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Abstract 

Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging 

biomarker for brain health; however, the underlying neural features have remained unclear. 

We combined ensembles of convolutional neural networks with Layer-wise Relevance 

Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic 

resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models 

estimated age accurately based on single and multiple modalities, regionally restricted and 

whole-brain images (mean absolute errors 3.38-5.07 years). We find that BA estimates 

capture aging at both small and large-scale changes, revealing gross enlargements of 

ventricles and subarachnoid spaces, as well as lesions, iron accumulations and atrophies that 

appear throughout the brain. Divergence from expected aging reflected cardiovascular risk 

factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our 

study demonstrates how superior deep learning models detect brain-aging in healthy and at-

risk individuals throughout adulthood.!  
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Introduction 

With the advent of large-scale magnetic resonance imaging (MRI) studies (e.g., ukbiobank 

Sudlow et al., 2015); LIFE Loeffler et al., 2015), the estimation of brain age (BA), and its 

contrast to the chronological age of a person (diverging BA, DBA), have become an 

increasingly predictive imaging marker for brain health. Higher DBA relates to accelerated 

cognitive decline, pathologies such as Alzheimer Disease (AD), hypertension and type 2 

diabetes, as well as other lifestyle-related cardiovascular risk factors (Dadi et al., 2020; Franke 

& Gaser, 2019). However, underlying alterations of neural structures reflecting the relationship 

between BA and such factors are not well known. BA has been linearly estimated on 

predefined neuroimaging outcomes (e.g., cortical thickness maps in Liem et al., 2017). Yet, 

feature extraction and preprocessing could lead to overconfidence w.r.t., or to the dismissal 

of, neural properties that can be relevant to BA. In contrast, deep learning (DL) models, 

specifically convolutional neural networks (CNNs; Ji et al., 2013; LeCun et al., 1989) are 

trained on raw data and provide more precise BA estimates (Cole et al., 2017; Cole & Franke, 

2017). Particularly on large MRI datasets CNNs converge to a minimal mean absolute error 

(MAE) of 2.14 years (Peng et al., 2021; see also Bashyam et al., 2020; Dinsdale et al., 2021; 

Feng et al., 2020; Jonsson et al., 2019; Kolbeinsson et al., 2020; Levakov et al., 2020). Despite 

these advantages, their complex architectures restrict straightforward interpretations of which 

image features drive their estimates, known as the black-box problem (Samek et al., 2019, 

2021). Several methods have been proposed to open the black-box (Samek et al., 2021), such 

as perturbation and gradient techniques (Baehrens et al., 2010; Simonyan et al., 2014; 

Smilkov et al., 2017; Sundararajan et al., 2017; Zeiler & Fergus, 2014; Zintgraf et al., 2017), 

which also have been applied for BA predictions (Levakov et al., 2020). While many of these 

methods highlight input areas or intermediate feature maps that are relevant for the prediction, 

they do not indicate whether this information increases or decreases the predictor output. For 

the continuous case of BA estimates this means that neither the pace of aging processes (i.e., 

DBA), nor the state of their progression (BA) can be inferred from computed saliency maps. 
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Conversely, the Layer-wise Relevance Propagation algorithm (LRP) highlights relevant areas 

in the input (image) that both favor and dismiss corresponding output decisions (Bach et al., 

2015; Lapuschkin et al., 2019; Montavon et al., 2018). LRP has been successfully used with 

DL in MRI-based classification tasks (Böhle et al., 2019; Eitel et al., 2019; Thomas et al., 

2019). However, the biological alterations that underlie aging are continuous in nature, which 

raises more challenges for both the DL model, and, consequently, its interpretation.  

Here, we therefore aimed to provide a novel, openly available analysis pipeline extrapolating 

from a proof-of-concept simulation study to the implementation of superior CNNs on multi-

modal MRI with the explanation algorithm LRP. Specifically, we asked which neurostructural 

features drive individual predictions and whether BA truly captures biological aging processes. 

On a group level we explored, how DBA is modulated by cardiovascular risk factors, and how 

this relationship manifests in distinct neural features. Based on previous findings, we 

hypothesized that BA relies on grey matter atrophy which include (pre)frontal and 

mesiotemporal cortex and cerebellum, and that risk factors such as obesity, hypertension and 

type 2 diabetes correlate with higher DBA, reflected in augmented vascular pathologies such 

as higher white matter lesion load. Importantly, opening the black box of DL image analysis is 

expected to reveal novel features of MRI-based neuronal properties that contribute to BA 

estimates, and thus advance our knowledge of brain health in aging. 

Results 

We implemented two types of multi-level ensembles (MLens, Fig. 1) on three clinically 

relevant MRI modalities (T1-weighted, fluid-attenuated inversion recovery, FLAIR, and 

Susceptibility Weighted Imaging, SWI) of a well-characterized population-based cohort study 

(LIFE-Adult; Loeffler et al., 2015; age range 18-82 years, n = 2016).  

Briefly, MLens type i was trained on whole brain MRI with a sub-ensemble for each sequence 

with ten 3D-CNN models (base models, BM). Sub-ensembles served to extract information on 

model certainty and to compute more robust BA estimates. To additionally explore the 
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contribution of three distinct brain regions (cortical, sub-cortical structures, and cerebellum) to 

the BA estimate, MLens type ii was trained on 32 combinations of the MRI sequences and the 

brain regions, while employing 5 BMs for each combination. 

 

Figure 1 Multi-level ensembles (MLens) MLens trained on the different MRI sequences (T1, 

FLAIR, SWI; top: MLens type i), and their combinations with 3 brain regions (bottom: MLens 
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type ii). The predictions of the sub-ensembles of each MLens on the test set were used to 

train and evaluate the top-level linear head model.  

