
1

From Clustering to Cluster Explanations
via Neural Networks

Jacob Kauffmann, Malte Esders, Lukas Ruff, Grégoire Montavon∗, Wojciech Samek, Klaus-Robert Müller∗

Abstract—A recent trend in machine learning has been to
enrich learned models with the ability to explain their own
predictions. The emerging field of Explainable AI (XAI) has so
far mainly focused on supervised learning, in particular, deep
neural network classifiers. In many practical problems however,
label information is not given and the goal is instead to discover
the underlying structure of the data, for example, its clusters.
While powerful methods exist for extracting the cluster structure
in data, they typically do not answer the question why a certain
data point has been assigned to a given cluster. We propose a new
framework that can, for the first time, explain cluster assignments
in terms of input features in an efficient and reliable manner. It is
based on the novel insight that clustering models can be rewritten
as neural networks—or ‘neuralized’. Cluster predictions of the
obtained networks can then be quickly and accurately attributed
to the input features. Several showcases demonstrate the ability
of our method to assess the quality of learned clusters and to
extract novel insights from the analyzed data and representations.

Index Terms—unsupervised learning, k-means clustering, neu-
ral networks, ‘neuralization’, explainable machine learning

I. INTRODUCTION

Clustering is a successful unsupervised learning model that
reflects the intrinsic heterogeneities of common data genera-
tion processes [1], [2], [3], [4]. Natural cluster structures are
observed in a variety of contexts from e.g. gene expression [5]
and ecosystems composition [6] to textual data [7]. Methods
that can accurately identify the cluster structure have thus been
the object of sustained research over the past decades [8].
Basic techniques such as k-means [9] have been extended
to operate in kernel feature spaces [10], [11], or on the
representations built by a deep neural network [12], [13], [14],
[15].

J. Kauffmann is with the Berlin Institute of Technology (TU Berlin), 10587
Berlin, Germany.

M. Esders is with the Berlin Institute of Technology (TU Berlin), 10587
Berlin, Germany.

L. Ruff is with Aignostics, 10117 Berlin, Germany.
G. Montavon is with the Berlin Institute of Technology (TU Berlin), 10587

Berlin, Germany; and BIFOLD – Berlin Institute for the Foundations of
Learning and Data, 10587 Berlin, Germany. E-mail: gregoire.montavon@tu-
berlin.de.

W. Samek is with Fraunhofer Heinrich Hertz Institute, 10587 Berlin,
Germany; and BIFOLD – Berlin Institute for the Foundations of Learning and
Data, 10587 Berlin, Germany. E-mail: wojciech.samek@hhi.fraunhofer.de

K.-R. Müller is with the Berlin Institute of Technology (TU Berlin), 10587
Berlin, Germany; BIFOLD – Berlin Institute for the Foundations of Learning
and Data, 10587 Berlin, Germany; the Department of Artificial Intelligence,
Korea University, Seoul 136-713, Korea; and the Max Planck Institut für
Informatik, 66123 Saarbrücken, Germany. E-mail: klaus-robert.mueller@tu-
berlin.de.

(Corresponding Authors marked with asterisk: Grégoire Montavon, Klaus-
Robert Müller)

Due to the ever growing complexity of ML models and
their use in increasingly sensitive applications, it has become
crucial to endow these models with the capability to explain
their own predictions in a way that is interpretable for a human.
Explainable AI (XAI) has emerged as an important direction
for machine learning, and excellent results have been reported
in selected tasks such as explaining the predictions of popular
DNN classifiers [16], [17], [18], [19], [20].

In this paper, we bring these newly developed explanation
capabilities to clustering, a highly needed functionality, con-
sidering that in the first place one of the main motivations
for performing a clustering is knowledge discovery. Especially
in high-dimensional feature space, a clustering for knowledge
discovery can only provide a few prototypical data points for
each cluster. Such prototypes, however, do not reveal which
features made them prototypical. Instead, we would like to
let the clustering model explain itself in terms of the very
features that have contributed to the cluster assignments.—To
the best of our knowledge, our work is the first ever attempt to
systematically and comprehensively obtain such explanations.
Specifically, we are able to supply explanations of why each
individual point is clustered in the way it is.

The method we propose, puts forward the novel insight
that a broad range of clustering models can be rewritten as
neural networks, which then serve as a backbone to guide
the explanation process. Technically, we suggest to apply the
following two steps: (1) The cluster model is ‘neuralized’
by rewriting it as a functionally equivalent neural network
with standard detection/pooling layers. (2) Cluster assignments
formed at the output of the neural network are then propagated
backwards using an LRP-type procedure (cf. [17], [21], [22])
until the input variables (e.g. pixels or words) are reached.

