
ENCODER OPTIMIZATIONS FOR THE NNR STANDARD ON NEURAL NETWORK COMPRESSION 
 

Paul Haase1, Daniel Becking1, Heiner Kirchhoffer1, Karsten Müller1, Heiko Schwarz1,2, 
Wojciech Samek1, Detlev Marpe1, Thomas Wiegand1,3 

 
1 Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany 

2 Institute of Computer Science, Free University of Berlin, Germany 
3 Department of Telecommunication Systems, Technical University of Berlin, Germany 

 
ABSTRACT 

The novel Neural Network Compression and Representation 
Standard (NNR), recently issued by ISO/IEC MPEG, 
achieves very high coding gains, compressing neural 
networks to 5% in size without accuracy loss. The underlying 
NNR encoder technology includes parameter quantization, 
followed by efficient arithmetic coding, namely 
DeepCABAC. In addition, NNR also allows very flexible 
adaptations, such as signaling specific local scaling values, 
setting quantization parameters per tensor rather than per 
network and supporting specific parameter fusion operations. 

This paper presents our new approach for optimally 
deriving these parameters, namely the derivation of 
parameters for local scaling adaptation (LSA), inference-
optimized quantization (IOQ), and batch-norm folding (BN). 
By allowing inference and fine tuning within the encoding 
process, the quantization errors are reduced and the NNR 
coding efficiency is further improved to a compressed 
bitstream size of only 3% in comparison to the original model 
size. 
 

Index Terms— MPEG, NNR, DeepCABAC, neural 
network compression, encoder optimization 
 

1. INTRODUCTION 

Neural Networks (NNs) have demonstrated remarkable 
breakthrough’s in a wide range of machine learning tasks [1], 
such as image classification, speech recognition, object 
detection, natural language understanding, etc. For this, 
current NNs are equipped with several millions of neuron 
connections [2], sometimes even in the order of billions, 
making them very resource-intensive. Furthermore, NN 
applications become distributed across many devices, e.g., in 
federated learning and training [3][4], imposing very large 
network traffic, when the NN weights and bias data 
(representing the NN neuron connections) are transmitted 
across devices. 

To address the demand for efficient NN compression and 
transmission, the ISO/IEC Moving Picture Experts Group 
(MPEG) has issued the first international standard for 
compression and representation of neural networks (NNR) 
[5]. With efficient tools for preprocessing, quantization and 
entropy coding, NNR achieves already very high 
compression rates for neural network models without 

degrading performance measures. However, the choice of 
actual tool parameters is usually not within the scope of the 
standard, but rather up to specific encoder implementations. 
Accordingly, this paper presents three specific encoder tools, 
namely local scaling adaptation, batch-norm folding, and 
inference-optimized quantization together with specific 
methods to optimize their parameters in order to increase the 
compression efficiency. These methods are implemented and 
evaluated using the NNR reference software. 

2. NNR CODING STRUCTURE 

 
Fig. 1: Coding Structure of the NNR Standard (from an encoder 
perspective). 

A typical encoder compliant to the NNR standard [5] includes 
three stages for neural network compression: Preprocessing 
and parameter reduction, quantization, and entropy coding. 
These are depicted for the NNR encoder in Fig. 1. The first 
tool set contains optional preprocessing and parameter 
reduction tools. Instead of coding and compressing the 
original model, different methods allow to modify the model 
in a way that is beneficial for the succeeding coding and 
compression steps. In NNR, there are several parameter 
reduction tools, i.e., sparsification, unification, pruning, and 
low-rank decomposition [5]. Sparsification and unification 
aim at setting as many values as possible to zero or at 
reducing the number of unique values within a tensor, 
respectively. The methods for low-rank decomposition and 



pruning transform tensors or remove values, resulting in 
tensors of reduced size. In fact, these methods change the 
model’s values or its architecture which may affect the 
inference or classification performance. Further 
preprocessing tools, namely batch-norm folding and local 
scaling adaption, remove redundancies in NN tensors and use 
scaling factors respectively in order to partly compensate 
quantization errors introduced by the quantization stage. 

Generally, the values are quantized to integers in order 
to further compress the tensor and to output integer indices 
that can be handled by the succeeding entropy coding stage. 
For this, NNR specifies quantization tools which include the 
use of integer codebooks, uniform scalar quantization, and a 
form of vector quantization called dependent scalar 
quantization [6], also known as trellis-coded quantization [7]. 
For all tools a quantization step size is derived from an 
(integer) quantization parameter (QP) that provides a 
mechanism for controlling the rate-performance trade-off. In 
general, coarser quantization reduces the bitrate, however at 
the cost of a loss in inference performance. Therefore, a 
careful selection of QP values is necessary for a good neural 
network compression. 