Model prediction performances 

The MLens type i had a MAE of 3.72 (R2 = 0.89) and performed slightly better than all its sub-

ensembles (MAET1 = 3.95, MAEFLAIR = 4.14, MAESWI = 5.07; Tab. 1). The MLens type ii had a 

smaller MAE of 3.38 (R2 = 0.92; see Fig. 2 for prediction accuracy and model uncertainty) and 

was again superior to the performances of its sub-ensembles (Tab. 1). Between both MLens, 

there were highly significant correlations between their predictions (R2 = 0.98, p < 0.001) and 

their prediction errors (R2 = 0.79, p < 0.001) on the test set. Note that these models were 

trained with leaky rectified linear units (ReLUs), while models trained with standard ReLUs 

performed worse (MLens type i, MAE = 4.15; MLens type ii, MAE = 3.69; see T1 in the 

supplementary material). 

Figure 2 Brain-age prediction performance and model certainty of deep learning-based 

multi-level ensembles (MLens) combining clinically relevant MRI sequences Left panel: 

test set predictions of the MLens type ii), trained on 32 combinations of MRI sequences (T1, 

FLAIR, SWI) and brain regions (cortical, subcortical structures, and cerebellum). Right: 

prediction error (red) and model uncertainty (blue) per participant. Model uncertainty is 
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measured as the width of the 95%-confidence interval across the predictions of the sub-

ensembles. The modulation of both variables as function of age was modeled with a 3rd order 

polynomial (red and blue lines). Both plots are produced over the concatenated test sets of 

the 5-fold-cross-validation, which were used to evaluate the top-level head models of the 

ensemble. 

Relevance maps of model predictions 

To verify the behavior of the LRP algorithm and its correct interpretation in a regression task, 

we first performed a simulation study. 

The CNN model for the simulation task corresponded to a 2D-version of one base model in a 

MLens. It was trained on a simulation dataset of abstracted head models (tori; Fig. 3), in which 

aging was simulated as the accumulation of atrophies and lesions. The model had a MAE of 

2.80 (R2=0.95) on the hold-out test set. The prediction model captured the simulated aging 

process in both its facets well, which is revealed by the LRP relevance maps (i.e., heatmaps) 

highlighting the inner and outer borders (atrophies), and the added lesions within the older tori 

(30+ years; Fig. 3). Areas, where atrophies can occur were considered as information bearing, 

i.e., they received both positive and negative relevance. Moreover, the model seemed to 

cluster information w.r.t. its regression task, which is represented in the unique sign of 

relevance over larger areas (see both tori on the right, Fig. 3). That is, while there were 

accumulations of atrophies at the border of some tori, the CNN also took adjacent lesions into 

account to aggregate the overall information in a specific region. Note that in some occasions 

this could lead to inversely weighted relevance in single pixels or small areas (see upper left 

part of green box in Fig. 3). The sum over all distributed relevance r is a proxy for the final 

model prediction (𝑝 = 𝑏! +∑𝑟). If it is positive, the prediction p is greater than the initiated 

model target bias (bt; here, set to the mean age of the sample: bt = 51.1 years), and vice versa 

for the negative case. Hence, the summed relevance represented the evidence over the whole 

image that the model accumulated to make its prediction.  
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Figure 3 Analysis of simulated aging in artificial tori Top left: Summed relevance per 

predicted sample in the test dataset, reflecting the model prediction relative to the sample 

mean (i.e., target bias = 51.1 years). Bottom left and right column: three image samples of tori 

(T[age]) with their corresponding LRP relevance maps overlaid. Gray boxes: Details of 

relevance maps of tori T41 (green) and T63 (blue), respectively. Here, arrows indicate added 

lesions, while mint-green pixels at the inner and outer borders of the tori indicate ground-truth 

atrophies. Note that intact matter is predominantly attributed with negative (blue-turquois) 

relevance, indicating a younger age, while lesioned or atrophied matter is attributed with 

positive (red-yellow) relevance pointing to an older age. Color coding: relevance values were 

symmetrically clipped around zero at the 0.99-percentile, then normalized (rnorm ∈ [−1,1]) and 

the corresponding colormap was multiplied by a factor of 5 for better contrasts. Note, while 
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the model predictions are continuous, we deliberately decided for a binary color scaling to 

better contrasts the lower (young) and upper (old) bound of the regression. 

Relevance maps of the aging brain in individuals  

Qualitative LRP analysis revealed individual relevance maps highlighting brain areas that 

voted for higher or lower BA predictions. Overall, we detected strong contributions from voxels 

in and around the ventricles and at the border from the brain to meningeal areas, independent 

of MRI sequence, while white-matter (WM) areas appeared to be less informative, except WM 

lesions in FLAIR images (Fig. 4a). In older participants, voxels covering cortical sulcal 

structures were often more relevant than in younger participants and voted more often in favor 

of older BA. Also, the corpus callosum, the brain stem and areas in and around the cerebellum 

appeared to be relevant structures, which the models gained information from for both younger 

and older participants.  

Both types of MLens (whole-brain type i and region-based type ii) found similar brain structures 

important for their prediction (Fig. 4b). Visually most recognizable are areas around the 

ventricles, and subject specific sulci, e.g., in the cortex and cerebellum. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

Figure 4 Exemplary individual LRP heatmaps (a) of multi-level ensemble (MLens) type i. 

trained on whole brain data. Rows: three participants (S1-S3) drawn from different age groups. 

Columns: three MRI sequences (T1, FLAIR, SWI), individually sliced in all three axes. Next, 

to more global intact (mostly in young S3) or atrophied tissue (S1, S2), e.g., at the cortical 

surface, LRP also reveals smaller structures such as white-matter lesions (S1, FLAIR), vessel 

expansions and putative small iron depositions (S1, SWI) driving the BA estimation. 

Relevance maps per subject were aggregated over the base models of each sub-ensemble. 

(b) LRP heatmaps of regional (top row, type ii) and whole-brain (bottom row, type i) 

MLens in elderly subject (S1). Here, models were trained on FLAIR data of cerebellum (left), 

subcortical structures (mid), and cortex (right), or of the whole-brain, respectively. For 

comparison, we warped the heatmap of whole-brain MLens type i from subject space to 

MNI152 space (cf. top row in a). Color coding: as in Fig. 3. 

