
1

Discovering topics in text datasets by visualizing relevant words

Franziska Horn1, Leila Arras2, Grégoire Montavon1,
Klaus-Robert Müller1,3, and Wojciech Samek2

1Machine Learning Group, Technische Universität Berlin, Berlin, Germany
2Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
3Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea

franziska.horn@campus.tu-berlin.de

Abstract

When dealing with large collections of doc-
uments, it is imperative to quickly get an
overview of the texts’ contents. In this pa-
per we show how this can be achieved by
using a clustering algorithm to identify top-
ics in the dataset and then selecting and
visualizing relevant words, which distin-
guish a group of documents from the rest
of the texts, to summarize the contents of
the documents belonging to each topic. We
demonstrate our approach by discovering
trending topics in a collection of New York
Times article snippets.

1 Introduction

Large, unstructured text datasets, e.g. in the form
of data dumps leaked to journalists, are becom-
ing more and more frequent. To quickly get an
overview of the contents of such datasets, tools for
exploratory analysis are essential.

We propose a method for extracting from a set
of texts the relevant words that distinguish these
documents from others in the dataset. By using the
DBSCAN clustering algorithm [4], the documents
in a dataset can be grouped to reveal salient topics.
We can then summarize the texts belonging to each
topic by visualizing the extracted relevant words
in word clouds, thereby enabling one to grasp the
contents of the documents at a glance.

By identifying relevant words in clusters of re-
cent New York Times article snippets, we demon-
strate how our approach can reveal trending topics.

All tools discussed in this paper as well as code
to replicate the experiments are available as an open
source Python library.1

1https://github.com/cod3licious/textcatvis

1.1 Related work

Identifying relevant words in text documents was
traditionally limited to the area of feature selection,
where different approaches were used to discard
‘irrelevant’ features in an attempt to improve the
classification performance by reducing noise as
well as save computational resources [5]. How-
ever, the primary objective here was not to identify
words that best describe the documents belonging
to certain clusters, but to identify features that are
particularly uninformative in a classification task
and can be disregarded. Other work was focused
on selecting keywords for individual documents,
e.g. based on tf-idf variants [9] or by using classi-
fiers [8, 16]. Yet, while these keywords might pro-
vide adequate summaries of single documents, they
do not necessarily overlap with keywords found for
other documents about this topic and therefore it is
difficult to aggregate them to get an overview of the
contents of a group of texts. Current tools available
for creating word clouds as a means of summariz-
ing a (collection of) document(s) mostly rely on
term frequencies (while ignoring stopwords), pos-
sibly combined with part-of-speech tagging and
named entity recognition to identify words of inter-
est [6, 11]. While an approach based on tf-idf fea-
tures selects words occurring frequently in a group
of documents, these words do not reliably distin-
guish the documents from texts belonging to other
clusters [7]. In more recent work, relevant features
were selected using layerwise relevance propaga-
tion (LRP) to trace a classifier’s decision back to the
samples’ input features [3, 13]. This was success-
fully used to understand the classification decisions
made by a convolutional neural network trained on
a text categorization task and to subsequently de-
termine relevant features for individual classes by
aggregating the LRP scores computed on the test
samples [1, 2]. While in classification settings LRP

ar
X

iv
:1

70
7.

06
10

0v
1 

 [
cs

.C
L

] 
 1

8 
Ju

l 2
01

7

https://github.com/cod3licious/textcatvis


2

works great to identify relevant words describing
different classes of documents, this method is not
suited in our case as we are dealing with unlabeled
data.

2 Methods

To get a quick overview of a text dataset, we want
to identify and visualize the ‘relevant words’ occur-
ring in the collection of texts. We define relevant
words as some characteristic features of the doc-
uments, which distinguish them from other docu-
ments. As the first step in this process, the texts
therefore have to be preprocessed and transformed
into feature vectors (Section 2.1). While relevant
words are supposed to occur often in the documents
of interest, they should also distinguish them from
other documents. When analyzing a whole dataset
it is therefore most revealing to look at individual
clusters and obtain the relevant words for each clus-
ter, i.e. find the features that distinguish one cluster
(i.e. topic) from another. To cluster the documents
in a dataset, we use the DBSCAN algorithm (Sec-
tion 2.2).

