ and scaling parameter between 0 and 1. The distortion Dk

for an individual neural network parameter wk is given by:

Dk(qk, sk) = (wk − w′k(qk, sk))
2 (1)

Fig. 2. Trellis structure used for determining the quantization
indexes in the encoder. An exemplary path with minimum
cost is highlighted as blue line.

where wk represents the original neural network parameter,
and w′k(qk, sk) the reconstructed neural network parameter
as given in Sec. 2.2. Note that, due to the complex depen-
dencies, the impact, of quantizing an individual parameter, on
the corresponding performance measure can not be evaluated
during the quantizer selection procedure. Hence, although it
does not yield optimal results, the MSE is used in our ap-
proach.

As mentioned above, the solution to the optimal quantiza-
tion problem is then equivalent to finding the path through the
trellis graph, depicted in Fig. 2, with the minimum associated
rate-distortion cost, as given by the Viterbi algorithm [16].
Strictly, the Viterbi algorithm does not achieve the global op-
timal solution, due to the complicated dependencies (between
the quantization indexes) in the entropy coding, but provides
a good trade-off between coding efficiency and implementa-
tion complexity. In fact, the trellis (Fig. 2), and thus the state
transitions (Tab. 1), are identical to those in JPEG2000 [15].

The trellis is processed in coding order, indicated by the
index k = 0, . . . , N − 1 (where N is the number of neural
network parameters in the layer), and the rate-distortion cost
for the initial state (state 0) is Ji = 0. All possible transitions
(connections of the trellis nodes) between a scan index k − 1
and a next scan index k are associated with rate-distortion
costs Jk according to:

Jk = Kk−1 +Dk(qk, sk) + λ ·Rk(qk| · · · ) (2)

Jk denotes the rate-distortion cost of the source node and
Rk(qk| · · · ) represents the estimated number of bits required
for transmitting a quantization index qk given the preceding
quantization indexes qk−1, qk−2, . . . on the path from start to
source node. For a current neural network parameter at stage
k the costs for all connections are computed. Then, for each
destination node, only the connection with the minimum rate-
distortion cost is kept and this cost Jk is assigned to the des-
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Fig. 3. Simulation results for the test models, where the per-
formance measures, Top-1 Accuracies and PSNR (only for
UC12B) are presented with respect to the compression ratios.
The blue lines indicate results for the proposed DQ method
and black lines the corresponding baseline results.

tination node. Continuing this until the last neural network
parameter of the layer is processed (k = N − 1), yields 8 sur-
viving paths through the trellis. Finally, the sequence of se-
lected quantization indexes q0, q1, . . . , qN−1 can be obtained
by choosing the path with the minimum cost JN−1.

5. EXPERIMENTAL RESULTS

For evaluation, the dependent scalar quantization method
and the changes to the entropy coding are integrated in the
Test Model (NCTM) [10] of MPEG-7 part 17 [9]. The ex-
periments are conducted on five test model neural networks
(specified in [19]), where three are for image classifica-
tion (VGG16, ResNet50 and MobileNetV2), one for audio
classification (DCase) and another one is an image autoen-
coder (UC12B). The networks for image and audio classi-
fication use Top-1 Accuracy in % as performance measure,
whereas the image autoencoder UC12B applies the PSNR
(Peak Signal-to-Noise-Ratio) of the reconstructed image. The
coding performance is presented with respect to the baseline
methods of NCTM for quantization and encoding.

Fig. 3 shows the achieved performance measure values
and corresponding compression ratios C for different step
size parameters ∆ in the range from 2−15 to 1, where C is
defined as C = RC/RO, with RC being the number of com-
pressed bits and RO the number of uncompressed bits. Addi-
tionally, some working points (and related encoding and de-
coding runtimes) are presented in Tab. 2, which are selected
such that, the highest compression with a maximum loss of
1% of performance measure is achieved with respect to the

Table 2. Results for relevant working points. DQ denotes re-
sults for the proposed method and B for the baseline method.
Compression ratios C, performance measures Perf. and en-
coder/decoder runtimes tEnc/Dec are presented.

Model C Perf. tEnc tDec

B 0.04503 70.284% 4.314s 3.714s
VGG16 DQ 0.04296 70.224% 16.53s 3.952s

Result -4.597% -0.085% 383% 106%
Res- B 0.09675 74.398% 1.357s 1.220s
Net50 DQ 0.09109 74.382% 3.551s 1.246s

Result -5.850% -0.022% 262% 102%
Mobile- B 0.18855 70.78% 0.426s 0.391s
NetV2 DQ 0.18765 70.928% 0.727s 0.393s

Result -0.477% 0.209% 171% 110%
B 0.06406 60.00% 0.020s 0.010s

DCase DQ 0.05656 58.89% 0.031s 0.010s
Result -11.71% -1.85% 155% 100%

B 0.22566 29.91dB 0.027s 0.018s
UC12B DQ 0.21153 29.88dB 0.029s 0.017s

Result -6.262% -0.100% 107% 94.4%
Average -5.778% -0.370% 216% 102%

unquantized models VGG16 (70.93%), ResNet50 (74.98%),
MobileNetV2 (71.47%), DCase (58.27%) and UC12B (30.13
dB). This working point was selected as the most relevant,
since the aim of neural network compression is to achieve
high compression but virtually no loss in model performance.
For these working points the results show an average bitrate
reduction of 5.778%, whereas the performance measure is vir-
tually the same (average loss of 0.37%). The encoder runtime
is 216% and the decoder runtime 102%, in average, with re-
spect to the baseline methods of NCTM. For all tests the Lan-
grangian multiplier is set 0, which yields the best results.

6. CONCLUSION

Dependent scalar quantization shows improved coding effi-
ciency for compression of deep neural networks when com-
pared to conventional scalar quantization as applied as base-
line method in the current draft of MPEG-7 part 17 [9]. It
can be interpreted as a constraint vector quantization method
which provides part of the space-filling advantage, but also
has an acceptable trade-off regarding encoder complexity and
coding efficiency. In fact, the decoder complexity is virtu-
ally the same compared to the scalar quantization method
of [9]. Additionally, minor changes to the context modeling
in the entropy coding stage of DeepCABAC provide further
improvements of the coding efficiency. Consequently, the
method is proposed for adoption into the standard on com-
pression of neural networks for multimedia content descrip-
tion and analysis MPEG-7 part 17.
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