Statistical relevance maps over the adult lifespan 

Quantitively, permutation-based one-sample t-tests (5000 permutations, threshold-free cluster 

enhancement, TFCE, and family wise error, FWE-corrected p ≤ 0.05) on combined relevance 

maps of the validation and test set (nT1 = nFLAIR = 402, nSWI = 314) revealed that on average, 

in all 3 MRI sequences, nearly the full brain contains meaningful information about BA (Fig. 

5). The base models trained within the T1 sub-ensemble, gained most information in the lateral 

ventricle areas, corpus callosum, pre and postcentral gyri in the motor and sensorimotor 

cortex, operculum, and all grey matter (GM) border areas including the frontal pole, temporal 

and visual poles and brainstem, and cerebellar borders. In the FLAIR sub-ensemble, most 

relevance was found around lateral ventricles, anterior temporal gyri, the pre- and postcentral 

gyri, and WM areas including cingulate gyrus, corpus callosum and fornix. Base models of the 

SWI sub-ensemble had a stronger focus on GM areas in the visual pole and occipital lobe, 

limbic areas, corpus callosum, WM fornix, internal capsule and on subcortical nuclei and 

brainstem areas, including striatum, subthalamic nucleus, raphe and substantia nigra.  
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Figure 5 Relevant areas for brain-age predictions across adult lifespan T-maps of one-
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sample t-test over aggregated, absolute relevance maps shown in several brain slices. Left 

column: t(2,16); MNI152 z-axis range: 3-74. Right column: 3D-projection of t-maps focusing 

on higher t-values narrowly clipped for each MRI sequence, separately. Top row: tested on 

the T1 sub-ensemble (type i; n = 402, tmax = 23.61). Mid row: FLAIR sub-ensemble (n = 402, 

tmax = 25.82). Bottom row: SWI sub-ensemble (n = 314, tmax = 16.07). 

Next, we compared the LRP heatmaps of the young (age ≤ 40 years, n = 61) versus older 

cohort (age ≥ 60 years, n = 243. Areas showing greater relevance in older compared to 

younger brains (TFCE, FWE-corrected p ≤ 0.5) were found in the T1 sub-ensemble of MLens 

type i in lateral ventricles, corpus callosum, amygdala, cerebral WM, particularly paracingulate 

gyrus, opercular cortex, and (secondary) somatosensory cortex. For FLAIR, there were 

increased relevance values found in cerebellum (specifically, left and right crus I-II), caudate, 

inferior frontal gyrus, pars triangularis, insular cortex, and inferior parietal lobule. For the SWI 

sub-ensemble, frontal pole, frontal orbital cortex, Inferior frontal gyrus, pars triangularis, 

precuneus, basal nuclei including putamen and caudate, and occipital pole showed higher 

(i.e., positive) relevance on average (Fig. 6a). 
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Figure 6 a Contrastive relevance maps of young vs. elderly participants T-maps of two-

sample t-test over relevance maps in the young and elderly group. Here, testing shows in 

which areas the relevance is greater in elderly (age ≥ 60 years) than in the young (age ≤ 40 

years) group. Relevance maps were aggregated within each sub-ensemble of MLens type i 
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trained on T1 (top), FLAIR (mid), and SWI (bottom) data, respectively. b Contrastive 

relevance maps of healthy vs. diabetic participants T-maps (2, 6) of two-sample t-test 

show in which areas the relevance is greater in participants with type 2 diabetes than in healthy 

controls of the older cohort (60-75 years). Relevance maps were aggregated within each sub-

ensemble of MLens type i trained on T1 (top), and FLAIR (bottom). Note, only for T1 significant 

regional differences were found between the groups (see TFCE FWE-corrected maps in Fig. 

S2 in supplementary material). However, t-maps of T1 and FLAIR sub-ensembles show high 

correspondence (sliced in all three axes at x=-18., y=18.1, z=28.1). 

Relevance maps in diabetes and accelerated brain aging 

To explore the role of health-related risk factors on BA, we contrasted the LRP relevance 

maps of subjects with type 2 diabetes (n=29) with healthy subjects (n=217) in the age range 

of 50 to 75 years (meanage = 65.61). For the T1 sub-ensemble (MLens, type i), clusters of 

higher positive relevance (non-healthy > healthy) were found to be significant in the pre- and 

postcentral gyrus near the cortico-spinal tract in the primary motor cortex (TFCE, FWE-

corrected p ≤ 0.011), corpus callosum and cingulum (TFCE, FWE-corrected p ≤ 0.02; see Fig. 

S2 in supplementary material). For the other two sub-ensembles (FLAIR, SWI), there were no 

clusters indicating significant regional differences. However, there was a high spatial 

correspondence between t-maps of the T1 and FLAIR sub-ensembles (Fig. 6b).  

We further estimated the change in relevance maps as function of DBA, i.e., the signed 

prediction error, in an older cohort (age ≥ 50, meanage = 67.07, n = 134), while controlling for 

age (as 2nd order polynomial regression; cf. Fig. 2). Accordingly, all clusters indicating a 

significant association spatially corresponded to areas found in the BA analysis, however, 

accelerated aging (DBA) was more strongly related to higher relevance values in specific 

regions (see Fig. S3 in supplementary material): for the T1 sub-ensembles (MLens type i) this 

difference was found in frontal pole, brain stem, outer cerebellar boarders, WM including the 

cortical spinal tract, putamen, caudate, amygdala, pre- and post-central gyri, and cingulate 
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gyri. For the FLAIR sub-ensemble, primarily posterior region showed significant associations, 

including occipital and parietal pole, lingual gyrus, and cerebellum (crus I and II, V, VI). Finally, 

for the SWI sub-ensembles, posterior and anterior regions showed significant associations, 

including the frontal pole, frontal orbital cortex, occipital pole, cerebellum (crus I and II, vermis 

VIII), but also some more left-lateral parieto-temporal WM structures close to putamen and 

operculum (for all sub-ensembles; TFCE, FWE-corrected p ≤ 0.05). 