The relevant words for a cluster c are identified
by computing a relevancy score rc for every word
ti (with i = 1...T , where T is the number of unique
terms in the given vocabulary) and then the word
clouds are created using the top ranking words.
The easiest way to compute relevancy scores is to
simply check for frequent features in a selection of
documents. However, this does not necessarily pro-
duce features that additionally occur infrequently
in other clusters. Therefore, we instead compute a
score for each word indicating in how many doc-
uments of one cluster it occurs compared to other
clusters (Section 2.3).

2.1 Preprocessing & Feature extraction

All N texts in a dataset are preprocessed by lower-
casing and removing non-alphanumeric characters.
Then each text is transformed into a bag-of-words
(BOW) feature vector xk ∈ RT ∀k ∈ 1...N by first
computing a normalized count, the term frequency
(tf), for each word in the text, and then weighting
this by the word’s inverse document frequency (idf)
to reduce the influence of very frequent but inex-
pressive words that occur in almost all documents
(such as ‘and’ and ‘the’) [10, 15]. The idf of a
term ti is calculated as the logarithm of the total
number of documents, |N |, divided by the number

of documents which contain term ti, i.e.

idf (ti) = log
|N |

|{k ∈ N : ti ∈ k}|
.

The entry corresponding to the term ti in the tf-idf
feature vector xk of a document k is then

xki = tfk(ti) · idf (ti).

In addition to single terms, we are also consider-
ing meaningful combinations of two words (i.e. bi-
grams) as features. However, to not inflate the fea-
ture space too much (since later, relevancy scores
have to be computed for every feature), only dis-
tinctive bigrams are selected. This is achieved by
computing a bigram score for every combination of
two words occurring in the corpus similar as in [12]
and then selecting those with a score significantly
higher than that of random word combinations. Fur-
ther details can be found in the appendix of [7].

2.2 Clustering
To identify relevant words summarizing the differ-
ent topics in the dataset, the texts first have to be
clustered. For this, we use density-based spatial
clustering of applications with noise (DBSCAN)
[4], a clustering algorithm that identifies clusters as
areas of high density in the feature space, separated
by areas of low density. This algorithm was chosen
as it does not assume that the clusters have a certain
shape (unlike e.g. the k-means algorithm, which
assumes spherical clusters) and it allows for noise
in the dataset, i.e. does not enforce that all samples
belong to a certain cluster.

DBSCAN is based on pairwise distances be-
tween samples and first identifies ‘core samples’ in
areas of high density and then iteratively expands a
cluster by joining them with other samples, whose
distance is below some user defined threshold. As
the cosine similarity is a reliable measure of simi-
larity for text documents, we compute the pairwise
distances used in the DBSCAN algorithm by first
reducing the documents’ tf-idf feature vectors to
250 linear kernel PCA components to remove noise
and create more overlap between the feature vec-
tors [14], and then compute the cosine similarity
between these vectors and subtract it from 1 to
transform it into a distance measure. As clustering
is an unsupervised process, a value for the distance
threshold has to be chosen such that the obtained
clusters seem reasonable. In the experiments de-
scribed below, we found that a minimum cosine
similarity of 0.55 to other samples in the cluster
(i.e. using a distance threshold of 0.45) leads to



3

texts about the same topic being grouped together.
We denote as yk the cluster that document k was

assigned to in the clustering procedure.

2.3 Identifying relevant words

Relevant words for each cluster are identified by
computing a relevancy score rc for every word ti
and then selecting the highest scoring words.

We compute a score for each word depending on
the number documents it occurs in from one cluster
compared to the documents from other clusters. We
call the fraction of documents from a target cluster
c that contain the word ti this word’s true positive
rate

TPRc(ti) =
|{k : yk = c ∧ tfk(ti) > 0}|

|{k : yk = c}|
.

Correspondingly, we can compute a word’s false
positive rate as the mean plus the standard deviation
of the TPRs of this word for all other clusters:2

FPRc(ti) = mean({TPRl(ti) : l 6= c})
+ std({TPRl(ti) : l 6= c}) .

