
1

Exploring text datasets by visualizing relevant words

Franziska Horn1, Leila Arras2, Grégoire Montavon1,
Klaus-Robert Müller1,3, and Wojciech Samek2

1Machine Learning Group, Technische Universität Berlin, Berlin, Germany
2Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
3Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea

franziska.horn@campus.tu-berlin.de

Abstract

When working with a new dataset, it is im-
portant to first explore and familiarize one-
self with it, before applying any advanced
machine learning algorithms. However, to
the best of our knowledge, no tools exist
that quickly and reliably give insight into
the contents of a selection of documents
with respect to what distinguishes them
from other documents belonging to differ-
ent categories. In this paper we propose
to extract ‘relevant words’ from a collec-
tion of texts, which summarize the con-
tents of documents belonging to a certain
class (or discovered cluster in the case of
unlabeled datasets), and visualize them in
word clouds to allow for a survey of salient
features at a glance. We compare three
methods for extracting relevant words and
demonstrate the usefulness of the resulting
word clouds by providing an overview of
the classes contained in a dataset of sci-
entific publications as well as by discover-
ing trending topics from recent New York
Times article snippets.

1 Introduction

To avoid surprises when working with a new
dataset, it is always important to first explore it
and get an overview of the contained samples. This
helps in developing an intuition whether, for exam-
ple, the classification task is particularly difficult
or if there are any outliers that might need special
attention. Yet, while there exists an abundance of
algorithms developed for squeezing out the last per-
centages of accuracy in categorization tasks, little
work has focused on facilitating the exploratory
analysis of text datasets, especially with respect
to the actual contents of documents belonging to

different classes.
One way of getting an overview of a dataset is

by visualizing it as a two dimensional scatter plot
using dimensionality reduction techniques such as
kernel PCA [17] or t-SNE [18]. While this can
show the match between natural clusters and as-
signed class labels and reveal outliers, it does not
give insight into the content of the samples belong-
ing to individual clusters and classes. While one
can (and should) manually inspect a few individ-
ual samples of each class, even more useful is an
overview created by aggregating the content of all
samples belonging to one cluster or class.

To get an overview of the documents belonging
to different groups in a text dataset, we propose
to create a word cloud for each class displaying
its salient features, i.e. relevant words contained in
the samples assigned to this class. To extract these
relevant words for each class, we compare three
approaches, namely 1) aggregating the raw tf-idf
features of all samples from one class [7], 2) using
layerwise relevance propagation (LRP) to break
down the classification score of a linear classifier
and project it onto the input features and then aggre-
gate these scores for all documents of one class [1],
and 3) computing a relevancy score for each word
by comparing how often it occurs in samples of
one class compared to all others. Additionally, we
show that highlighting these relevant words in indi-
vidual documents can be helpful for understanding
which features contributed most to a classification
decision. This can reveal why individual samples
were misclassified, thereby exposing biases in the
training set [4, 9].

For unlabeled text datasets, which are becoming
more and more frequent, e.g. in the form of large
data dumps leaked to journalists, getting a quick
overview of the contents is even more important. In
this case, the documents can first be clustered using
algorithms like DBSCAN [5] before extracting the

ar
X

iv
:1

70
7.

05
26

1v
1

 [
cs

.C
L

]
 1

7
Ju

l 2
01

7

2

relevant words for each cluster.
We demonstrate how the extracted relevant

words summarize the contents of different classes
in a dataset of scientific publications. Furthermore,
by identifying relevant words in clusters of recent
New York Times article snippets, trending topics
can be revealed.

All tools discussed in this paper as well as code
to replicate the experiments are available as an open
source Python library.1

1.1 Related work

Identifying relevant words in text documents was
traditionally limited to the area of feature selection,
where different approaches were used to discard
‘irrelevant’ features in an attempt to improve the
classification performance by reducing noise as
well as save computational resources [6]. How-
ever, the primary objective here was not to identify
words that best describe the documents belonging
to certain classes, but to identify features that are
particularly uninformative in the classification task
and can be disregarded. Other work was focused
on selecting keywords for individual documents,
e.g. based on tf-idf variants [10] or by using classi-
fiers [8, 20]. Yet, while these keywords might pro-
vide adequate summaries of single documents, they
do not necessarily overlap with keywords found
for other documents in the class and therefore it is
difficult to aggregate them to get an overview of
the contents of one class. Current tools available
for creating word clouds as a means of summariz-
ing a (collection of) document(s) mostly rely on
term frequencies (while ignoring stopwords), pos-
sibly combined with part-of-speech tagging and
named entity recognition to identify words of in-
terest [7, 13]. As we will show later, an approach
based on tf-idf features does not reliably identify
words that distinguish documents of one class from
documents belonging to other classes. In more re-
cent work, relevant features were selected using
layerwise relevance propagation (LRP) to trace a
classifier’s decision back to the samples’ input fea-
tures [4]. This was successfully used to understand
the classification decisions made by a convolutional
neural network (CNN) trained on a text categoriza-
tion task and to subsequently determine relevant
features for individual classes by aggregating the
LRP scores computed on the test samples [1, 2].
We will compare such an LRP approach in the fol-

1https://github.com/cod3licious/textcatvis

lowing as well, however, as a CNN requires a lot
of data and typically several hours for training, we
are using a linear classifier instead to ensure the
relevant words can be extracted within minutes.