Diverging brain-age and its relationship to other biomarkers 

We found in the younger cohort that higher DBA correlated with cardiovascular risk factors 

such as higher body mass index (BMI; age < 45 years), waist-to-hip ratio, hyperlipidemia, and 

higher systolic blood pressure, according to exploratory correlation analyses, which were run 

on the hold-out test set (Fig. 7). The most prevalent positive association of DBA was found 

with type 2 diabetes in older subjects and with WM lesion load in participants almost across 

the full age range (≥ 30 years). Results for effects of gender and glycated hemoglobin levels 

(HbA1c) did not show consistent associations, except that male gender appeared to be related 

to higher BA in most age groups in MLens type ii, while higher HbA1c levels were related to 

higher BA in younger groups. There was no evident association between DBA and the 

presence or absence of an Apolipoprotein E epsilon 4 gene allele (APoE4), hypertension or 

for higher education. Note, bivariate correlations were run in a sliding-age-window approach 

only without adjusting for possible confounders and due to the exploratory part of the analysis, 

we applied no correction for multiple comparison. 
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Figure 7 Relationship of diverging brain-age to biomarkers and lifestyle factors 

Correlations (R) in overlapping sliding windows (width 10 years) between prediction errors 

(DBA) of both models (blue: type i; orange: type ii MLens) and LIFE variables. Inverse width 

of the purple confidence band represents the number of participants per bin. Red rhombus: 

uncorrected p-value ≤ 0.05 per bin. Variables: education: time of education in years. bmi: 

body-mass-index. waist2hip: waist-to-hip-ratio. systolic BP: systolic blood pressure. APoE4: 

apolipoprotein epsilon 4 risk-allele carrier status. HbA1c: glycated hemoglobin. Log 

lesionload-WM-ratio: logarithmized ratio between number of lesions and white matter volume. 

Binary variables: hypertension, diabetes, hyperlipidemia, APoE4: no = 0, yes = 1. gender: 

female = 0, male = 1. 
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Discussion 

The estimation of age and deviance from expected aging trajectories from brain images is a 

difficult task that has been solved to a surprisingly high accuracy using various DL 

architectures (Bashyam et al., 2020; Cole et al., 2017; Cole & Franke, 2017; Dinsdale et al., 

2021; Feng et al., 2020; Jonsson et al., 2019; Kolbeinsson et al., 2020; Levakov et al., 2020; 

Peng et al., 2021). We provide a further dimension to this challenge, namely, the means to 

extract insight from the trained neural networks, such that neurobiological theories can be 

validated and novel hypotheses can be generated. Specifically, we demonstrate that our 

accurate estimates of continuous brain aging can be related back to neurostructural features, 

by employing interpretable (here using LRP), bias-free DL-ensemble models on multi-modal 

3D-MRIs. Our analysis demonstrates that grey matter changes and atrophies detectable in 

the cortex, subcortex, cerebellum and brainstem, but also white matter lesions, and iron 

accumulations, as well as more global brain shrinkage represented in the larger size of 

ventricles and sulci drove the age estimates of the models. This happens to a degree that 

even parts of the brain and single MRI modalities (including SWI) led to accurate and 

comparable BA predictions. While voxels around the ventricular system and subarachnoid 

spaces were most informative for our model, the progression of aging and its pace (i.e., BA 

and DBA, respectively) could be related back nearly to the whole brain. Our simulation model 

furthermore revealed – as to be expected – that undamaged tissue (i.e., absence of atrophies 

and lesions) is associated with (young) age. From a methodological perspective, this 

demonstrated how the LRP algorithm can be integrated into a complex regression task on 

continuous aging, and how resulting relevance maps carry information about age-related 

changes. Moreover, we found that accelerated aging (DBA), which is associated with 

pathologies (here type 2 diabetes), shows relevant indicators in distinct brain areas, which 

could be differentiated by the complementary information from different MRI sequences and 

brain regions which we fed to the MLens models, leading to overall better prediction results. 

With this, we established a novel DL-based pipeline for MRI analysis, which leverages the 
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predictive advantages of this model class while at the same time making its estimates 

interpretable for research and clinical applications.  

Opening the black-box of deep learning predictions 

To understand the estimates of our DL models, we applied the LRP algorithm, which provides 

directed, i.e., sign-specific, relevance maps in the input space. Since, at the point of model 

inference a classification problem is mathematically similar to a regression problem, LRP 

could be straight-forwardly adapted to the purpose of our study (see Methods). We 

successfully validated this approach in the regression domain according to a simulation study 

with a 2D-version of the model architecture that we employed in the main study. We found 

that the DL model captures the simulated aging processes well by identifying the 

corresponding features. LRP comes with the advantage of being directional, i.e., it indicates 

not only that a certain input area is relevant for a given prediction, but also whether it provides 

information in direction to the upper (here old age) or lower bound (young age) of the 

regression problem (Fig. 3, 4). The sign of the sum of relevance (SoR) is arbitrary in this case, 

essential is the magnitude of the value. Here, we chose to set the bias at the output layer of 

the CNNs to the mean of the target variable (age). As a consequence, the SoR becomes 

negative for predictions lower, and positive for estimates higher than the bias. The model does 

not only capture the features that represent the aging process (atrophies and lesions), but 

also the absence of them. That is, for the young torus it attributes (here negative) relevance 

also to its intact surface and borders. Moreover, LRP shows that the CNN finds irregular 

occurring features (here lesions) which were randomly placed. However, the interpretation of 

the local attribution of relevance needs to be taken with caution, as we observed that the 

model often generalizes relevance over larger areas of the simulated tori. One possible 

explanation for this is that relevance might be clustered over bigger areas after being passed 

through the intermediate pooling and convolutional layers in the network, which aggregate 

information over increasingly larger areas in the computed feature maps. Then, later layers 
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(usually fully connected layers) make decisions over these pooled regions by attributing 

relevance towards one of the main directions in the regression (Kohlbrenner et al., 2020).  

Normal and accelerated brain aging 
 

Applying LRP in the BA case shows that the DL models integrate information from the whole 

brain (Fig. 5). However, we see also that subject-specific structural properties are detected, 

specifically in the cortical surface areas, around ventricles, the corpus callosum, at the surface 

of the brain stem, and cerebellum, and distinct smaller regions in WM areas of the cortex. 

