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Abstract—Learning under non-stationarity can be achieved by
decomposing the data into a subspace that is stationary and a
non-stationary one (stationary subspace analysis (SSA)). While
SSA has been used in various applications, its robustness and
computational efficiency has limits due to the difficulty in opti-
mizing the Kullback-Leibler divergence based objective. In this
paper we contribute by extending SSA twofold: we propose SSA
with (a) higher numerical efficiency by defining analytical SSA
variants and (b) higher robustness by utilizing the Wasserstein-2
distance (Wasserstein SSA). We show the usefulness of our
novel algorithms for toy data demonstrating their mathematical
properties and for real-world data (1) allowing better segmen-
tation of time series and (2) brain-computer interfacing, where
the Wasserstein-based measure of non-stationarity is used for
spatial filter regularization and gives rise to higher decoding
performance.

Index Terms—Subspace learning, stationary subspace analysis,
divergence methods, optimal transport, covariance metrics.

I. INTRODUCTION

SUBSPACE methods are one of the most common basic
tools in many research fields, including machine learning,

signal processing, image processing, computer vision, natural
language processing, e-commerce, and bioinformatics. Since
the available data size, dimension and multi-modality has
grown explosively, the importance of subspace methods has
increased. With that the robustness against outliers became
an essential research topic, since manual outlier rejection
is practically impossible on large-scale datasets. Different
approaches and their robust variants have been developed to
find suitable subspaces for special problems (e.g., [1]).

Subspace methods in general decompose high dimensional
data X into a low-dimensional source S and a projection A
such that

X ≈ AS.

Various additional assumptions on S, which make the de-
composition unique, define different subspace methods. Prin-
cipal component analysis (PCA) chooses a low dimensional
subspace that retains the variance as much as possible. This
can be achieved by finding the leading eigendirections of the
covariance matrix. Independent component analysis (ICA) [2]
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assumes independence of the source signals and minimizes the
dependence between the components. A popular independence
criterion to be maximized is the negentropy between the
sources, which corresponds to maximizing the distance of the
estimated source distributions from a Gaussian distribution, as
can be seen for example in [3].

This paper focuses on stationary subspace analysis (SSA),
proposed by Bünau et al. [4], which is a projection algo-
rithm splitting the multivariate data stream into stationary
and non-stationary parts. Stationarity of the data distribution
is a common assumption in many applications in machine
learning, since it assures the convergence of most estimators.
However, in practice this assumption is rarely satisfied [5].
SSA assumes that the data is generated from a mixture of
sources, similarly to ICA, and the sources consist of stationary
and non-stationary components. Thus, this method employs
changes in the data time-structure to find a decomposition,
which maximizes/minimizes stationarity in the data.

Stationarity is evaluated by measuring the distance between
distributions in each epoch of the time series. SSA approx-
imates the underlying distributions with Gaussian distribu-
tions, and their distance is measured by the Kullback-Leibler
(KL) divergence. But since the Kullback-Leibler divergence
is not a proper metric (see [6] for more information about
divergences), it lacks symmetries and invariance properties.
Horev et al. [7] proposed a geometry-aware variant of SSA
by adopting the affine invariant Riemann metric.

In this paper, we study a particular choice for the distance
measure. Namely, we propose Wasserstein SSA (WaSSA),
where the distance between distributions is measured by the
Wasserstein-2 distance [8]. The advantage of this choice is
twofold:

1) Computational efficiency: WaSSA can be carried out by
eigendecomposition after a minor iterative optimization
which typically converges in 5-7 steps. This gives a
significant computational advantage against most of the
existing methods, which are solved by gradient descent
style algorithms. We also propose an approximate vari-
ant of WaSSA using the matrix-root distance, which
further improves the computational efficiency.

2) Robustness against outliers: Under some assumption,
the (square) Wasserstein distance is written as a sum
of L2-distance between the means and the matrix-root
distance between the covariances. Since the matrix-root
in general downweights the contribution from peaky data
points, WaSSA is expected to be robust against outliers.

In this work we discuss some mathematical properties of
the Wasserstein distance and the geometry induced by it
and a related metric, the matrix-root distance. The resulting
algorithm is solvable by an eigendecomposition combined with
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a fixed point iteration. Additionally we discuss SSA from
the perspective of a covariance estimation problem, under
which SSA can be considered as a PCA-like algorithm on
the space of covariance matrices. An experimental evaluation
shows clear advantages over the existing methods in terms
of computational efficiency and accuracy. We employ a re-
cently developed algorithm to derive the Fréchet-mean for the
Wasserstein-2 distance for a set of covariance matrices and
empirically investigate the relation between the Wasserstein
and matrix-root distance, a topic which has recently attracted
considerable theoretical attention [9]. Finally, we evaluate
these new methods on EEG data by incorporating the Wasser-
stein objective into the stationary common spatial pattern
algorithm [10], which improves the decoding performance in
brain-computer interfacing (BCI) [11], [12].