2 Methods

To get a quick overview of a text dataset, we want
to identify and visualize the ‘relevant words’ occur-
ring in the collection of texts. We define relevant
words as some characteristic features of the doc-
uments, which distinguish them from other docu-
ments. As the first step in this process, the texts
therefore have to be preprocessed and transformed
into feature vectors (Section 2.1). While relevant
words are supposed to occur often in the documents
of interest, they should also distinguish them from
other documents. When analyzing a whole dataset
it is therefore most revealing to look at individual
classes and obtain the relevant words for each class,
i.e. find the features that distinguish one class from
another. If the dataset is unlabeled, the texts have
to be clustered first and then relevant words can be
selected for each cluster (Section 2.2).

The relevant words for a class or cluster c are
identified by computing a relevancy score rc for
every word ti (with i = 1...T , where T is the num-
ber of unique terms in the given vocabulary) and
then the word clouds are created using the top rank-
ing words. The easiest way to compute relevancy
scores is to simply check for frequent features in a
selection of documents (Section 2.3.1). However,
this does not necessarily produce features that ad-
ditionally occur infrequently in other classes. To
improve on this, a classifier can be trained, thereby
producing a set of weights for each class that, when
applied to a feature vector, result in a classification
score indicating how likely it is that this document
is from a certain class. By examining this weight
vector and applying it to the feature vectors of doc-
uments from a certain class, we obtain the fea-
tures most important for distinguishing one class
of documents from others in the classification task
(Section 2.3.2). Another possibility is to directly
compute a score for each word indicating in how
many documents of one class it occurs compared
to other classes (Section 2.3.3).

2.1 Preprocessing & Feature extraction

All N texts in a dataset are preprocessed by lower-
casing and removing non-alphanumeric characters.
Then each text is transformed into a bag-of-words

https://github.com/cod3licious/textcatvis

3

(BOW) feature vector xk ∈ RT ∀k ∈ 1...N by first
computing a normalized count, the term frequency
(tf), for each word in the text, and then weighting
this by the word’s inverse document frequency (idf)
to reduce the influence of very frequent but inex-
pressive words that occur in almost all documents
(such as ‘and’ and ‘the’) [12, 19]. The idf of a
term ti is calculated as the logarithm of the total
number of documents, |N |, divided by the number
of documents which contain term ti, i.e.

idf (ti) = log
|N |

|{k ∈ N : ti ∈ k}|
.

The entry corresponding to the term ti in the feature
vector xk of a document k is then

xki = tf (ti) · idf (ti).

In addition to single terms, we are also consider-
ing meaningful combinations of two words (i.e. bi-
grams) as features. However, to not inflate the fea-
ture space too much (since later, relevancy scores
have to be computed for every feature), only distinc-
tive bigrams are selected as detailed in Appendix
A.

2.2 Clustering
For unlabeled datasets, the texts first have to be
clustered to be able to extract relevant words for
each cluster. For this, we use density-based spatial
clustering of applications with noise (DBSCAN)
[5], a clustering algorithm that identifies clusters as
areas of high density in the feature space, separated
by areas of low density. This algorithm was chosen
as it does not assume that the clusters have a certain
shape (unlike e.g. the k-means algorithm, which
assumes spherical clusters) and it allows for noise
in the dataset, i.e. does not enforce that all samples
belong to a certain cluster.

DBSCAN is based on pairwise distances be-
tween samples and first identifies ‘core samples’ in
areas of high density and then iteratively expands a
cluster by joining them with other samples, whose
distance is below some user defined threshold. As
the cosine similarity is a reliable measure of simi-
larity for text documents, we compute the pairwise
distances used in the DBSCAN algorithm by first
reducing the documents’ tf-idf feature vectors to
250 linear kernel PCA components to remove noise
and create more overlap between the feature vec-
tors [17], and then compute the cosine similarity
between these vectors and subtract it from 1 to

transform it into a distance measure. As clustering
is an unsupervised process, a value for the distance
threshold has to be chosen such that the obtained
clusters seem reasonable. In the experiments de-
scribed below, we found that a minimum cosine
similarity of 0.55 to other samples in the cluster
(i.e. using a distance threshold of 0.45) leads to
texts about the same topic being grouped together.

2.3 Identifying relevant words
Relevant words for each class or cluster are iden-
tified by computing a relevancy score rc for ev-
ery word ti based on the documents in the class
or cluster and then selecting the highest scoring
words. These scores can be computed either by
aggregating the raw tf-idf features of all documents
in the group (Section 2.3.1), by aggregating these
features weighted by some classifier’s parameters
(Section 2.3.2), or directly by computing a score
for each word depending on the number of docu-
ments it occurs in from this class relative to other
classes (Section 2.3.3).

2.3.1 Salient tf-idf features
A very simple and straightforward approach to iden-
tifying relevant words for one class or cluster c is
to simply add up the tf-idf feature vectors xk of
all documents belonging to this class or cluster,
i.e. where yk = c. For one word ti this results in a
relevancy score with respect to class c given by

rc_tfidf (ti) =
∑

k : yk=c

xki .

The words with the highest scores occur in most
documents of this class. These words also don’t
occur in most documents in the dataset, as other-
wise their idf scores would have been close to zero.
However, it is still possible that high scoring words
occur equally often in documents of some other
class, without this having dramatic effects on the
idf weights. Therefore, while this score yields rele-
vant words in the sense that they occur frequently in
documents of the current class, these words are not
necessarily distinguishing this class from others.