Ventricles are known to increase in size with age due to regional or global brain shrinkage 

(Earnest et al., 1979). Also, cortical surface (Jin et al., 2018; Kochunov et al., 2005; LeMay, 

1984), the corpus callosum (Doraiswamy et al., 1991), cerebellum and basal ganglia (Raz et 

al., 2005, 2010) among others are subject to alterations. While Raz et al. (2005, 2010) found 

no age-related volume changes in, e.g., primary visual cortices and putamen, our model 

showed that both areas were relevant for the BA estimation across the full life-span, and age-

independent rate-of-aging (DBA) in the older cohort (age ≥ 50 years). This may have several 

reasons: in contrast to linear feature selective models (such as those using regional volume 

in Raz et al., 2005, 2010), our DL-architectures are trained end-to-end, and thus can 

incorporate information from diverse neural features, including volume, but also region-

specific sizes and shapes, tissue structures etc. Within our model those features can be non-

linearly related and weighted, and lastly, our multi-modal MLens leverage this capacity by 

incorporating complementary image-contrasts.  

Similarly, in contrastive relevance maps, we found that heightened DBA values for subjects 

with type 2 diabetes displayed regions that corresponds to findings of recent animal models 

(Muramatsu et al., 2018) and known diabetes-associated degenerations in the sensorimotor 

areas in humans (Ferris et al., 2020). Moreover, our results support previous findings in 

diffusion imaging studies of changes in fiber bundles of the cingulum (Cui et al., 2020; 

Hoogenboom et al., 2014) and neighboring corpus callosum (Yu et al., 2019). That these 
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findings appeared only significant in T1-weighted images, and not, as expected in FLAIR, 

might be due to the small sample size in the hold-out subset in combination with the less 

specific contrast of FLAIR in the absence of lesions. However, we found a strong spatial 

correspondence between the t-maps of both modalities. 

We conclude that normal and pathologically driven aging is not exclusively represented in 

selective features (e.g., in the decline of regional volume) but also in diverse neurostructural 

properties accentuated by different MRI sequences, throughout the whole brain. More 

specifically, our analysis pipeline revealed that an individual's structural MRI carries not only 

global, macrostructural hints towards its age trajectory, but also reliable information on age-

related, subtle grey and white matter changes that occur all over the brain. While the limited 

image resolution does not offer explanations at the cellular level, those ubiquitous, rather 

subtle changes stem most likely from micro-changes, including oxidative stress, DNA damage, 

cell death and inflammation, in neuronal, vascular and glial compartments of the brain (Cole 

& Franke, 2017; Pluvinage & Wyss-Coray, 2020) that eventually alter the magnetic properties 

and thus image contrasts of the respective sequences. We can further infer that all brain 

regions and different neural properties that are highlighted with the different MRI sequences 

are predictive w.r.t. age, i.e., the aging process emerges in all these modalities. This calls for 

a multi-modal approach towards brain-aging rather than restricting this foundational 

phenomenon to selective neural variables such as grey matter volume, and acknowledges the 

capability of common structural MRI to reveal not only gross anatomical changes but also 

subtle microstructural changes with advancing age. 

The benefit of multi-level ensemble models 
 

Both types of MLens performed close to the state-of-the-art in the domain of BA prediction. 

Note that small performance differences might stem from our smaller dataset with a large age-

range in comparison to studies that used, e.g., ukbiobank data (n > 14,000 MRIs, age range 

44-81 years; e.g., Peng et al., 2021, MAE = 2.14). With our MLens we demonstrated that i) 
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ensembles are performing better than their base models, and ii) MLens integrating diverse 

input features, here MRI sequences and brain regions, perform even better than ensembles 

that are only trained on one of these features.  

On a methodological side, this shows that due to the feature selective training the model is 

prone to specialize on properties inherent to the respective feature (e.g., a brain region). 

Splitting the brain in sub-regions and feeding them to different models seems to push the 

respective models (here MLens type ii) to specialize on the characteristics of each brain region 

rather than learning filters that are generally usable across the whole brain, however, this 

needs to be tested systematically. 

The variability of predictions between different DL models (here defined as the uncertainty 

between base models) with an identical architecture and training on the same data, underlines 

the importance of the aggregation over a set of models (i.e., an ensemble) to reduce both the 

variance and biases of single networks. In summary, MLens can not only compensate for the 

stochasticity of single DL models, but also provide estimates of model certainty and insights 

on the relationship of input features and prediction.  

Brain-age predictions and their association with other 

biomarkers 

To investigate biological determinants of BA, we showed in an additional exploratory analysis 

that DBA was associated with cardiovascular risk factors such as BMI, waist-to-hip-ratio and 

type 2 diabetes. Notably, we found that many of these associations depend on the age of 

participants. For instance, despite the smaller sample size in our younger (healthy) cohort, we 

discovered a high correlation between BMI and the estimated BA (age < 40 years), which was 

also reported in (Kolenic et al., 2018) for younger participants with first-episode psychosis (18-

35 years). We did not see a significant correlation in mid-aged participants (40-60 years), for 

whom previous studies found higher BMI to be associated with cortical thinning (Shaw et al., 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

2018). Similar to previous findings (Kharabian Masouleh et al., 2016), in the older cohort (60-

80 years), a positive trend appeared again. In contrast, participants with hyperlipidemia 

showed this positive relationship with DBA up until an age of 70 years. Also, we found the 

positive correlation between DBA and type 2 diabetes, which was reported in (Franke, Gaser, 

et al., 2013), and the corresponding relevance map analysis showed overlapping evidence 

w.r.t. GM changes as discussed above. Blood glucose levels (here HbA1c) showed age-

related association mainly in a young cohort (20-35 years). The results correspond to recent 

findings showing a negative relationship HbA1c and WM integrity in young, non-diabetic (i.e., 

healthy) adults (mean age 28.8 years, HbA1c < 5.7%; Repple et al., 2021), motivating further 

investigations. Overall, we found similar relationships of DBA and various clinical markers as 

summarized in (Franke & Gaser, 2019), but not regarding ApoE-4 (cf. Raz et al., 2010), and 

gender (cf. Franke, Ristow, et al., 2013). Nonetheless, the association between DBA and 

gender should be taken with caution, since demographic factors might have influenced the 

cohort composition in different age groups. Also, the gender difference is typically most 

pronounced in younger ages (Gur et al., 2002), while with menopause it appears to become 

smaller, brain-region specific (e.g., Raz et al., 2010; Ritchie et al., 2018) or is even absent 