The proposed ‘neuralization-propagation’ procedure (or
short, NEON) is tested on a number of datasets and clustering
models, including recent deep clustering models such as
SCAN [23]. Each time, NEON accurately explains cluster
assignments, and extracts useful insights. Experiments also
demonstrate the practical value of our two-step approach
compared to a potentially simpler one-step approach without
neuralization. Our contributions can be summarized as follows:

• Introduction of XAI to clustering, specifically, explana-
tion of the assignment of individual data points onto
clusters, in terms of input features.

• Formulation of the clustering decisions for a broad range
of clustering models as being functionally equivalent
neural networks, thus enabling the application of state-
of-the-art XAI techniques to these models.

2

assign
onto

cluster

A. cluster assignments

B. our contributions

c

k'

k

assign
onto

cluster

B1. explainable cluster assignments

why is
the point

member of
cluster c ?

fea
tur

e 1 LRP propagation

equivalent

B2. neuralization-propagation

the point is
member of
cluster c

c

k'

k

fea
tur

e 2

fea
tur

e 3

fea
tur

e 4

fea
tur

e d

c

k'

k

Fig. 1. From clustering to cluster explanations via neural networks. A. Standard clustering scenario where data is assigned onto clusters according to the
clustering model. B. Overview of our contributions. B1. We enrich the cluster assignment with an explanation highlighting what features mostly contribute to
the cluster decision. B2. We achieve this technically by observing that the clustering decision can be rewritten as a neural network (neuralization), enabling
fast and robust explanations via the LRP technique (propagation).

• Theoretical embedding of our neuralization-propagation
approach to explaining clustering, specifically providing
an interpretation of our approach, for special cases, in
terms of Shapley Values.

• Demonstration of the benefit of bringing XAI to cluster-
ing showcased for two real-world examples, and exten-
sive quantitative validation of our proposed explanation
method.

Fig. 1 shows a cartoon of our contributions in order to
provide the general underlying intuition to the reader. We
stress that our method applies to many popular clustering
algorithms and is a generic blueprint as it does neither rely on
predesigned interpretability structures nor algorithms, nor any
retraining. This will prove useful in the future for shedding
new light into existing cluster-based typologies used e.g. in
computational biology [24], [25] or consumer data [26], which
researchers and practitioners have started to use increasingly
to support their scientific reasoning and to take insightful
decisions.

A. Related Work
So far, research on explanation methods has been over-

whelmingly focused on the case of supervised learning. Meth-
ods based on the gradient [27], [28], [29], local perturbations
[16], [30], or surrogate functions [18] do not make specific
assumptions about the structure of the model and are thus
applicable to a wide range of classifiers. Other methods require
the classifier to have a neural network structure and apply
a purposely designed backward propagation pass [17], [21],
[22], [31], [32], [33] to produce accurate explanations at
low computational cost. While recent work has extended the
principle to other types of models such as one-class SVMs
[34] or LSTM networks [35], the method we propose here
contributes by offering a solution to the so far unsolved
problem of explaining cluster assignments.

Note that the few cluster interpretability techniques have so
far been based on surrogate decision trees [36], [37], [38],

[39], [40], where the decision tree is trained to approximate
the k-means clustering as closely as possible, and where the
cluster assignment is then interpreted using Explainable AI
techniques specific to decision trees. With such a surrogate
approach, the user typically has to trade off faithfulness to the
original model against explainability.

Related to the connections we establish in this paper be-
tween clustering models and neural networks, some works
explore ways of merging the two in order to produce better,
more flexible ML models. For example deep clustering ap-
proaches typically build a clustering objective on top of deep
representations [12], [14], [15], [41], [42]. Other models, in
particular, the k-meansNet [43] design the neural network in
a way that simulates a clustering model, so that the learned
neural networks solution can be interpreted as a clustering
solution. Note that in all these works, the purpose is more to
enhance a basic clustering model by providing the flexibility
of neural network representation and training, whereas our
work focuses on making existing popular clustering algorithm
explainable.

Another set of related works focus on the problem of
learning a good clustering model, by identifying a subset
of relevant features that support the cluster structure. Some
methods identify relevant features by running the same clus-
tering algorithm multiple times on different feature subsets
[44]. Other approaches simultaneously solve feature selection
and clustering by defining a joint objective function to be
minimized [45]. While feature selection can identify the set
of features required to represent the overall cluster structure,
our work builds up by identifying among those features which
ones are truly responsible for a given cluster or a given cluster
assignment.

Further related works focus on quantitatively validating
clustering solutions. Examples of validation metrics are com-
pactness / separation of clusters [46], cluster stability under
resampling / perturbations [47], [48], or purity, i.e. the absence
of examples with different labels in the same cluster [49].