2.3.2 Decomposed classifier scores
(SVM+LRP)

To find distinguishing words, we train a classifier to
identify features based on which it can be decided
to what class a sample belongs to. Linear classifiers
have a weight vector wc ∈ RT and bias term bc for
each class c and assign a new document to the class

4

with the highest score after applying this weight
vector to a document’s tf-idf vector xk:

ŷk = argmax
c

bc +w>
c xk .

As the tf-idf vectors are always positive, a large
positive (or negative) weight wci indicates whether
the corresponding word ti is providing evidence
for (or against) this document belonging to class
c. One idea might be to use these weights directly
to identify relevant words. However, this could
yield misleading results, since the classifier might
have large weights for some words, which clearly
identify a document as belonging to this class, but
which only occur in very few documents and are
therefore not representative for the class as a whole.
Instead, the tf-idf vectors of all documents from
one class are multiplied elementwise by the weight
vector of this class and then summed up to yield
the final relevance score for a term ti as

rc_lrp (ti) =
∑

k : yk=c

(
wcixki +

bc
T

)
.

This elementwise decomposition of the classifi-
cation score is a special case of layerwise rele-
vance propagation (LRP) for a one-layer network.
LRP was originally developed to better understand
the classification process in deep neural networks
(DNN) by propagating the classifier decision back
to the input layer in order to visualize the features
based on which the decision was made [1, 2, 4, 15].

For the following experiments we are using a
linear SVM [16] to classify the documents, but
other linear classifiers such as a logistic regression
can be used as well. It is also possible to use a
DNN together with LRP to compute the relevant
words [1, 3]. However, DNN typically require a
comparatively long time to train, while with a lin-
ear classifier it is possible to obtain the relevant
words within minutes on a desktop computer. It
is important to note, however, that selecting rele-
vant words with LRP only works if the classifier
is fairly accurate, as otherwise the trained weights
and resulting scores are meaningless. If a DNN
clearly outperforms a linear classifier on a dataset,
it should be used instead to identify relevant words.

2.3.3 Distinctive words
Instead of aggregating (weighted) features of all
documents, we can also compute a score directly
for each word depending on the number of docu-
ments it appears in from a certain class compared

to documents from other classes. We call the frac-
tion of documents from a target class c that contain
the word ti this word’s true positive rate

TPRc(ti) =
|{k : yk = c ∧ xki > 0}|

|{k : yk = c}|
.

Correspondingly, we can compute a word’s false
positive rate as the mean plus the standard deviation
of the TPRs of this word for all other classes:2

FPRc(ti) = mean({TPRl(ti) : l 6= c})
+ std({TPRl(ti) : l 6= c}) .

The objective is to find words that occur in many
documents from the target class (i.e. have a large
TPRc(ti)), but only occur in few documents of
other classes (i.e. have a low FPRc(ti)). One way
to identify such words would be to compute the
difference between both rates, i.e.

rc_diff (ti) = max{TPRc(ti)− FPRc(ti), 0} ,

which is similar to traditional feature selection ap-
proaches [6]. However, while this score yields
words that occur more often in the target class than
in other classes, it does not take into account the
relative differences. For example, to be able to de-
tect emerging topics in newspaper articles, we are
not necessarily interested in words that occur often
in today’s articles and infrequently in yesterday’s.
Instead, we acknowledge that not most articles pub-
lished today will be written about some new event,
only significantly more articles compared to yester-
day. Therefore, we propose instead a rate quotient,
which gives a score of 1 to every word that has a
TPR about three times higher than its FPR:

rc_quot (ti) =
min{max{zc(ti), 1}, 4} − 1

3
,

with zc(ti) =
TPRc(ti)

max{FPRc(ti), ε}
.

While the rate quotient extracts relevant words that
would otherwise go unnoticed, for a given FPR of
0.05 it assigns the same score to words with a TPR
of 0.3 and a TPR of 1.0. Therefore, to create a
proper ranking amongst all relevant words, we take
the mean of both scores to compute the final score,

rc_dist (ti) = 0.5 (rc_diff (ti) + rc_quot (ti)) ,

which results in the TPR-FPR relation shown in
Fig. 1.

2We are not taking the maximum of the other classes’ TPRs
for this word to avoid a large influence of a class with maybe
only a few samples, which can happen e.g. when clustering
the text documents.

5

Figure 1: Score rc_dist (ti) depending on a word’s
TPR and FPR for one class.

3 Experiments & Results

To illustrate how the identified relevant words can
help when exploring new datasets, we test the pre-
viously described methods on a corpus of scientific
publications about various types of cancer as well
as recent article snippets from the New York Times.
The code to replicate the experiments is available
online and includes functions to cluster documents,
extract relevant words based on all three methods
described above and visualize them in word clouds,
as well as highlight relevant words in individual
documents.3

3.1 Cancer paper paragraphs

We created a dataset of 11049 publicly available
scientific publications by using the PubMed API4

to download all full text PubMed Central papers
associated with a keyword corresponding to one
of ten different types of cancer (Fig. 2). In a pre-
processing step, the dataset was reduced to contain
only articles (a) associated with a single cancer type
and (b) reporting original research (i.e. no editori-
als of journals, etc.). The paragraphs of each article
were automatically assigned one of the paragraph
type labels ‘Abstract’, ‘Introduction’, ‘Methods’,
‘Results’, ‘Discussion’, or ‘Mixed’, depending on
the respective heading identified in the downloaded
XML file. Ignoring the ‘mixed’ paragraphs, we
are left with almost 50k paragraphs from which we
randomly subsampled 10k. Each of the paragraphs
is associated with two labels: one for the paragraph

3https://github.com/cod3licious/textcatvis
4http://www.ncbi.nlm.nih.gov/books/NBK25500/

type and another one for the cancer type the paper
is about. The full dataset is available online.5

Date of publication

Figure 2: Number of full text cancer papers ob-
tained for every cancer type by year. Note that the
articles were downloaded in August 2014, which
explains why there are significantly fewer papers
for 2014 than the year before.