This paper is organized as follows. In Section II we give a
brief overview of SSA and metrics for covariance matrices. In
Section III we propose the novel Wasserstein SSA algorithm
and its approximate variant. In Section IV we show experi-
mental results demonstrating advantages of Wasserstein SSA.
We conclude in Section V with a brief discussion.

A. Related work

1) Wasserstein distance: The Wasserstein-2 distance for
Gaussian distributions has been well studied [13], [14], [15].
This work has enjoyed recent popularity with several theoret-
ical results e.g. by Alvarez-Esteban et al. [16] who proposed
the fixed point algorithm for calculation of the Fréchet-mean,
Masarotto et al. [17], who relate the Wasserstein distance
to the Procrustes distance or Bhatia et al. [9] who provide
some further proofs concerning these results and raise the
question of the exact relation between Wasserstein distance
and the matrix-root distance. Some recent applications for
covariance matrices are for example by Bachoc et al. [18], who
define a family of kernel matrices based on the Wasserstein
distances for forecasting of Gaussian processes, or Mallasto
et al. [19], who study the use of Wasserstein space on covari-
ance operators for Gaussian processes. Further applications
of Wasserstein distance are the application of Wasserstein
distance without assuming a Gaussian distribution for defining
objective function in neural networks, e.g. Montavon et al.
[20] showed advantages of Wasserstein distance in training
restricted Boltzmann machines, while Arjovsky et al. [21]
used Wasserstein distance to improve the training of generative
adversarial networks.

2) Stationary subspace analysis: Stationary subspace anal-
ysis is a projection algorithm splitting the multivariate data
stream into a stationary and non-stationary part [4]. Several
works have proposed adaptions of the SSA framework and ap-
plied them to different applications like change point detection
[22], EEG data [23], geomagnetic data [24] and videos clas-
sification [25] among others. Additionally, several extensions
of SSA for different objectives have been proposed: Panknin
et al. [26] take into account higher moments, while Király et
al. [27] discuss an algebraic solution to problems like SSA.
Baktashmotlagh et al. [25] propose a supervised approach to
SSA as well as a kernelized version of the algorithm. Other

authors [28] investigate a information geometric interpretation
of the SSA objective or define a cost function based on the
Affine invariant Riemann metric [7], which is better suited
to the space of covariance matrices. Hara et al. [24] derived
an approximation of the SSA objective which is solvable
analytically.

B. Robust methods for EEG analysis

Subspace methods enjoy popularity in EEG analysis, since
they allow to address the high dimensionality and the high
inherent noise level of these signals, e.g., in brain-computer
interfacing (BCI). Additionally one often has to account for
outliers in the data, which can occur due to movements by
the participants during BCI or loose electrodes for instance.
This leads to a demand for robust methods. Castells et al.
[29] give an overview of PCA methods in this domain, while
Lin et al. [30] as well as Chang et al. [31] adapt robust PCA
(RPCA), which tries to recover a low rank representation of the
data, to brain signals. The authors of [32] combine RPCA with
random projection methods, while [31] use RPCA to alleviate
inter-day variability in EEG data. Common spatial pattern
(CSP) algorithms [33] are another class of subspace algorithms
enjoying popularity in the EEG community. Therefore, various
methods have been proposed to robustify CSP [34], [35], [36],
[37], [38], [39] or to enforce stationarity in the filters [40],
[41], [10], [42]. The usage of SSA as preprocessing step in
BCI has been investigated by Bünau et al. [23], Samek et al.
[43], [44] and Horev et al. [7].

II. BACKGROUND

In this section we give a brief introduction of existing
variants of stationary subspace analysis methods and distance
metrics between covariance matrices, based on which we
introduce our proposed method in Section III.

A. Stationary subspace analysis

Stationary subspace analysis separates a multivariate time
series x(t) ∈ RD into stationary and non-stationary subspaces.
The generating model for the data is a linear mixture of the
stationary sources ss(t) ∈ Rds and non-stationary sources
sn(t) ∈ Rdn , and is given as

x(t) = [As An]

(
ss(t)
sn(t)

)
(1)

with A = [As An] assumed to be invertible. By ds we indicate
the dimension of the stationary subspace, while dn = D− ds
is the dimension of the non-stationary subspace. The goal
of SSA is to find the linear transformation A−1, i.e., to
recover the stationary and non-stationary sources ss(t), sn(t).
This is achieved by finding projections Bs ∈ Rds×D and
Bn ∈ Rdn×D such that(

ŝs(t)
ŝn(t)

)
= [Bs Bn]x(t). (2)

The number of stationary sources is assumed to be known.
The definition of stationarity used for SSA is stationarity in the
weak sense, which assumes that the first two moments of the
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Fig. 1: Schematic for SSA: Stationary and non-stationary
source with time variable covariance illustrated by the scatter

plots for 4 epochs.

data do not change over time. This amounts to approximating
each distribution with a Gaussian, and stationarity is evaluated
based on the changes of means and covariances1.