(Jäncke et al., 2015). While we found a consistent, slightly negative trend (age > 30 years) 

between DBA and cognitive performance, the correlation was not significant for most age 

strata; however, this association has been reported to be more pronounced in patients with 

AD or mild cognitive impairments (Gaser et al., 2013; Liem et al., 2017). Note that we excluded 

participants with AD and other neurodegenerative diseases from this study, in which the 

relationship of DBA to cognitive performance, but also to associated biomarkers such as 

ApoE14 (see above) might be more pronounced. Moreover, the sample size in the hold-out 

test set, which we employed for the correlation analyses, was comparably small (n=201). 

Despite this small subset, a very robust positive association, nearly across the full age range 

(> 30 years), was found between the WM lesion-load and DBA. The typical accumulation of 

WM lesions with higher age as well as their pathological consequences are widely known 

(Beck et al., 2021; Dinsdale et al., 2021), and consequently and conversely, validates the BA 
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models, while in parallel, this highlights the possibility that typical and pathological aging share 

similar fundamental mechanisms.  

Clearly, these results indicate that BA is a reliable imaging marker reflecting biological 

plausible age-related neural changes. As deviations from the chronological age correlate with 

known risk factors for brain damage, BA can be considered as a biomarker of the brain health 

status of a person.  

Limitations and future research  

Several limitations need to be considered. First, despite the local information we receive with 

the LRP heatmaps, they do not explain per se what the biological mechanisms are that made 

the respective highlighted area relevant to the model. For instance, when considering relevant 

voxels around ventricles, we do not know whether a model tracks the size of a ventricle or 

potentially alterations at the tissue around it, or both. Further developments in interpretation 

algorithms, such as LRP could allow the detection of interactions between local and global 

relevance structures and in addition reveal causal relationships beyond correlation. Second, 

similar to Levakov et al. (2020), we found that aggregating relevance maps compensated for 

the observed variability between heatmaps of single base models (for a discussion see 

Levakov et al., 2020). However, aggregation techniques can also cause information loss, for 

instance, not all of the base models within an ensemble might detect all WM lesions in an 

image. Third, the age distribution in the LIFE MRI dataset is non-uniform, with a majority of 

participants being 65 to 75 years of age. This introduces a bias in the training dataset. 

Although our ensemble architectures compensate for the prediction bias towards the 

distribution mean, this tendency could not be fully eliminated. The assessment of the covariate 

shift (e.g., Sugiyama et al., 2007), nonlinear head-models, and over- or undersampling 

techniques, combined with data augmentation could be further means to tackle this bias. 

Fourth, in future research one could run several cluster analyses to find common relevance 

patterns within, for instance, participants with certain pathologies or between different age 
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groups. These could then be related to interpretable structural properties, such as cortical 

thickness (Frangou et al., 2021). Finally, the majority of studies cannot afford to scan 

thousands of participants. To make the presented explanation pipeline more sustainable, one 

could explore transfer learning techniques to adapt the pre-trained models to smaller datasets 

and different (target) variables. Since our approach makes it possible to combine information 

from different modalities and single out regions which show alterations in these modalities, 

one might also extend it to incorporating further imaging measures, e.g., diffusion imaging or 

resting-state studies in fMRI or EEG. 

Conclusion  

While certain brain areas shrink in volume more dramatically with older age than others, aging 

processes emerge in the whole brain. Their progress and pace can now be accurately 

captured and interpreted by DL ensembles from various brain regions and structural MRI 

modalities (T1, FLAIR, SWI), proposing that higher age and the presence of cardiovascular 

risk factors contributes to regionally pronounced yet ubiquitous changes in the brain. 

Employing the LRP interpretation algorithm, estimates of brain-aging can thus be related back 

to established, gross but also subtle, most likely microstructural biological markers of the aging 

process. This bias-free computational approach yields insights into the global nature of brain 

aging as well as pathomechanisms. Finally, due to its generalizability, this approach can be 

broadly applied across clinical neuroscience, galvanizing the generation of data-driven 

hypotheses and boosting its applications in personalized medicine (Binder et al., 2021; Esteva 

et al., 2021; Stenzinger et al., 2021). 
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Methods 

Data acquisition  

The LIFE Adult study (Loeffler et al., 2015), a population-based cohort study, encompasses 

dense clinical screenings of more than 10,000 participants coming from the area of Leipzig, 

Germany. Among others, the screening included measures of height, weight, blood pressure, 

blood-based biomarkers, cognitive performance and questionnaire batteries on mental health, 

and lifestyle (for more details see: Loeffler et al., 2015). 

Study sample and exclusion criteria  

Of the more than 10,000 subjects of the LIFE Adult study, 2637 participants underwent a 1-

hour MRI recording session at baseline. Of those participants with MR-scans, 621 participants 

were excluded mainly due to pathologies, leaving 2016 subjects for further analysis (age range 

18-82 years, meanage = 57.32, medianage = 63.0; nfemale = 946; see Fig. S1 in supplementary 

material). Partially overlapping exclusion criteria were previous strokes (n=54), excessive 

brain lesions rated by trained medical staff (n=114), including white matter (WM) lesions rated 

with a Fazekas (Fazekas et al., 1987) score of 3 (n=44), radiological diagnosis of brain tumor 

(n=22), diagnosis of multiple sclerosis (n=5), epilepsy (n=27), cancer treatment in the last 12 

months (n=109), centrally active medication (n=275), cognitive impairments indicated by a 

MMSE score < 26 (n=80), and poor quality MRIs (failing a visually quality check, e.g., 

regarding motion artefacts, n=41).  