Figure 3: Fraction of texts in each cate-
gory mentioning either ‘brain’, ‘man’/‘men’, or
‘woman’/‘women’.

When manually checking how often individ-
ual words occur in documents assigned to a spe-
cific class, it is no surprise to find that most para-
graphs from papers about brain cancer contain
the word ‘brain’, while paragraphs from papers
about breast cancer or prostate cancer often ref-
erence ‘woman’/‘women’ or ‘man’/‘men’ respec-
tively (Fig. 3). With classes named after different
types of cancer, it is easy to guess which words
might occur more often in some classes than oth-
ers. However, when a dataset instead contains the
classes ‘C1’-‘C23’, getting an idea of what is be-
hind these labels would require manually looking
at multiple documents of each class – or extracting
and visualizing relevant words for them.

5https://github.com/cod3licious/cancer_papers

https://github.com/cod3licious/textcatvis
http://www.ncbi.nlm.nih.gov/books/NBK25500/
https://github.com/cod3licious/cancer_papers

6

Figure 4: Word clouds created from the paragraphs of papers about lung cancer based on tf-idf features
(left), LRP of the classifier output from an SVM (middle), and distinctive words (right).

Figure 5: Word clouds created using LRP on the classifier output from an SVM trained to detect a text’s
paragraph type (Abstract, Introduction, Methods, Results, Discussion).

tf-
id

ff
ea

tu
re

s

PMC3065416 Methods
True Class: lung_cancer

Lung cancer cell lines A549, SPC-A-1, 95D and NCI-H446 were purchased from Shanghai Institue of
Biochemistry and Cell Biology, Chinese Academy of Sciences. Rapamycin, DMSO and MTT were purchased
from Sigma (St Louis, MO, USA). Docetaxel was purchased from Shanghai Sanwei Pharmaceutical Company
(Shanghai, China). Annexin V-FITC apoptosis detection kit was from Jingmei Biotech (Shenzhen,
China). RPMI tissue culture medium and fetal bovine serum (FBS) were purchased from GIBCO (USA).
Anti-Survivin, anti-caspase-3, anti-ERK1/2, anti-p-ERK1/2, anti-GAPDH and HRP-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology (CA, USA). Chemiluminescence (ECL) reagent
kit was purchased from Pierce Biotechnology (Rockford, IL, USA).
A549, SPC-A-1, 95D and NCI-H446 cells were cultured in RPMI-1640 medium containing 10% fetal bovine
serum, 100 IU/ml penicillin and 100 mg/ml streptomycin. The cells were grown in a humidified
incubator at 37degC and in an atmosphere of 5% CO2 in air. Cells were grown on sterile tissue
culture petri dishes and passaged once every 2 to 3 days.
Cell were seeded in a 96-well plate at a density of 1 x 106/ml and cultured in medium for 24 h.
Cell viability was determined using the conversion of MTT to formazan via mitochondrial oxidation.
Various treatments of cells included the addition of rapamycin (12.5 nM, 25 nM, 50 nM, 100 nM),
docetaxel (1 nM, 10 nM, 50 nM, 100 nM) and the combination of docetaxel and 20 nM rapamycin for 24
h. Cells in the control group were treated with only the DMSO solution used to dilute rapamycin.
MTT solution was then added to each well at a final concentration of 1 mg/ml per well and the
plates were incubated at 37degC for another 4 h. After incubation, 150 ml DMSO was added to each
well to dissolve the formazan formed and the absorbance was read at 490 nm using a
spectrophotometer.
Cellular apoptosis was determined using the Annexin V-FITC and propidium iodide (PI) double
staining kit according to the manufacturer's protocol. Briefly, 95D cells were seeded in six-well
plates and allowed to attach overnight; they were then treated with 20 nM rapamycin (Rapa), 10 nM
docetaxel (DTX) alone or a combination (20 nM Rapa + 10 nM DTX). After 48 h, cells were harvested,
washed twice with cold PBS, resuspended in 250 ml of binding buffer, and stained with staining
solution containing Annexin V/FITC and PI. After incubation in the dark for 30 min, cells were
analyzed by FACSCalibur flow cytometry (BD Biosciences).
Western Blotting was performed using standard techniques as previously described[22]. Briefly,
cells were washed twice with PBS buffer and lysed in RIPA lysis buffer (50 mM Tris-Cl pH 7.4, 150
mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS, 1 mM EDTA, 100 mM NaF, 1 mM Na3VO4, 1 mM
PMSF, and 2 mg/ml aprotinin) on ice. 50 mg total proteins were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF)
membranes. PVDF membranes were blocked with 5% nonfat milk in TBST (10 mM Tris, pH 7.4, 150 mM NaCl
and 0.1% Tween-20) at room temperature for 2 h and incubated with the indicated primary antibodies
at 4degC overnight with gentle rocking. After washing with TBST, the membranes were reacted with
appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room
temperature. After extensive washing with TBST, the presence of proteins was visualized by the
enhanced chemiluminescence (ECL) detection kit in accordance with the manufacture's recommendation.
Each experiment involving tissue culture was performed in triplicates. All analyses were performed
using the SPSS 13.0 software. Results are expressed as mean +- SD. The one-way analysis of variance
(ANOVA) was used to compare the difference between treatment groups. Differences were considered
significant if the p value is less than 0.05.