To exploit the temporal behaviour of the time series for
this decomposition, the data is first split into several epochs
(see Fig. 1), which consist of consecutive datapoints. The
first and second moments of the data-epochs are computed
and their variation is evaluated according to some distance
measure. The chosen measure for the standard SSA algorithm
is the Kullback-Leibler divergence of Gaussian distributions,
i.e. SSA finds the optimal projection Bstat by solving the
problem

min
B:BB>=I

∑
e∈E

DKL(N (B̃µe, B̃ΣeB̃
>) ‖ N (0, B̃Σ̄B̃>)) (3)

with B̃ = IdB. Here µe, Σe are the mean and covariance of
the data in epoch e and µ̄, Σ̄ are the mean values of mean and
covariance across the whole dataset, which we assume to be
centered. We further define I ∈ RD×D as the D-dimensional
identity matrix and Id ∈ Rd×D as the projection to the first
d dimensions. Note that B ∈ RD×D is a rotation matrix over
which the optimization is performed, however, the objective
is evaluated on the projected data, i.e., in the d-dimensional
subspace. If the data is pre-whitened and writing ds = d,
the optimal projection for (3) can be found by solving the
optimization problem

min
B:BB>=I

∑
e∈E

DKL(N (B̃µe, B̃ΣeB̃
>) ‖ N (0, Id×d))

= min
B:BB>=I

∑
e∈E
− log det IdBΣeB

>I>d + µ>e B
>I>d IdBµe.

(4)

1Under this model only the true stationary sources were shown to be
identifiable in general, while the true non-stationary sources are unidentifiable
as was discussed in Bünau et al. [4].

Id×d denotes the d × d identity matrix. This problem is
solved by a gradient descent on the special orthogonal group
SO(D), which is the subgroup of D-dimensional orthogonal
matrices having determinant 1, corresponding to the group of
D-dimensional rotations. Since (3), as well as (4), is a non-
convex problem, standard SSA optimization is challenging and
care must be exercised not to end in suboptimal solutions.
As a remedy, the gradient descent algorithm is restarted
multiple times (typically 5-10) from different initial points
and the solution giving the lowest objective value is chosen.
By symmetrizing the SSA objective, Horev et al. [7] achieve
a cost function which is a proper distance on the space of
semi-positive definite matrices. The original SSA problem is
stated in terms of a matrix divergence, which is not a metric
as it is neither symmetric nor does it satisfy the triangle
inequality. Therefore they propose the use of a metric which
takes into account the geometry of covariance matrices, the
affine invariant Riemann metric,

δ2
r(X,Y ) = || log(X−

1
2Y X−

1
2 )||2fro. (5)

This metric was shown to be invariant to congruent transfor-
mations X → P>XP for P ∈ GLD(R), i.e. it is invariant
w.r.t. to mixing as well as whitening. They experimentally
evaluated the effect of the whitening process and found it to
degrade the performance.

Their proposed method, called geometry-aware SSA calcu-
lates the optimal projection Bstat by solving the problem

min
B:BB>=I

∑
e∈E

δ2
r(IdBΣeB

>I>d , IdBΣ̄B>I>d ). (6)

Optimization is carried out by gradient descent on the Grass-
manian manifold combined with another gradient descent
algorithm to calculate the corresponding Fréchet-mean.
A different direction for modifying SSA is taken by Hara
et al. [24], where an analytically solvable SSA algorithm,
called Analytical SSA (AnSSA) is proposed. This is achieved
by finding an upper bound to the SSA objective derived
by a Taylor approximation close to the optimal value of B
under the assumption that IdBΣeB

>I>d = Id×d for all epoch
covariances matrices Σe : e ∈ E. The optimal projection for
the resulting optimization problem,

min
B:BB>=I

tr(B̃(
∑
e∈E

(µeµ
>
e + (Σe − Σ̄)Σ̄−1(Σe − Σ̄)>))B̃>) (7)

can be found by an eigendecomposition leading to a computa-
tionally efficient algorithm. Note that B̃ = IdB. The AnSSA
method corresponds to the Euclidean distance between the
covariance matrices if the data is whitened, leading to

min
B:BB>=I

tr(B̃(
∑
e∈E

(µeµ
>
e + (Σe − I)(Σe − I)>))B̃>). (8)

Hara et al. [24] assumed whitening. In the non-whitened case,
we consider two possible formulations of the problem, i.e. (7)
and

min
B:BB>=I

tr(B̃(
∑
e∈E

(µeµ
>
e + (Σe − Σ̄)(Σe − Σ̄)>))B̃>). (9)

We will denote (8) as EuSSA in our evaluation and call
the algorithm based on (7) AnSSA. For completeness we
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evaluate both options although we consider both to be very
similar. Note that the Euclidean distance, while simple, has
disadvantages as a metric on the space of covariance matrices,
e.g. the swelling effect [45], [46], in which an interpolated
matrix has a larger determinant than the two matrices it was
interpolated from.