MRI data 

MRI data was acquired in a 1-hour recording session using a 32-channel head coil in a 3T 

Siemens Verio scanner. Various MRI sequences were applied (see Loeffler et al., 2015). For 
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this study, we trained models on three MRI sequences used in clinical settings: i) structural 

T1-weighted images were taken with an MP-RAGE sequence (1 mm isotropic voxels, 176 

slices, TR=2300 ms, TE=2.98 ms, TI=900 ms) which serves to quantify cerebrospinal fluid, 

white and gray matter. ii) Fluid-attenuated inversion recovery images (FLAIR) were acquired 

(1 mm isotropic voxels, 192 slices, TR=5000 ms, TE=395 ms, TI=1800 ms). FLAIR is highly 

sensitive towards lesions in the WM, which are known to accumulate with age (Beck et al., 

2021; Ge et al., 2002; Tang et al., 1997). Lastly, iii) susceptibility-weighted magnitude images 

(SWI) are used to detect iron-deposits in the basal-ganglia (Bekiesinska-Figatowska et al., 

2013; Pfefferbaum et al., 2009), which could be linked to neurodegeneration and cognitive 

decline (Du et al., 2018; Haller et al., 2010; Thomas et al., 2020), and are used to discover 

brain hemorrhages. SWIs were recorded with a T2*-weighted pulse sequence (0.8 x 0.7 x 2.0 

mm non-isotropic voxels, 64 slices, TR=28 ms, TE=20 ms). 

MRI preprocessing  

MRIs of the three sequences (T1, FLAIR, SWI) were saved in three processing stages: raw, 

freesurfer volume (recon-all, FreeSurfer 5.3.0, Fischl, 2012), and MNI stage (MNI152, 2mm, 

Fonov et al., 2011; via ANTs 2.2, Tustison et al., 2020). In the freesurfer volume stage, FLAIR 

and SWI images were linear registered (linear interpolation; ANTs 2.2) to the corresponding 

space of the T1-weighted images (‘brain.finalsurf.mgz’). For more details see the 

supplementary methods. For memory and processing efficiency, all images in all stages were 

pruned, i.e., their background was maximally removed, while keeping the same volume shape 

in the respective stage and, for raw images, respective sequence across all participants. 

These minimally-sized volumes were constrained to have a 2-voxel margin around the full 

brain of the largest brain in the whole dataset in the respective stage and sequence. Moreover, 

the image data was compressed by clipping upper intensity values to 383 (255 + 50%), which 

affected an insignificant number of voxels (< 0.001%), and subsequently, by re-normalizing 

the data between 0-255 (i.e., into 28 discrete intensity values per voxel). The re-normalized 
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images were then processed as memory efficient arrays of single-byte, unsigned integers 

(here: uint8 type numpy 1.18.1 arrays, Harris et al., 2020).  

Prediction model (MRI data) 

Model architecture 

Ensembles have been shown to predict more accurately and reduce model biases (Dietterich, 

2000), also in the domain of BA prediction (Couvy-Duchesne et al., 2020; Dinsdale et al., 

2021; Jonsson et al., 2019; Levakov et al., 2020; Peng et al., 2021). The individual predictions 

of the base models were used to train and evaluate a linear head model of the respective sub-

ensemble, leading to a weighted prediction of the whole ensemble. Subsequently, an 

additional linear top-head model was trained to aggregate predictions over those sub-

ensembles (see the following paragraphs, and Fig. 1). 

Base model 

The base model architecture was a 3D convolutional neural network (3D-CNN; Cole et al., 

2017; Ji et al., 2013; LeCun et al., 1989; Lecun et al., 1998), implemented in native Keras 

2.3.1 (Chollet, 2015). Base models were tested with two intermediate activation functions: i) 

the commonly applied rectified linear units (ReLUs), and ii) leaky ReLUs, which promise to 

overcome some of the drawbacks of absent gradients in standard ReLUs resulting from the 

background of MRIs, i.e., zero value input during training (Maas et al., 2013). From bottom up, 

the network consists of 5 convolutional blocks (ConvB), each starting with a convolutional 

layer (nfilters ∈ 	 [16, 16, 32, 64, 32] , sizekernel ∈ 	 [3", 3", 3", 3", 1"] ), followed by leaky ReLUs 

(∀𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈, alpha = 0.2), and a 3D-max pool pool layer (∀𝑚𝑎𝑥𝑝𝑜𝑜𝐿, sizepool = 33, stride = 

23). Then the signal was flattened to a 1-D vector, and during training a dropout layer (rate = 

0.5) was applied. Finally, a fully connected layer (size = 64) with (leaky) ReLUs propagated 

the signal to the linear output neuron. The bias at the linear output layer was set to the target 
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mean 𝑦 of the dataset (i.e., meanage = 57.32), all other biases were randomly initialized around 

zero (Keras' default). The network was trained to minimize the mean squared error (MSE) 

w.r.t. chronological age, using the ADAM optimizer (learning rate = 5e-4; Kingma & Ba, 2015). 

The data for the base models were split to a training, validation and test set (8:1:1 ratio). The 

training process on the training set was monitored on the validation set. The reported model 

performances are the results of its evaluation on the test set, and are given as the mean 

absolute error (MAE) for better interpretability. 

Model ensembles 

Two types of MLens were trained: The first type consists of 3 sub-ensembles for 3 MRI 

sequences (T1, FLAIR, SWI), respectively. Each sub-ensemble has 10 base models that were 

independently trained on the same training data (whole brain data in freesurfer volume stage 

of its respective MRI sequence). Then, a linear head model with weight regularization, i.e. 

ridge regression (alpha = 1.) implemented in scikit-learn 0.22.1 (Buitinck et al., 2013), was 

trained on the predictions of the 10 base models per sub-ensemble on the validation set 

(shape of Xtrain, head-model : Nval x 10), and evaluated on the test set (shape of Xtest, head-model : Ntest 

x 10). The resulting predictions of these 3 sub-ensembles on the test set were then used to 

train yet another head model in a 5-fold cross-validation approach to obtain aggregated 

predictions across all MRI sequences. 