The objective is to find words that occur in many
documents from the target cluster (i.e. have a large
TPRc(ti)), but only occur in few documents of
other clusteres (i.e. have a low FPRc(ti)). One
way to identify such words would be to compute
the difference between both rates, i.e.

rc_diff (ti) = max{TPRc(ti)− FPRc(ti), 0} ,
which is similar to traditional feature selection ap-
proaches [5]. However, while this score yields
words that occur more often in the target cluster
than in other clusters, it does not take into account
the relative differences. For example, to be able to
detect emerging topics in newspaper articles, we
are not necessarily interested in words that occur
often in today’s articles and infrequently in yes-
terday’s. Instead, we acknowledge that not most
articles published today will be written about some
new event, only significantly more articles com-
pared to yesterday. Therefore, we propose instead
a rate quotient, which gives a score of 1 to every
word that has a TPR about three times higher than
its FPR:

rc_quot (ti) =
min{max{zc(ti), 1}, 4} − 1

3
,

with zc(ti) =
TPRc(ti)

max{FPRc(ti), ε}
.

2We are not taking the maximum of the other clusters’
TPRs for this word to avoid a large influence of a cluster with
maybe only a few samples.

While the rate quotient extracts relevant words that
would otherwise go unnoticed, for a given FPR of
0.05 it assigns the same score to words with a TPR
of 0.3 and a TPR of 1.0. Therefore, to create a
proper ranking amongst all relevant words, we take
the mean of both scores to compute the final score,

rc (ti) = 0.5 (rc_diff (ti) + rc_quot (ti)) ,

which results in the TPR-FPR relation shown in
Fig. 1.

Figure 1: Relevancy score rc(ti) depending on a
word’s TPR and FPR for a cluster.

3 Experiments & Results

To illustrate how the identified relevant words can
help when exploring new datasets, we test the previ-
ously described methods on recent article snippets
from the New York Times. The code to replicate
the experiments is available online and includes
functions to cluster documents, extract relevant
words and visualize them in word clouds, as well as
highlight relevant words in individual documents.3

To see if our approach can be used to discover
trending topics, we are using newspaper article
snippets from the week of President Trump’s inau-
guration (Jan 16th-22nd, 2017), as well as three
weeks prior (including the last week of 2016),
downloaded with the Archive API from New York
Times.4

Before we cluster the texts, if we just manu-
ally split them into the articles published during
the week of the inauguration (c1) and before (c2),
the identified relevant words already reveals clear

3https://github.com/cod3licious/textcatvis
4https://developer.nytimes.com/archive_api.

json

https://github.com/cod3licious/textcatvis
https://developer.nytimes.com/archive_api.json
https://developer.nytimes.com/archive_api.json


4

Figure 2: Relevant words in NY Times article snip-
pets during the week of president Trump’s inaugu-
ration (green/up) and three weeks prior (red/down).

Figure 3: Frequencies of selected words in NY
Times article snippets from different days.

trends (Fig. 2). Obviously, the main focus that
week was on the inauguration itself, however it al-
ready becomes apparent that this will be followed
by protest marches and also the Australian Open
was happening at that time. When looking at the oc-
currence frequencies of different words over time
(Fig. 3), we can see the spike of ‘Trump’ at the
day of his inauguration, but while some stopwords
occur equally frequent on all days, other rather
meaningless words such as ‘Tuesday’ have clear
spikes as well (on Tuesdays). Therefore, care has
to be taken when contrasting articles from different
times when computing relevant words, as it could
easily happen that these meaningless words are
picked up as well simply because e.g. one month
contains more Tuesdays than another month used
for comparison.

To identify trending topics, the articles from the

week of the inauguration were clustered using DB-
SCAN. When enforcing a minimum cosine simi-
larity of 0.55 to other samples of a cluster as well
as at least three articles per cluster, we obtain over
50 clusters for this week (as well as several ar-
ticles considered ‘noise’). While some clusters
correspond to specific sections of the newspaper
(e.g. corrections to articles published the days be-
fore), others indeed refer to meaningful events that
happened that week, e.g. the nomination of Betsy
DeVos or an avalanche in Italy (Fig. 4).