Our approach, introduced in Section III combines both
advantages. Namely, we formulate an algorithm which is
solvable by an eigenvalue problem while at the same time
it adopts a suitable metric reflecting the geometric structure
of covariance matrices.

B. Metrics for covariance matrices
Several non-Euclidean distance functions for the space of

positive definite covariance matrices have been considered
recently, among them for example the aforementioned affine
invariant Riemann metric (Horev et al. [7]) and the log-
Euclidean metric introduced by Arsigny et al. [46]

dlog(A,B) = || logA− logB||. (10)

Motivated by the log-Euclidean, several different metrics based
on simple transformations of the arguments were proposed
(see Pigoli et al. [47]). A special class of these are distances
based on a decomposition of the form A = LL>. These
include the distances based on the matrix square root

dr(A,B) = ||
√
A−
√
B||fro. (11)

Several decompositions of the form LL> = A can be defined,
since for an arbitrary decomposition L, RL for any rotation
R leads to another decomposition. Besides the aforementioned
Square root, the Cholesky decomposition is a possible choice,
leading to

dc(A,B) = ||LA − LB ||fro. (12)

for LA denoting the Cholesky decomposition of the covariance
matrix A. Another option is the size-and-shape metric or
Procrustes metric [48], which is defined as

dS(A,B) = inf
R:RR>=I

||
√
A−
√
BR||fro (13)

and chooses the rotation that optimally aligns both matrices.
The geometries induced by the Procrustes metric are called
shape and size spaces and were investigated for the topic of
landmark analysis by [49].
An important concept for these covariance estimators is that
of the Fréchet-mean of a set of covariance matrices, since the
geometry induced by the respective distance strongly affects
what the mean of a set of covariance matrices is. The sample
Fréchet-mean for a given distance d and a set of covariance
matrices Σe : e ∈ E is given by

Σ̄ = inf
Σ

n∑
e=1

d(Σe,Σ)2. (14)

In some cases, like for the root and log distances, the Fréchet-
mean can be derived analytically, e.g. for the root distance we
obtain

(Σ̄R)
1
2 =

1

|E|
∑
E

(ΣE)
1
2 . (15)

In the case of the affine invariant Riemann metric, the mean is
calculated by a gradient descent algorithm, while the mean due
to the Procrustes metric is usually found by the generalized
Procrustes algorithm [48]. For further reading on distance for
covariance matrices, we refer to [50].

III. WASSERSTEIN SSA
In this section, we propose Wasserstein SSA (WaSSA), and

its exact and approximate solvers.

A. Wasserstein distance
The Wasserstein or Earth Mover’s Distance is a metric

defined on probability distributions which arises from the field
of optimal transport as the solution to the Monge-Kantorovich-
transportation problem (see Villani [51]). The Wasserstein
distance indicates the optimal transport plan subject to a cost of
transferring “mass” between two points in a metric space. The
cost function used in this work will be L2-loss and accordingly
the Wasserstein-2 distance, which is defined as

W2(µ, ν) =

(
inf
π

∫
M×M

d(x, y)2dπ(x, y)

) 1
2

(16)

where the infimum is over all couplings π on M ×M whose
marginals are the probability distributions µ and ν. If µ, ν are
assumed to be Gaussian measures with covariance matrices
U ,V and zero mean, the optimal transport plan can be derived
analytically as

T = U−
1
2 (U

1
2V U

1
2 )

1
2U−

1
2 , (17)

and with W (t) defined as

W (t) = ((1− t)I + tT )V ((1− t)I + tT ), (18)

for t ∈ [0, 1], N (W (t)) is a geodesic between both Gaussian
measures with respect to the Wasserstein-2 distance [17]. In
case of non-zero means m1, m2, we can add an interpolation
tm1 + (1 − t)m2 to get the geodesic. The (squared) L2-
Wasserstein distance between these two Gaussian distributions
N(m1, V ) and N(m2, U) is given by

DW2
(N (m1, V ) ‖ N (m2, U))

= |m1 −m2|2 + tr(V ) + tr(U)− 2 tr((U
1
2V U

1
2 )

1
2 ). (19)

This particular case of Wasserstein distance defines a metric
on the space of positive semidefinite matrices, and induces a
Riemann metric. This distance is also known as the Bures
distance in quantum information theory and it corresponds
to the Procrustes distance which was defined for size and
shape spaces, further it reduces to the Hellinger distance in
the diagonal case. While the Kullback-Leibler divergence on
Gaussian measures corresponds to a Fisher metric, which is a
Riemann metric, the Wasserstein-2 distance induces a different
Riemann metric on this space [8], [9].

The works [17], [52] show the equivalence between the L2-
Wasserstein distance on Gaussian measures and the Procrustes
distance. Álvarez-Esteban et al. [16] recently gave a stable
algorithm for the calculation of the Fréchet-mean which is
given as Algorithm 1. This algorithm uses pairwise optimal
transportation plans to take an simple average in the tangent
space. This is repeated until convergence.



5

Algorithm 1 Wasserstein-Fréchet-Mean solver.