pr
ed

ic
te

d
lu

ng
ca

nc
er

PMC3065416 Methods
True Class: lung_cancer (Score: 0.1678)
Predicted Class: lung_cancer (Score: 0.1678)

Lung cancer cell lines A549, SPC-A-1, 95D and NCI-H446 were purchased from Shanghai Institue of
Biochemistry and Cell Biology, Chinese Academy of Sciences. Rapamycin, DMSO and MTT were purchased
from Sigma (St Louis, MO, USA). Docetaxel was purchased from Shanghai Sanwei Pharmaceutical Company
(Shanghai, China). Annexin V-FITC apoptosis detection kit was from Jingmei Biotech (Shenzhen,
China). RPMI tissue culture medium and fetal bovine serum (FBS) were purchased from GIBCO (USA).
Anti-Survivin, anti-caspase-3, anti-ERK1/2, anti-p-ERK1/2, anti-GAPDH and HRP-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology (CA, USA). Chemiluminescence (ECL) reagent
kit was purchased from Pierce Biotechnology (Rockford, IL, USA).
A549, SPC-A-1, 95D and NCI-H446 cells were cultured in RPMI-1640 medium containing 10% fetal bovine
serum, 100 IU/ml penicillin and 100 mg/ml streptomycin. The cells were grown in a humidified
incubator at 37degC and in an atmosphere of 5% CO2 in air. Cells were grown on sterile tissue
culture petri dishes and passaged once every 2 to 3 days.
Cell were seeded in a 96-well plate at a density of 1 x 106/ml and cultured in medium for 24 h.
Cell viability was determined using the conversion of MTT to formazan via mitochondrial oxidation.
Various treatments of cells included the addition of rapamycin (12.5 nM, 25 nM, 50 nM, 100 nM),
docetaxel (1 nM, 10 nM, 50 nM, 100 nM) and the combination of docetaxel and 20 nM rapamycin for 24
h. Cells in the control group were treated with only the DMSO solution used to dilute rapamycin.
MTT solution was then added to each well at a final concentration of 1 mg/ml per well and the
plates were incubated at 37degC for another 4 h. After incubation, 150 ml DMSO was added to each
well to dissolve the formazan formed and the absorbance was read at 490 nm using a
spectrophotometer.
Cellular apoptosis was determined using the Annexin V-FITC and propidium iodide (PI) double
staining kit according to the manufacturer's protocol. Briefly, 95D cells were seeded in six-well
plates and allowed to attach overnight; they were then treated with 20 nM rapamycin (Rapa), 10 nM
docetaxel (DTX) alone or a combination (20 nM Rapa + 10 nM DTX). After 48 h, cells were harvested,
washed twice with cold PBS, resuspended in 250 ml of binding buffer, and stained with staining
solution containing Annexin V/FITC and PI. After incubation in the dark for 30 min, cells were
analyzed by FACSCalibur flow cytometry (BD Biosciences).
Western Blotting was performed using standard techniques as previously described[22]. Briefly,
cells were washed twice with PBS buffer and lysed in RIPA lysis buffer (50 mM Tris-Cl pH 7.4, 150
mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS, 1 mM EDTA, 100 mM NaF, 1 mM Na3VO4, 1 mM
PMSF, and 2 mg/ml aprotinin) on ice. 50 mg total proteins were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF)
membranes. PVDF membranes were blocked with 5% nonfat milk in TBST (10 mM Tris, pH 7.4, 150 mM NaCl
and 0.1% Tween-20) at room temperature for 2 h and incubated with the indicated primary antibodies
at 4degC overnight with gentle rocking. After washing with TBST, the membranes were reacted with
appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room
temperature. After extensive washing with TBST, the presence of proteins was visualized by the
enhanced chemiluminescence (ECL) detection kit in accordance with the manufacture's recommendation.
Each experiment involving tissue culture was performed in triplicates. All analyses were performed
using the SPSS 13.0 software. Results are expressed as mean +- SD. The one-way analysis of variance
(ANOVA) was used to compare the difference between treatment groups. Differences were considered
significant if the p value is less than 0.05.

pr
ed

ic
te

d
m

et
ho

ds

PMC3065416 Methods
True Class: Methods (Score: 1.9354)
Predicted Class: Methods (Score: 1.9354)