For the second MLens type, the MRI data (in MNI stage) was additionally masked in three 

different brain regions defined by the three complementary atlases (see Supplementary 

Material: Brain atlases). For each combination of region and MRI sequence (3x3), 5 base 

models were trained, leading to a total of 45 base models. For each such combinatorial pair, 

its base model predictions were first aggregated with a linear head model (as above). Then, 

a linear top-head model combined these sub-ensemble predictions on the test set in the above 

mentioned 5-fold-cross-validation fashion to receive predictions across all input feature pairs 

(Fig. 1). 
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Both MLens types (i, ii) can be conceptualized as neural additive models (Agarwal et al., 2020; 

Hastie & Tibshirani, 1990), i.e. sub-parts of the ensemble are trained on different input 

features.  

Estimation of model uncertainty  

Model certainty was measured subject-wise on both model levels, over each sub-ensemble 

and across them. That is, on the sub-ensemble level, model (un-)certainty is expressed in the 

width of the 95% - confidence interval around the mean prediction of all its base models for 

each subject. Similarly, the width of the 95% - confidence interval across the predictions of all 

sub-ensembles indicates the overall (un-)certainty of the MLens. Note, the latter could also be 

interpreted as information gain across input features. 

Prediction analyzer: Layer-wise Relevance Propagation 

Simulation study on LRP for regression 

We created two-dimensional images of tori on black backgrounds at an intensity range 

comparable to T1-weighted MRIs that exhibited inner and outer surface atrophies as a linear 

function of their age (20-80 years) with a normally distributed variance, to simulate cortical 

atrophy and enlargement of cerebrospinal fluid space. Additionally, we simulated that the older 

a torus was, the more lesions it accumulated within its body, appearing as image 

hyperintensities. In contrast to the atrophies, this accumulation of lesions was non-linearly 

increasing with age (i.e., onset of linear increase at age 40), also with a normally distributed 

variance. For each torus, the location of atrophies and lesions were known allowing for the 

evaluation of the sensitivity of the model represented in the relevance maps. For the image 

details, please see the openly available code (https://github.com/SHEscher/XDLreg). We 

created 2000 tori, with a similar age-distribution as in the LIFE MRI sample. On this dataset, 

we then trained a 2D-version of the CNN as described above. Finally, LRP heatmaps were 
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created on samples of the corresponding test set similar as described in following section. 

Since these heatmaps served only a qualitive analysis, we did not run statistical tests between 

them as we did for the MRI case.  

LRP for the MRI-based multi-level ensembles  

LRP was applied on the trained base models in an ensemble (via iNNvestigate1.08, Alber et 

al., 2019), using the best-practice, composite rules (Kohlbrenner et al., 2020; Montavon et al., 

2019) of LRP for CNNs (alpha = 1) implemented in iNNvestigate as "LRPSequentialPresetA". 

Note that we ran the LRP analysis only on models with ReLU activation functions, as it is 

recommended in iNNvestigate. LRP, which is usually employed in classification tasks, can be 

simply adapted to a regression problem by applying its algorithm starting at the single output 

neuron of the regression model. This is analogous to choosing the output neuron representing 

the ground-truth label of a given sample in a classification task. Differences are the task-

specific objective function and the bias at the output layer, which we set to the distribution 

mean. 

For the evaluation of the heatmaps, we took the average of the various relevance maps across 

base models similar to (Levakov et al., 2020). For between-subject analyses, we warped the 

subject respective heatmaps to MNI space. Relevance map aggregations within each subject 

were performed subsequently. The contribution of individual brain-regions to the model 

prediction was evaluated by mapping the LRP heatmaps to the merged brain-atlas, and the 

Juelich histological atlas (see Supplementary Material: Brain atlases). Additionally, we ran 

significance tests on the relevance maps with FSL 5.0.8 (randomise function; using 5000 

permutations and threshold-free cluster enhancement, TFCE) to determine brain areas which 

were statistically relevant for the BA prediction (Jenkinson et al., 2012). This was done, across 

all participants on their absolute aggregated relevance maps (one-sample t-test). Contrastive 

relevance maps (unpaired two-sample t-test) were computed in a young (age ≤ 40 years) 

versus elderly (age ≥ 60 years) group on their signed aggregated relevance maps. In older 
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adults (age ≥ 50 years), we analyzed in which brain regions relevance is attributed as function 

of the diverging (or delta) BA (DBA := ypredicted-age - ytrue-age) independent of chronological age. 

That is, we ran a generalized linear model (GLM; FSL 5.0.8, randomize), with relevance maps 

as regressand, and DBA as regressor, while controlling for age as covariate. Additionally, we 

explored the role of a pathobiological biomarker (see the following section for more details), 

specifically type 2 diabetes mellitus on the BA estimates within a wider, older age range (50-

75 years), contrasting diabetics to healthy controls (unpaired two-sample t-test on their signed 

aggregated relevance maps). To increase the sample size for all tests, we combined 

relevance maps from the validation and test set. 

Brain-age as a biomarker  

As an exploratory analysis, we correlated (Pearson’s R; scipy 1.4.1, Virtanen et al., 2020) DBA 

with a set of variables known to relate to accelerated brain aging. 

These included cardiometabolic risk factors (BMI, waist-to-hip-ratio, hyperlipidemia, 

hypertension, systolic blood pressure, type 2 diabetes, glycated hemoglobin), genetic factors 

(apolipoprotein epsilon 4 risk-allele, APoE4, which has been associated with AD, Strittmatter 

et al., 1993), gender, time of education, cognitive functioning (composite score of executive 

functions, memory and processing speed, as reported in (Kharabian Masouleh et al., 2016; 

Zhang et al., 2018), and neural integrity (here measured as the logarithm of the ratio between 

number of lesions and white matter volume). For this, we applied an overlapping sliding 

window approach over the full age range (width 10 years) to model age-related associations 

between DBA and the above-mentioned variables, and to minimize the effect of age on the 

prediction error itself. 
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