1: Initialize Σ0 = ΣR, T = 0, δ = 1, k = 0, ε some small
number

2: while δ > ε do
3: T = 0
4: for e ∈ E do
5: T = T + Σ̄

− 1
2

k (Σ̄
1
2

k ΣeΣ̄
1
2

k )
1
2 )Σ̄

− 1
2

k

6: T = T
|E|

7: Σ̄k+1 = T Σ̄kT
8: δ = ||Σ̄k − Σ̄k+1||fro
9: k = k + 1

B. Algorithms

For this discussion we assume that the data is centered.
We propose Wasserstein SSA, which finds a projection to the
stationary subspace by solving the optimization problem

min
B:BB>=I

∑
e∈E

DW2
(N (B̃µe, B̃ΣeB̃

>) ‖ N (0, B̃Σ̄B̃>)). (20)

As an advantage of replacing the KL distance in the original
SSA problem (3) with the Wasserstein distance, the distance
in the sum in the WaSSA problem (20) is analytically given
as (19). Therefore, we can solve the WaSSA problem (20) by
eigendecomposition, in analogy to AnSSA.

Proposition 1. The optimal projection for the WaSSA problem
(20) is given by the leading eigenvectors of

S =

E∑
e=1

µeµ
>
e + Σe + Σ̄− 2(Σ

1
2
e Σ̄Σ

1
2
e )

1
2 . (21)

Proposition 1 follows if we replace the KL-divergence in (3)
by the Wasserstein-2 distance to obtain (20) and the arithmetic
mean Σ̄ by the Fréchet-mean defined by (14) and calculated
according to Algorithm 1. The resulting objective function
is the sum of the Wasserstein-2 distance for epochs which
by the linearity of the trace can be combined, leading to the
optimization problem

min
B:BB>=I

tr
(
IdB (S)B>I>d

)
(22)

for S given above. Due to S being positive definite, the
optimal rotation B is given by the leading eigenvectors of
S corresponding to its smallest eigenvalues. This algorithm
does not require an optimization by gradient descent as the
original SSA and therefore does not suffer from local minima.
AnSSA gave a first analytical version of SSA based by an
approximation of the objective, but the resulting algorithm is
using the Euclidean distance measure for covariance matri-
ces, which is problematic as we will show experimentally.
Algorithm 2 summarizes WaSSA. We empirically observed
that Algorithm 1 converges very quickly in 5–7 steps, and
the whole procedure is much faster than the previous methods
solved by the gradient descent, as shown in more detail in
Section IV.

Conveniently, we found that the Wasserstein-Fréchet-mean
and the Root-Fréchet-mean are close to each other in our

experiments. From this, we propose an approximate variant
of WaSSA under an assumption that each covariance matrix
Σe and the Fréchet-mean Σ̄W is approximately commutative.
Under this assumption, the matrix (21) can be approximated
as

S =

E∑
e=1

µeµ
>
e + (Σ

1
2
e − Σ̄

1
2

R)(Σ
1
2
e − Σ̄

1
2

R)>. (23)

Eq. (23) amounts to measuring the distance between Gaussians
by the L2-distance between the means and the matrix-root
distance between covariances. Our approximate solver, which
we refer to as WaSSA(r) from root, performs the eigendecom-
position to the matrix (23), which involves Algorithm 3. We
show that WaSSA(r) is even faster than WaSSA by an order
of magnitude. Similarity between Wasserstein distance and
matrix-root distance implies the robustness of the Wasserstein
distance against outliers in the set of covariance matrices. This
finding is consistent with our experiments in Section IV, where
WaSSA and WaSSA(r) show high robustness against outliers.
Our experiments also show that the approximation WaSSA(r)
behaves very similar to WaSSA in terms of accuracy, which
supports the usefulness of our approximate solver, although
the commutativeness assumption might still need further ex-
ploration.

Algorithm 2 Wasserstein SSA (WaSSA) solver.

1: Compute by the Wasserstein-Fréchet-mean Σ̄W by Algo-
rithm 1.

2: Calculate eigenvectors ui, eigenvalues λi of S from (21).
3: Take the span of the d eigenvectors ui correspond to the

smallest λi as projection to stationary subspace.

Algorithm 3 Wasserstein SSA approximate (WaSSA(r))
solver.

1: Compute ΣR by (15).
2: Calculate eigenvectors ui, eigenvalues λi of S from (23).
3: Take the span of the d eigenvectors ui correspond to the

smallest λi as projection to stationary subspace.

IV. EXPERIMENTAL EVALUATION

This section evaluates the proposed WaSSA algorithms
on artificial data and on real data from a brain-computer
interfacing experiment.