Lung cancer cell lines A549, SPC-A-1, 95D and NCI-H446 were purchased from Shanghai Institue of
Biochemistry and Cell Biology, Chinese Academy of Sciences. Rapamycin, DMSO and MTT were purchased
from Sigma (St Louis, MO, USA). Docetaxel was purchased from Shanghai Sanwei Pharmaceutical Company
(Shanghai, China). Annexin V-FITC apoptosis detection kit was from Jingmei Biotech (Shenzhen,
China). RPMI tissue culture medium and fetal bovine serum (FBS) were purchased from GIBCO (USA).
Anti-Survivin, anti-caspase-3, anti-ERK1/2, anti-p-ERK1/2, anti-GAPDH and HRP-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology (CA, USA). Chemiluminescence (ECL) reagent
kit was purchased from Pierce Biotechnology (Rockford, IL, USA).
A549, SPC-A-1, 95D and NCI-H446 cells were cultured in RPMI-1640 medium containing 10% fetal bovine
serum, 100 IU/ml penicillin and 100 mg/ml streptomycin. The cells were grown in a humidified
incubator at 37degC and in an atmosphere of 5% CO2 in air. Cells were grown on sterile tissue
culture petri dishes and passaged once every 2 to 3 days.
Cell were seeded in a 96-well plate at a density of 1 x 106/ml and cultured in medium for 24 h.
Cell viability was determined using the conversion of MTT to formazan via mitochondrial oxidation.
Various treatments of cells included the addition of rapamycin (12.5 nM, 25 nM, 50 nM, 100 nM),
docetaxel (1 nM, 10 nM, 50 nM, 100 nM) and the combination of docetaxel and 20 nM rapamycin for 24
h. Cells in the control group were treated with only the DMSO solution used to dilute rapamycin.
MTT solution was then added to each well at a final concentration of 1 mg/ml per well and the
plates were incubated at 37degC for another 4 h. After incubation, 150 ml DMSO was added to each
well to dissolve the formazan formed and the absorbance was read at 490 nm using a
spectrophotometer.
Cellular apoptosis was determined using the Annexin V-FITC and propidium iodide (PI) double
staining kit according to the manufacturer's protocol. Briefly, 95D cells were seeded in six-well
plates and allowed to attach overnight; they were then treated with 20 nM rapamycin (Rapa), 10 nM
docetaxel (DTX) alone or a combination (20 nM Rapa + 10 nM DTX). After 48 h, cells were harvested,
washed twice with cold PBS, resuspended in 250 ml of binding buffer, and stained with staining
solution containing Annexin V/FITC and PI. After incubation in the dark for 30 min, cells were
analyzed by FACSCalibur flow cytometry (BD Biosciences).
Western Blotting was performed using standard techniques as previously described[22]. Briefly,
cells were washed twice with PBS buffer and lysed in RIPA lysis buffer (50 mM Tris-Cl pH 7.4, 150
mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS, 1 mM EDTA, 100 mM NaF, 1 mM Na3VO4, 1 mM
PMSF, and 2 mg/ml aprotinin) on ice. 50 mg total proteins were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF)
membranes. PVDF membranes were blocked with 5% nonfat milk in TBST (10 mM Tris, pH 7.4, 150 mM NaCl
and 0.1% Tween-20) at room temperature for 2 h and incubated with the indicated primary antibodies
at 4degC overnight with gentle rocking. After washing with TBST, the membranes were reacted with
appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room
temperature. After extensive washing with TBST, the presence of proteins was visualized by the
enhanced chemiluminescence (ECL) detection kit in accordance with the manufacture's recommendation.
Each experiment involving tissue culture was performed in triplicates. All analyses were performed
using the SPSS 13.0 software. Results are expressed as mean +- SD. The one-way analysis of variance
(ANOVA) was used to compare the difference between treatment groups. Differences were considered
significant if the p value is less than 0.05.

Figure 6: Tf-idf features (top) and LRP visualizations based on the classifier output from an SVM created
for a paper’s paragraph in the cancer type classification task (middle) and the paragraph type classification
task (bottom).

We can observe subtle differences when exam-
ining the relevant words selected based on raw tf-
idf features, using LRP on the classifier output of
an SVM, and the scored distinctive words for all
paragraphs of papers belonging to a single cancer

type (Fig. 4). For example, while tf-idf selected
‘patients’ as a relevant word since it occurs fre-
quently in some paragraphs yet still has only a
moderate idf score, this obviously does not help
to distinguish between different types of cancers.

7

The relevant words selected by SVM+LRP as well
as those ranked high when computing distinctive
words seem more characteristic for this cancer type.
However, due to the large tf-idf value, even with a
positive but low classifier weight, ‘patients’ is still
ranked comparatively high when using SVM+LRP.
SVM+LRP additionally provides negative scores,
i.e. it identifies words that contributed negatively
to the classification decision, such as other cancer
types like ‘breast cancer’.

The same analysis can be conducted taking the
paragraph types as labels. When looking at the
SVM+LRP word clouds for all five paragraph types
(Fig. 5), we can find many words and phrases typ-
ically used in these sections. For example, para-
graphs from the results sections contain many refer-
ences to tables and figures, while paragraphs in the
discussion highlight the differences of ‘our study’.
Further analysis could then, for example, reveal the
differences in methodology when researching dif-
ferent types of cancer by extracting relevant words
only from paragraphs belonging the methods sec-
tions, grouped by cancer type.

The classification accuracy of the SVM for can-
cer types (95%) and paragraph types (89.8%) is
fairly good – a prerequisite for using LRP in the
first place. To better understand the classification
process, we can create a heatmap visualization
from the LRP scores of a single document. For ex-
ample, when looking at a correctly classified para-
graph from the methods section of a paper about
lung cancer (Fig. 6), we can clearly see how the
classifier weights tuned for different tasks influence
which words speak for or against either the corre-
sponding cancer or paragraph type. Examining
individual samples like this is particularly helpful
to understand misclassifications and identify train-
ing set biases [9].