The integer indices output by the quantization stage are 
then encoded using a binary arithmetic coding scheme, called 
DeepCABAC [8]. This tool is based on the context-based 
adaptive binary arithmetic coding (CABAC) [9], which is 
part of several video coding standards [10]-[12]. Generally, 
arithmetic coders achieve compression close to the entropy of 
the source signal, if the statistics are known. DeepCABAC 
employs a set of probability estimators, called context 
models, which try to adapt to the source statistics [13]. This 
enables high compression for a large variety of different 
models without any prior knowledge of the statistics.  

The respective NNR decoder, which is actually specified 
in the corresponding NNR standard [5], operates in reverse 
order, i.e., arithmetically decodes a received NNR bitstream, 
using DeepCABAC, applies tensor value reconstruction, and 
finally inverts preprocessing methods, if necessary. 

3. NNR ENCODER OPTIMIZATION 

The NNR standard enables the use of several tools in order to 
achieve a good rate-performance trade-off. Usually, this 
trade-off highly depends on the decisions in the encoder. In 
NNR, as well as for other media coding standards, the 
specific decision process is not in the scope of the standard, 
which gives a high degree of freedom to encoder 
development and tuning. In the following, three tools are 
presented that allow the encoder to significantly improve the 
rate-performance trade-off and that are presented together 
with methods to find optimized parameters and further 
improve coding efficiency. 

3.1. Local scaling derivation 

Local scaling adaptation (LSA) enables the encoder to 
partially compensate errors introduced by quantizing neural 

network weight tensors. Usually, the sensitivity of different 
neurons of deep neural networks to quantization with respect 
to the inference performance varies. Considering this, local 
scaling adaptation multiplies an additional scaling factor to 
each row vector of the weight tensor W, which is shaped as a 
2-D matrix such that a row corresponds to an output neuron, 
as shown in eq. (1). More specifically, the scaling factors are 
given by a vector s and the weight tensor is represented by a 
2-D matrix, such that each row contains the weights of the 
same neuron.  
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Here, the operator ∘ denotes element-wise scaling of 
each row vector of a matrix with the corresponding element 
of a transposed vector. 
The NNR standard only specifies the compression of local 
scales in s, while the optimal derivation and thus the specific 
values of these parameters is not part of the standard and up 
to the specific encoder implementation. Accordingly, we 
introduce a method for deriving s for improving the rate-
performance trade-off. If an encoder has the ability to fine-
tune the model, this can be done by fine-tuning the local 
scaling parameters after quantization of the weight tensors. 
For this, the scaling factors can be initialized with a value of 
1 and then adapted, by using backpropagation, such that the 
inference performance of the model is increased. The 
resulting scaling factors are then quantized and encoded so 
that they can be derived at the decoder. 

3.2. Batch-norm folding 

Batch-normalization is a concept often used in deep neural 
networks in order to normalize the inputs so that they have 
zero mean and unit variance [14]. For this, the models employ 
so-called batch-norm layers with several parameters. Batch-
norm folding (BN) aims at reducing redundancy of the 
parameters by exploiting interdependencies which are known 
by encoder and decoder. It assumes that the combination of a 
convolutional or a fully-connected layer with a batch-norm 
layer of the following form can be expressed as  

 𝐁𝐍(𝐗) = 𝐖∗𝐗(𝐛*𝛍
,𝛔𝟐(.

∘ 𝛄 + 𝛃, (2) 

where 𝐁𝐍(𝐗) is the output, 𝐗 is the input, 𝐖 is the weight 
tensor, 𝐛 is a bias parameter, and the remaining parameters 
are batch-normalization parameters (see [14]). Note that 𝐛, 𝛍, 
𝛔𝟐, 𝛄, and 𝛃 have the same shape as 𝐗 which is shaped as a 
transposed vector. Similar to the approach in sec. 3.1, 𝐖 is 
represented as 2D matrix, such that each row corresponds to 
an output neuron. Parameter 𝜖 is a scalar close to zero.  
Usually, each parameter is encoded individually. Without 
changing any of the parameters the bitrate can be reduced by 
combining several parameters. For this, the following 
transformation is applied prior to encoding: 

 𝐁𝐍(𝐗) = 𝛂 ∘𝐖 ∗ 𝐗 + 𝛅 (3) 

with 𝛂 = 𝛄
,𝛔𝟐(.

 and 𝛅 = (𝐛*𝛍)∘𝛄
,𝛔𝟐(.

+ 𝛃.  