A. Artificial Data Experiment

For the standard SSA algorithm, we relied on the Matlab
implementation by Müller et al. [53]. The other SSA vari-
ants were implemented by ourselves in Matlab. We use the
following abbreviations: Wasserstein-SSA with full Fréchet-
mean WaSSA(f) based on (21), the approximation by the root
distance WaSSA(r) based on (23), EuclideanSSA (EuSSA)
based on (8), and AnalyticalSSA (AnSSA) based on (7).
For the Wasserstein algorithm WaSSA(f) we calculated the
mean according to the Algorithm 1, where we initialized the
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algorithm with the root-mean estimator and the values ε = 10e-
4. We empirically found Algorithm 1 to typically convergence
in 5-7 steps. As an error measure we adopt the subspace error
used by [4], which first projects two matrices A, B to the
orthogonal manifold and then calculates the error as

1−mean(Θ2) (24)

for Θ the singular values of the projections, A′OBO. All
experiments presented were performed for D = 10 and an
equal number of stationary and non-stationary sources. All
experiments in this subsection were performed 250 times,
the data was not prewhitened before the application of the
SSA algorithms. The mixing matrices in our experiments were
chosen randomly from the orthogonal group.
First we analyzed the time-complexity of the different variants
(see Fig. 2). While SSA as well as the algorithm for the
Fréchet-Mean scale linearly with the number of epochs, the
complexity of SSA is significantly higher. For the standard
SSA, we ran the gradient descent solver 5 times from random
initialization. Fig. 2 clearly shows that WaSSA(f) is faster
than SSA by an order of magnitude, and WaSSA(r) further
improves by almost the same amount. AnSSA is the fastest.
This result shows a clear advantage of the eigenproblem-based
SSA variants over the optimization-based SSA algorithm.
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Fig. 2: Computation time comparison.

In a second experiment we evaluated the robustness against
outliers. Therefore we created data according to a toy model
following Horev et al. [7]. Both sources sn, ss are modeled
by multivariate Gaussians with zero mean, their covariance
have eigenvalues sampled uniformly from (0, 1) which are
then randomly rotated. We produce 20 epochs with a total
of 10000 datapoints according to this model. To test the
robustness towards outliers we add a Gaussian with increasing
variance σ2 to random datapoints with a rate of 0.001 for every
datapoint. The results are displayed in Fig. 3. Due to high
inter-trial variation we omitted errorbars, instead we tested
for significance with an Wilcoxon rank-sum test. We found
that the difference from WaSSA(f) and WaSSA(r) to the other
baselines are significant for all outlier variances. Additionally,
the scatterplot in Fig. 4 displays the results for a particular
choice of outlier strength, namely σ2 = 30. WaSSA(f) and
WaSSA(r) outperform the other algorithms as can be seen.

We note that SSA seems to perform well in the ideal cases,
while the Euclidean-like algorithms are outperformed for most
datapoints.

Overall, this result shows that WaSSA(f) and WaSSA(r)
are significantly more robust to outliers than the other SSA
variants.

In another experiment we compare the robustness of the
different SSA variants to distribution mismatch, i.e., instead
of sampling datapoints from a Gaussian distribution2, we
added a Student’s t-distribution with 3 degrees of freedom
to the datapoints with increasing probability. Note that this
simulation is of high practical relevance as the Gaussian
assumption will always only approximately hold on real data.
Both WaSSA variants outperform the other SSA versions with
p < 0.05 for intermediate probabilities, but the effect is
smaller than for the increasing variance experiment in Fig. 3.
We also displayed the scatter plots in Fig. 6.

Another simulation experiment was to test robustness to-
wards time-varying covariance, as was applied in the exper-
iments of Horev et al. [7]. Similar to their experiment we
created 50 epochs, but instead of performing this for just a
single covariance strength we increase the maximal covariance
from 0 to 1. The results are given in Fig. 7. WaSSA turns out
to vastly outperform the other methods in this experiment.

In summary, the three robustness experiments show that
the Wasserstein based algorithms outperform the other SSA
algorithms by a large margin when the data is contaminated
by outliers or sampled from a mismatching or (even worse)
time-varying distribution. Being robust in these three scenarios
is of high importance for practical applications, as also shown
in the experiments described in the real data section.

B. Application to change point detection

In this experiment (Fig. 8) we demonstrate that the proposed
algorithms provide superior performance in change-point de-
tection experiments. To this we created data following Blythe
et al. [22]. Here the non-stationarity is governed by a state
model, where each state is defined by a random covariance
matrix with eigenvalues sampled randomly from 5 logspaced
values between 1

p and p for some p which we set to 3. The non-
stationary sources are again given by multivariate Gaussians
without mean. In this model, after every 100 datapoints, there
is a chance q = 0.1 for the state to transit into another state.
This task is harder to solve than the change point detection
in Horev et al. [7] as a number of covariance matrices will
look very similar and therefore the information about the
distributional changes is harder to extract. In this experiment
the ordinary SSA performs well, but the Wasserstein based
algorithms come close to its performance. The difference
between WaSSA(f/r) and the other analytic algorithms is
significant, p < 0.05 for all probabilities of change point
greater than 0.05.

2Note that each of the presented SSA variants models the epoch-wise
distribution by a Gaussian.
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C. BCI Experiments

This section demonstrates that the proposed SSA method
can be used for effectively tackling the non-stationarity prob-
lem in spatial filter computation.