3.2 New York Times articles

It is especially interesting to see if the methods
for selecting relevant words can help us identify
trends in unlabeled datasets. For this we are using
newspaper article snippets from the week of Pres-
ident Trump’s inauguration (Jan 16th-22nd, 2017),
as well as three weeks prior (including the last week
of 2016), downloaded with the Archive API from
New York Times.6

When looking at the distinctive words identified

6https://developer.nytimes.com/archive_api.

json

Figure 7: Distinctive words in NY Times article
snippets during the week of president Trump’s
inauguration (green/up) and three weeks prior
(red/down).

Figure 8: Frequencies of selected words in NY
Times article snippets from different days.

for the week of the inauguration and before (Fig. 7),
we can see clear trends. Obviously, the main focus
that week was on the inauguration itself, however it
already becomes apparent that this will be followed
by protest marches and also the Australian Open
was happening at that time. When looking at the
occurrence frequencies of different words over time
(Fig. 8), we can see the spike of ‘Trump’ at the
day of his inauguration, but while some stopwords
occur equally frequent on all days, other rather
meaningless words such as ‘Tuesday’ have clear
spikes as well (on Tuesdays). Therefore, care has
to be taken when contrasting articles from different
times when computing distinctive words, as it could
easily happen that these meaningless words are
picked up as well simply because e.g. one month
contains more Tuesdays than another month used

https://developer.nytimes.com/archive_api.json
https://developer.nytimes.com/archive_api.json

8

Issues Surrounding Betsy DeVos, the Education Nominee
For-Profit Law School Is Cut Off From Federal Student Loans
Betsy DeVos’s Education Hearing Erupts Into Partisan Debate
Nominee Betsy DeVos’s Knowledge of Education Basics Is Open to Criticism
Donald Trump’s Education Nominee, Betsy DeVos

Avalanche Death Toll in Italy Reaches 5 as Search of Hotel Rubble Continues
Avalanche in Italy Buries Hotel, Leaving up to 30 Missing
Italy Cheers as Boy Pulled From Rubble of Avalanche, Along With Others
Search for Survivors After Avalanche in Italy

Figure 9: Word clouds created from the distinctive words identified for two of over 50 clusters during the
week Jan 16th-22nd, 2017 and corresponding headlines.

for comparison.
To identify trending topics, the articles from the

week of the inauguration were clustered using DB-
SCAN. When enforcing a minimum cosine simi-
larity of 0.55 to other samples of a cluster as well
as at least three articles per cluster, we obtain over
50 clusters for this week (as well as several ar-
ticles considered ‘noise’). While some clusters
correspond to specific sections of the newspaper
(e.g. corrections to articles published the days be-
fore), others indeed refer to meaningful events that
happened that week, e.g. the nomination of Betsy
DeVos or an avalanche in Italy (Fig. 9).

4 Conclusion

Examining the relevant words occurring in docu-
ments of different classes or clusters in a dataset
is a very helpful step in the exploratory analysis
of a collection of texts. It allows to quickly grasp
the contents of documents belonging to one class
or cluster and can provide an intuition whether the
proposed classification task is easy or difficult. Ad-
ditionally, relevant words can help identify salient
topics in unlabeled datasets, which is important if
one is faced with a large dataset and quickly needs
to find documents of interest.

We have explained three approaches for select-
ing relevant words of a class, namely 1) aggre-
gating the tf-idf scores of all texts belonging to
this class, 2) using layerwise relevance propaga-
tion to combine the weights of a trained classifier
with the tf-idf feature vectors of this class, or 3) di-
rectly computing a relevancy score for individual
words depending on the number of documents in
the target class this word occurs in compared to
other classes. The usefulness of these methods was

demonstrated by using the resulting word clouds to
get an overview of the different classes in a dataset
of scientific publications as well as to identify trend-
ing topics in recent New York Times article snip-
pets.

We found that for the exploratory analysis of
different clusters and especially to identify trend-
ing topics, the best method for obtaining relevant
words is to directly compute a score for each word
indicating how often this word occurs in the cur-
rent class compared to others. This method is very
fast and robust with respect to varying numbers of
samples per class. Most importantly, it is possible
to identify distinctive words even if many clusters
contain only very few samples, which would make
it difficult to train a classifier on the dataset. Yet,
when the documents are part of a classification task,
it is very useful to use LRP to better understand the
classification process and decisions.

We hope the provided code will encourage other
people faced with large collections of texts to
quickly dive into the analysis and to thoroughly
explore new datasets.

Acknowledgments

We would like to thank Ivana Balažević and
Christoph Hartmann for their helpful comments on
an earlier version of this manuscript. Franziska
Horn acknowledges funding from the Elsa-
Neumann scholarship from the TU Berlin.

References
[1] Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. Ex-
plaining Predictions of Non-Linear Classifiers in

9

NLP. In Proceedings of the 1st Workshop on Rep-
resentation Learning for NLP, pages 1–7. Associ-
ation for Computational Linguistics, 2016.