Consequently, it is now sufficient to encode the 
parameters 𝐖, 𝛂, and 𝛅 in order to obtain the same output. 
Furthermore, whenever batch-norm folding and local scaling 
adaptation (as described in sec. 3.1) are combined, the scaling 
parameter vector 𝐬 can be merged with parameter 𝛂 to obtain 
a single vector 𝛂; ≔ 	𝛂 ∘ 𝐬. In this case, the scaling factors 
practically do not affect the bitrate (except for a few bits 
induced by the changes of the values). 

3.3. Inference-optimized quantization 

In the NNR standard the quantization step size is controlled 
by a quantization parameter (QP) which is signaled in the 
bitstream. Furthermore, NNR allows to apply specific QP 
values to each tensor. In NNR, a QP value of 0 corresponds 
to a step size of 1 and increasing or decreasing the QP value 
by four corresponds to doubling or halving the step size, 
respectively. E.g., a QP value of -4 yields a step size of 0.5.  

Selection of the QP values at the encoder is again outside 
the scope of the standard, however, is a key parameter for 
controlling the rate-performance trade-off. Proper selection 
of the quantization parameter is a challenging task due to the 
complex dependencies between the tensors. In this specific 
trade-off, a coarser quantization decreases the bitrate in 
general, however coarse quantization of individual NN 
tensors can cause a significant decrease in the overall 
inference performance of the entire network. Thus, tensors 
can have very different sensitivities towards quantization, but 
deriving the impact of the quantization error of a single tensor 
on the performance seems not to be feasible without 
evaluation of the whole model. For targeting the quantization 
optimization, we started with the following two (empirical) 
observations: First, quantizing large weight tensors highly 
affects both the bitrate and performance, whereas quantizing 
small tensors may significantly affect the performance, while 
only minimally influencing the bitrate. And second, tensors 
with a high standard deviation stronger degrade the network 
performance, when coarser quantized. 

Starting from this, we introduce inference-optimized 
quantization (IOQ) as a method to select optimized QP values 
considering the model’s performance on a parameter tuning 
set (which is different from the verification dataset), as well 
as its bitrate. For this, an algorithm is applied that iteratively 
quantizes a tensor and also encodes and evaluates the model. 

In a first step a QP value, denoted as 𝑏𝑎𝑠𝑒𝑄𝑃, is selected 
and the QP values (𝑄𝑃4) for each weight tensor 𝐖4 are 
assigned based on the tensor’s statistics according to: 

 𝑄𝑃4 = A𝑟𝑛𝑑E𝑏𝑎𝑠𝑒𝑄𝑃 ∙ (1 − 𝜂4)J,	if	𝜂4 ≤ 0.5
𝑟𝑛𝑑(𝑏𝑎𝑠𝑒𝑄𝑃 ∙ 0.85),								if	𝜂4 > 0.5

 (4) 

where 𝜂4 = 𝜀4 + 𝜗4 and: 

 𝜀4 =
#𝐖4

	∑ (#𝐖4)4
 (5) 

 𝜗4 =	X1 −
𝑠𝑡𝑑(𝐖4)

𝑚𝑎𝑥∀4E𝑠𝑡𝑑(𝐖𝐢)J
\ (6) 

The operators #, 𝑟𝑛𝑑(∙) and 𝑠𝑡𝑑(∙), denote number of 
elements, rounding to the next integer and standard deviation, 
respectively. With this approach, the above two observations 
are exploited, such that a finer quantization is applied for 
tensors which have a small size and high standard deviation, 
i.e., where both 𝜀4 and 𝜗4 are small. This first step already 
provides a better coding gain compared to simply assigning 
the same QP value to all network tensors. 

In the next step, a local QP optimization is applied as 
follows: First, all tensors are sorted by the number of 
elements in a descending order which is also the processing 
order for quantization of the tensors. Thus, the weight tensors 
which have the largest impact on the bitrate, are quantized 
first. This enables good control of the accuracy measure while 
quantizing them as coarse as possible in order to achieve low 
bitrates. Then, starting with the second tensor in the list, for 
each tensor QP offsets in the range from -4 to 4 are tested. 
Note that, the first tensor 𝐖7 always applies the value 𝑄𝑃7 
computed in the previous step. This avoids obtaining 
identical working points for different 𝑏𝑎𝑠𝑒𝑄𝑃𝑠. 

For a current tensor 𝐖4 to be processed, the QP offset is 
added to the QP value (𝑄𝑃4) and the whole model is 
quantized, encoded and evaluated by inference on the 
parameter tuning set. The QP values of the other tensors 
remain unchanged. Then, a QP offset DQP that minimizes a 
Lagrangian cost function 𝐷 + 𝜆𝑅 is added to the QP value 
and this new value is assigned to the current tensor. Here, 𝐷 
is the change of performance measure (negative for an 
increase), 𝑅 is the change of bitrate and 𝜆 is the Lagrange 
multiplier which depends on the QP value and can be derived 
from the rate-performance curve.  