1) Dataset and Preprocessing: The evaluation is based on
a dataset by Blankertz et al. [54] containing EEG recordings
from 80 healthy subjects performing motor imagery tasks
with the left and right hand or with the feet. It consists of
a calibration session and a feedback session in which subjects
had to control a 1D cursor application. Brain activity was
recorded from the scalp with multi-channel EEG amplifiers
using 119 Ag/AgCl electrodes in an extended 10-20 system
sampled at 1000 Hz (downsampled to 100 Hz) with a band-
pass from 0.05 to 200 Hz. The two best classes were selected
on the calibration data resulting in a training dataset with 150
trials. The subjects performed feedback with these two classes
only resulting in a test dataset with 300 trials.

For the offline analysis 62 electrodes densely covering the
motor cortex were selected, the data was filtered in 8-30 Hz
with a 5-order Butterworth filter and a time segment from
750ms to 3500ms after the trial start was extracted. Six spatial
filters computed with different methods were used for feature
extraction. A linear discriminant analysis (LDA) classifier was
applied to the log-variance features computed on the spatially
filtered data. Covariance matrices are normalized by dividing
them by their traces and performance is measured as rate of
misclassification.

2) Computation of Spatial Filters: In motor imagery based
BCIs systems spatial filtering is a crucial step, because it
increases the signal-to-noise-ratio and thus simplifies the
classification problem. A popular algorithm for computing
spatial filters is common spatial patterns (CSP) by Blankertz
et al. [33]. It computes spatial filters w by maximizing or
minimizing the Rayleigh quotient. One major source of error
in the computation of the filters results from the difficulty
in proper estimating the class covariance matrices, especially
when data is contaminated with artifacts. Furthermore, ig-
noring the within-class variability and non-stationarity of the
signal can result in suboptimal filters.

A variant of CSP which regularizes the filters towards
stationary subspaces was proposed in [10]. This stationary CSP
(sCSP) algorithm adds a penalty term ∆ to the denominator
of the Rayleigh quotient, i.e., it maximizes

R1(w) =
w>Σ1w

w>((1− λ)(Σ1 + Σ2) + λ∆)w
(25)

R2(w) =
w>Σ2w

w>((1− λ)(Σ1 + Σ2) + λ∆)w
(26)

where Σ1 and Σ2 are the average covariance matrices of
two motor imagery classes and λ controls the strength of
the regularization. If ∆ is a positive definite matrix, then the
resulting optimization problem can be solved very efficiently
and has an unique solution. The sCSP algorithm aims to
minimize the within-class variability of features measured in
terms of absolute differences between the feature in ith trial

and the class average. It computes the penalty matrix ∆ as

∆ =
1

2n

2∑
c=1

n∑
i=1

F
(
Σic − Σc

)
, (27)

where F is an operator to make symmetric matrices positive
definite by flipping the sign of all negative eigenvalues. Note
that in this formulation sCSP uses a heuristic (namely F) to
ensure that ∆ is positive definite.

In the following we introduce a very efficient, but also the-
oretically motivated version of sCSP. In other words, instead
of using a heuristic to capture within-class non-stationarity,
we will use the root distance as used in the approximation for
WaSSA. Since the non-stationarity matrix S computed in (23)
is positive definite, it can be directly used as ∆ in the sCSP
framework in (25) and (26). We call the resulting algorithm
Wasserstein sCSP.

Analogously, we incorporate the very efficiently computable
matrix S of EuSSA based on (8) into the sCSP framework.
Also this matrix is positive definite and can be interpreted
in terms of Euclidean distances. Therefore, we refer to the
resulting algorithm as Euclidean sCSP.

3) Results: Figure 9 compares the error rates of CSP,
sCSP, Euclidean sCSP and the Wasserstein sCSP method.
Each dot represents a subject. Note that the regularization
parameter λ has been selected from the set of 10 candidates
{0, 2−8, ..., 2−1, 20} by 5-fold cross-validation on the calibra-
tion data (as in [10]). One can clearly see that regularization to-
wards stationary subspaces leads to a decrease in classification
error. Almost all subjects benefit from the regularization effect
(left scatter plot). The error rate decrease is highly significant
with p < 10−4 according to the one-sided Wilcoxon signed-
rank test. This effect is consistent with what has been reported
in previous studies [10], [42], [37].

The Wasserstein distance based measure of non-stationarity
also clearly outperforms the Euclidean distance based non-
stationarity measure (right scatter plot). Also here the error rate
decrease is significant with p = 0.0018. One subject clearly
benefits from using the Euclidean based regularization (error
rate er = 24.0%), but has chance level performance when ap-
plying CSP, sCSP or Wasserstein sCSP. Similar improvements
can be observed for Wasserstein sCSP. For instance, the error
rate of subject 30 decreases up to 20% when computing spatial
filters with root distance based regularization, but remains
larger than 33% (even for the best parameter) for the other
sCSP variants.