[2] Leila Arras, Franziska Horn, Grégoire Mon-
tavon, Klaus-Robert Müller, and Wojciech Samek.
"what is relevant in a text document?": An in-
terpretable machine learning approach. arXiv
preprint arXiv:1612.07843, 2016.

[3] Leila Arras, Grégoire Montavon, Klaus-Robert
Müller, and Wojciech Samek. Explaining recur-
rent neural network predictions in sentiment anal-
ysis. arXiv preprint arXiv:1706.07206, 2017.

[4] Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rel-
evance propagation. PLOS ONE, 10(7):e0130140,
2015.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xi-
aowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231, 1996.

[6] George Forman. An extensive empirical study
of feature selection metrics for text classification.
The Journal of Machine Learning Research, 3:
1289–1305, 2003.

[7] Florian Heimerl, Steffen Lohmann, Simon Lange,
and Thomas Ertl. Word cloud explorer: Text ana-
lytics based on word clouds. In System Sciences
(HICSS), 2014 47th Hawaii International Confer-
ence on, pages 1833–1842. IEEE, 2014.

[8] Anette Hulth. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical
methods in natural language processing, pages
216–223. Association for Computational Linguis-
tics, 2003.

[9] Sebastian Lapuschkin, Alexander Binder, Gré-
goire Montavon, Klaus-Robert Müller, and Woj-
ciech Samek. Analyzing classifiers: Fisher vectors
and deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2912–2920, 2016.

[10] Sungjick Lee and Han-joon Kim. News keyword
extraction for topic tracking. In Networked Com-
puting and Advanced Information Management,
2008. NCM’08. Fourth International Conference
on, volume 2, pages 554–559. IEEE, 2008.

[11] Christopher D. Manning and Hinrich Schütze.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA, USA, 1999.
ISBN 0-262-13360-1.

[12] Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press,

New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

[13] Carmel McNaught and Paul Lam. Using wordle
as a supplementary research tool. The qualitative
report, 15(3):630, 2010.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[15] Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. Methods for interpreting and un-
derstanding deep neural networks. arXiv preprint
arXiv:1706.07979, 2017.

[16] Klaus-Robert Müller, Sebastian Mika, Gunnar
Rätsch, Koji Tsuda, and Bernhard Schölkopf. An
introduction to kernel-based learning algorithms.
Neural Networks, IEEE Transactions on, 12(2):
181–201, 2001.

[17] Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

[18] Laurens van der Maaten and Geoffrey Hinton. Vi-
sualizing data using t-SNE. Journal of Machine
Learning Research, 9(2579-2605):85, 2008.

[19] Yiming Yang and Jan O. Pedersen. A comparative
study on feature selection in text categorization. In
Proceedings of the Fourteenth International Con-
ference on Machine Learning, ICML ’97, pages
412–420, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-486-3.

[20] Kuo Zhang, Hui Xu, Jie Tang, and Juanzi Li. Key-
word Extraction Using Support Vector Machine,
pages 85–96. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

A Identifying bigrams

As an optional preprocessing step, single semantic
units consisting of multiple words can be identified
in the texts in order to preserve their special mean-
ing. For example, the NBA team ‘Memphis Griz-
zlies’ has nothing to do with actual grizzly bears
and Google co-founder ‘Larry Page’ is not like ev-
ery other Larry. Therefore it would be desirable to
identify these meaningful word combinations and
not split them up into individual words, which, in
a bag-of-words model, would cause them to loose
their specific meaning. However, since we are later
computing a relevancy score for each feature, we
also don’t want to consider just any combination of
two or more words, which would lead to a compu-
tationally inefficient inflation of the feature space.

10

There are several ways to infer that a combina-
tion of two words (a so-called bigram) constitutes
a meaningful phrase [11]. In essence, these meth-
ods are based on a score, which is computed for
every bigram that occurs in the texts, and if this
score is above some threshold, those two words are
subsequently considered as a single entity. For our
purposes, a simple data-driven approach similar
to [14] is adopted, where the score for every bi-
gram consisting of the words ti and tj is computed
as

score (ti tj) =
count (ti tj)

max{count (ti), count (tj)}
.

This score is equal to 1 if both words occur only in
this combination.

Based on the computed scores, bigrams are iden-
tified in two steps: First, all bigrams, which do
not occur at least twice in the texts, are discarded
to ensure that the selected bigrams are not just a
random combination of infrequent words. Next,
it is checked that the score is above a decision
threshold to separate true bigrams from coinciden-
tal co-occurrences of two words.

In order to choose this threshold in an objec-
tive manner, an empirical hypothesis approach is
adopted. To this end, the distribution of bigram
scores from original texts is compared to that ob-
tained from documents with randomly permuted
words.7 A large majority of random bigrams have a
score around zero, therefore when choosing a very
conservative threshold such as 0.1, 99.99% of the
random bigrams’ scores are below this threshold
and meaningful word combinations can be selected
very reliably (Fig. 10).

Figure 10: Percentage of the bigrams in original
texts and documents with randomly shuffled words
whose scores would pass certain thresholds.

When joining all bigrams, whose scores pass the
threshold, together as a single phrase, this can ac-

7To obtain the random scores, the words were only shuffled
within a document, not across documents.

tually lead to longer word combinations than just
bigrams; e.g. if ‘President Barack Obama’ is a com-
mon phrase, both ‘President Barack’ and ‘Barack
Obama’ will have a high bigram score and will
therefore be joined together, yielding the trigram
‘President Barack Obama’.