The procedure is repeated for each tensor in the sorted 
list. In that way, the method yields optimized QP values 
which significantly improve the rate-performance trade-off. 

4. EXPERIMENTAL RESULTS 

The compression performance for the tools presented in this 
paper is evaluated using the standard reference software 
NCTM (Neural network Compression Test Model version 
6.0, [15]) on a verification dataset of different neural 
networks defined in [16][17]. An overview of the models can 
be found in [17] as well as corresponding use cases, 
performance measures, application data, and number of 
parameters. The dataset includes five models, three for image 
classification (VGG16, ResNet50, MobileNetV2), one for 
audio classification (DCase), and an image autoencoder 
(UC12B). The classification performance of the image- and 
audio classification models is measured as Top-1/ Top-5 
accuracies, while for UC12B Peak Signal-to-Noise Ratio 
(PSNR) / Structural Similarity Index Measure (SSIM) is 
applied. 

The baseline (BL) software configuration [16] uses 
dependent scalar quantization with a constant QP value for 
all weight tensors (and a smaller QP value for all non-weight 
tensors) and entropy coding with DeepCABAC. On top, 



individual coding performance of LSA, BN, and IOQ as well 
as the combined performance are evaluated. Coding results 
for the baseline configuration as well as the overall 
combination of LSA+BN+IOQ at working points with same 
classification quality are given in TABLE 1. Note that batch-
norm folding has no effect on VGG16 and UC12B, since 
these models do not contain batch-norm layers.  

TABLE 1 shows that an overall compression ratio cr of 
less than 3% can be achieved without loss of classification 
performance for VGG16, reducing its original size of 550MB 
down to a compressed bitstream of 16MB. When comparing 
the compression ratios between the proposed method “All” 
and the baseline “BL”, an overall compression gain between 
13% for DCase and 46% for VGG16 can be achieved at 
nearly identical accuracies. Comparable compression 
methods, such as those mentioned in [8], are clearly 
outperformed. 

TABLE 1 
NNR TRANSPARENT CODING RESULTS 

Model Method cr in % 
Top-1 / Top-5 
Acc. reconstr. 

Top-1 / Top-5 
Acc. original 

VGG16 BL 5.50 70.55 / 89.61 70.93 / 89.85 All 2.98 70.51 / 89.54 
 Result -46% -0.06 / -0.08 %  

ResNet50 BL 9.68 74.45 / 91.93 74.98 / 92.15 All 6.54 74.42 / 91.80 
 Result -32% -0.04 / -0.14 %  

MobileNetV2 
BL 19.18 71.15 / 90.06 71.47 / 90.27 All 12.18 71.13 / 90.06 

 Result -36% -0.03 / 0.00 %  

DCase 
BL 4.71 59.26 / 91.36 58.27 / 91.85  ALL 4.12 58.15 / 92.35 

 Result -13% -1.87 / 1.08 %  

Model Method cr in % PSNR / SSIM 
reconstructed 

PSNR / SSIM 
original 

UC12B BL 22.23 29.98 / 0.955 30.13 / 0.956 All 17.34 29.98 / 0.954 
 Result -22% 0.00 / -0.10 %  

Additional results for the presented methods from sec. 3, 
i.e. local scaling adaptation (LSA), batch-norm folding (BN), 
inference-optimized quantization (IOQ), all methods 
combined (LSA+BN+IOQ) and the baseline configuration as 
reference, are depicted in Fig. 2 (a) to (e), respectively. Each 
figure shows compression ratios cr with respect to the 
performance measure (Top-1 accuracies for all classification 
models and PSNR for the image autoencoder). The results 
show that the presented methods achieve high compression 
even for near lossless performance measures and even higher 
compression by combining the methods, while significantly 
outperforming the baseline configuration. 

 
5. CONCLUSIONS 

In this paper, we presented specific NNR encoder 
optimization methods that all together achieved an increase 
in overall compression performance by up to 46%. In 
particular we applied the optimal derivation of local scaling 
parameters, a batch-norm folding, and a specific inference-

optimized QP derivation. For assessing the impact on each 
presented method, we showed individual coding results for 
each tool as well as overall coding results, when combining 
all encoder optimization tools. 
 

 

 

 

 

 
Fig. 2: Compression Ratio-Performance curves for (a) VGG16, (b) 
ResNet50, (c) MobileNetV2, (d) DCase showing Top-1 Accuracies 
and for (e) UC12B showing PSNR. 
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