Wasserstein sCSP also performs slightly better than the
original, heuristic-based sCSP method. On average it leads to
a 1.1% lower error rate, however, the error rate decrease is not
significant. The improvement over the CSP baseline is highly
correlated between Wasserstein sCSP and sCSP with ρ = 0.66
(for the best parameters ρ = 0.88). Thus, subjects who benefit
from sCSP regularization, also benefit from Wasserstein sCSP
regularization. For Euclidean sCSP the correlations are much
lower, namely ρ = 0.50 (for the best parameters ρ = 0.59).

In the following we analyze the regularization effects for
a particular subject. Figure 10 shows the projected (along
largest variance and LDA direction) training (triangles) and
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Fig. 9: Scatter plots showing error rates of CSP, sCSP, Euclidean sCSP (x-axis) and the proposed Wasserstein sCSP method
(y-axis). Each dot represents a subject and the p-value of the Wilcoxon signed rank test is displayed.

Fig. 11: Eigenvalue spectrum of the penalty matrix ∆ of WaSSA. Most non-stationary directions are projected to the scalp.
The EEG signal shows that electrode ‘CPz’ has a problem.

test (circles) features of CSP, sCSP, Euclidean sCSP and
Wasserstein sCSP. One can clearly see that CSP features
exhibit significant amount of non-stationarity. This results in a
large classification error of 34%. Neither the sCSP regulariza-
tion nor the Euclidean sCSP method solve the non-stationarity
problem for this subject. However, the features computed
with Wasserstein sCSP show a reduced non-stationarity. With
this spatial filter computation method the subject gains BCI
control, i.e., the error rate becomes smaller than 30%.

Figure 11 displays the eigenvalue spectrum of the penalty
matrix ∆ computed with WaSSA. One can see that few
eigenvectors capture most of the variation between trials. The
top eigenvectors of ∆ are displayed on the scalp. The most
non-stationary direction shows a clear focus around electrode
‘CPz’. The EEG signal next to the scalpplot clearly shows
that electrode ‘CPz’ has a problem in trials 51, 52, 60 and 61.
This artifact decreases performance when using CSP, but is
regularized out when applying Wasserstein sCSP. The other
non-stationarity patterns show activity over parietal areas,
which is probably related to visual processing.

V. DISCUSSION

Robustly decomposing non-stationary data is a hard prob-
lem. So far subspace decomposition through SSA has been
successfully applied to various fields, e.g., geoscience, neu-
roscience or computer vision. However outliers and noise as
well as the need for restarts to find a good SSA solution limit
the broader applicability of SSA.

In the present contribution we have therefore extended
SSA by providing faster analytical variants and enhanced
robustness through usage of Wasserstein distance. The novel
Wasserstein SSA algorithm has proven useful on toy and real-
world data from the neurosciences. By using Wasserstein,
we are able to avoid artifactual effects (e.g. swelling) when
interpolating covariance matrices. The scheme proposed has a
useful property also beyond SSA for general covariance based
subspace estimation algorithms – a subject worthy of further
research.
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tionary subspaces is multivariate time series,” Physical Review Letters,
vol. 103, no. 21, p. 214101, 2009.

[5] R. Manuca and R. Savit, “Stationarity and nonstationarity in time series
analysis,” Physica D: Nonlinear Phenomena, vol. 99, no. 2, pp. 134–
161, 1996.

[6] A. Cichocki, S. Cruces, and S.-i. Amari, “Log-determinant divergences
revisited: Alpha-beta and gamma log-det divergences,” Entropy, vol. 17,
no. 5, pp. 2988–3034, 2015.

[7] I. Horev, F. Yger, and M. Sugiyama, “Geometry-aware stationary
subspace analysis,” Journal of Machine Learning Research, vol. 63, pp.
430–444, 2016.

[8] A. Takatsu, “Wasserstein geometry of gaussian measures,” Osaka Jour-
nal of Mathematics, vol. 48, no. 4, pp. 1005–1026, 2011.

[9] R. Bhatia, T. Jain, and Y. Lim, “On the bures–wasserstein distance
between positive definite matrices,” Expositiones Mathematicae, 2018,
in press.

[10] W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, “Stationary
common spatial patterns for brain-computer interfacing,” Journal of
Neural Engineering, vol. 9, no. 2, p. 026013, 2012.

[11] G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R.
Müller, Eds., Toward Brain-Computer Interfacing. MIT Press, 2007.

[12] J. Wolpaw and E. W. Wolpaw, Eds., Brain-Computer Interfaces: Prin-
ciples and Practice. Oxford Univ. Press, 2012.

[13] D. Dowson and B. Landau, “The fréchet distance between multivariate
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[52] Y. Zemel, “Fréchet means in wasserstein space theory and algorithms,”
Ph.D. dissertation, Ecole Polytechnique Fédérale de Lausanne, 2017.

[53] J. Müller, P. von Bünau, F. Meinecke, F. Király, and K.-R. Müller, “The
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