4 Conclusion

Examining the relevant words that summarize dif-
ferent groups of documents in a dataset is a very
helpful step in the exploratory analysis of a collec-
tion of texts. It allows to quickly grasp the contents
of documents belonging to certain clusters and can
help identify salient topics, which is important if
one is faced with a large dataset and quickly needs
to find documents of interest.

We have explained how to compute a relevancy
score for individual words depending on the num-
ber of documents in the target cluster this word
occurs in compared to other clusters. This method
is very fast and robust with respect to small or vary-
ing numbers of samples per cluster. The usefulness
of our approach was demonstrated by using the
obtained word clouds to identify trending topics in
recent New York Times article snippets.

We hope the provided code will encourage other
people faced with large collections of texts to
quickly dive into the analysis and to thoroughly
explore new datasets.

Acknowledgments

We would like to thank Christoph Hartmann for
his helpful comments on an earlier version of this
manuscript. Franziska Horn acknowledges funding
from the Elsa-Neumann scholarship from the TU
Berlin.

References
[1] Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. Ex-
plaining Predictions of Non-Linear Classifiers in
NLP. In Proceedings of the 1st Workshop on Rep-
resentation Learning for NLP, pages 1–7. Associ-
ation for Computational Linguistics, 2016.

[2] Leila Arras, Franziska Horn, Grégoire Mon-
tavon, Klaus-Robert Müller, and Wojciech Samek.



5

Issues Surrounding Betsy DeVos, the Education Nominee 
For-Profit Law School Is Cut Off From Federal Student Loans 
Betsy DeVos’s Education Hearing Erupts Into Partisan Debate 
Nominee Betsy DeVos’s Knowledge of Education Basics Is Open to Criticism 
Donald Trump’s Education Nominee, Betsy DeVos 

Avalanche Death Toll in Italy Reaches 5 as Search of Hotel Rubble Continues 
Avalanche in Italy Buries Hotel, Leaving up to 30 Missing 
Italy Cheers as Boy Pulled From Rubble of Avalanche, Along With Others 
Search for Survivors After Avalanche in Italy 

Figure 4: Word clouds created from the relevant words identified for two of over 50 clusters during the
week Jan 16th-22nd, 2017 and corresponding headlines.

"what is relevant in a text document?": An in-
terpretable machine learning approach. arXiv
preprint arXiv:1612.07843, 2016.

[3] Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rel-
evance propagation. PLOS ONE, 10(7):e0130140,
2015.

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xi-
aowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231, 1996.

[5] George Forman. An extensive empirical study
of feature selection metrics for text classification.
The Journal of Machine Learning Research, 3:
1289–1305, 2003.

[6] Florian Heimerl, Steffen Lohmann, Simon Lange,
and Thomas Ertl. Word cloud explorer: Text ana-
lytics based on word clouds. In System Sciences
(HICSS), 2014 47th Hawaii International Confer-
ence on, pages 1833–1842. IEEE, 2014.

[7] Franziska Horn, Leila Arras, Grégoire Montavon,
Klaus-Robert Müller, and Wojciech Samek. Ex-
ploring text datasets by visualizing relevant words.
arXiv preprint arXiv:1707.05261, 2017.

[8] Anette Hulth. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical
methods in natural language processing, pages
216–223. Association for Computational Linguis-
tics, 2003.

[9] Sungjick Lee and Han-joon Kim. News keyword
extraction for topic tracking. In Networked Com-
puting and Advanced Information Management,
2008. NCM’08. Fourth International Conference
on, volume 2, pages 554–559. IEEE, 2008.

[10] Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press,
New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

[11] Carmel McNaught and Paul Lam. Using wordle
as a supplementary research tool. The qualitative
report, 15(3):630, 2010.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[13] Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. Methods for interpreting and un-
derstanding deep neural networks. arXiv preprint
arXiv:1706.07979, 2017.

[14] Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

[15] Yiming Yang and Jan O. Pedersen. A comparative
study on feature selection in text categorization. In
Proceedings of the Fourteenth International Con-
ference on Machine Learning, ICML ’97, pages
412–420, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-486-3.

[16] Kuo Zhang, Hui Xu, Jie Tang, and Juanzi Li. Key-
word Extraction Using Support Vector Machine,
pages 85–96. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.