3

Our work enhances the validation of clustering models by
producing human-interpretable feedback, a critical step to
identify whether cluster assignments are supported by mean-
ingful features or by what the user would consider to be
artifacts.

Lastly, user interfaces have been developed to better navi-
gate cluster structures, as they occur, e.g. in biology applica-
tions [50], [51]. Also, the use of prototypes has been proposed
to visualize deep image clustering models [15] or explain
kernel methods for property prediction of chemical compounds
[52]. While these works produce useful and informative visu-
alizations which may help to guide the process of clustering,
our approach contributes by answering the precise question
“why a given data point is assigned to a particular cluster.”

II. EXPLAINING K-MEANS CLUSTER ASSIGNMENTS

The k-means algorithm [9] is one of the best known
approaches to clustering and is used in many scientific and
industrial applications (e.g. [53], [54], [55]). This section
presents our neuralization approach for explaining a k-means
cluster assignment on the input features. Due to the simplicity
of the k-means model, this section also has a tutorial purpose.
More complex and powerful clustering models based on
kernels [11], deep neural networks [12], [14], or more general
clustering techniques, are discussed in Sections III–V.

The k-means algorithm finds a set of centroids that mini-
mizes the total squared distance between each data point and
their nearest centroid. At every step of k-means, points are
assigned based on their distance to each centroid µk ∈ Rd,
specifically the model assigns a point x ∈ Rd to cluster c if

∀k 6=c : ‖x− µc‖2 < ‖x− µk‖2. (1)

In principle, it is conceivable to use Explainable AI techniques
such as prediction difference analysis [16], [56] or LIME [18],
as they apply out-of-the-box to any model or decision function.
However, these approaches require to evaluate the function
multiple times to test for the effect of each input dimension.
This can become slow when the data is high-dimensional,
e.g. when clustering images or gene expression data [25].
Also, local perturbation may not faithfully depict the overall
contribution of a feature to the clustering decision, especially
if multiple features needs to be perturbed in order to affect the
decision.

In the context of supervised learning, more efficient Ex-
plainable AI techniques have been proposed, which rely on
a model that induces the decision function, and from which
meaningful gradient information and intermediate representa-
tions can be extracted. Such methods include, among others,
Integrated Gradients [29], or Layer-wise Relevance Propaga-
tion (LRP) [17], [22], [57]. The LRP method in particular,
leverages the neural network structure of the prediction to
produce a robust explanation in the order of a single for-
ward/backward pass. The LRP method was used in a wide
range of applications (e.g. [22], [58], [59], [60], [61], [62],
[63], [64]), and can be embedded in the framework of deep
Taylor decomposition [31].

A. Neuralization of the Cluster Assignment

In order to bring these efficient XAI techniques to clus-
tering, we propose to enrich the clustering decision function
gc(x) with a neural network model. The latter is designed
to exactly replicate the cluster assignments of the original
clustering model and is more amenable to explainability.
Furthermore, we also require that such neural network model
is obtained readily from the cluster solution (i.e. the centroids)
without incurring any additional training step. We call the
process of obtaining such a neural network “neuralization.”

Proposition 1. The decision function of Eq. (1) can be
reproduced by a two-layer neural network composed of a
standard linear layer and a (min-)pooling layer:

Neuralized k-means

hk = w>k x+ bk (layer 1)

fc = min
k 6=c
{hk} (layer 2)

where wk = 2(µc − µk) and bk = ‖µk‖2 − ‖µc‖2, and
assigning to cluster c if fc(x) > 0.

(cf. Appendix A of the Supplement for a derivation). The
first layer corresponds to a collection of linear functions
aligned with the different cluster centroids. The min-pooling
selects which linear function is active at a given location.
These two layers together build a piecewise linear function. A
simple two-dimensional example with three clusters is shown
in Fig. 2. We observe that the neural network output fc(x)
(right) exactly reproduces the true cluster decision boundary,
specifically, the Voronoi partition associated to the given k-
means model (left).

12

3

12

3

Fig. 2. Left: Decision function of a k-means clustering model with centroids
µ1,µ2,µ3. Data points in the region highlighted in red are assigned to the
first cluster. Right: Contour plot of the function fc(x) for the cluster c = 1.

The neural network above can be also interpreted in neu-
roscientific terms as the alternation of ‘simple cells’ and
‘complex cells’ [65], or ‘executive organs’ and ‘restoring
organs’ in automata theory [66]. We also note that earlier
works have already linearized elements of the cluster model
such as the square distance for the purpose of training [43].
Here, our contribution differs by extracting a piecewise linear
view of the whole model, and additionally, identifying a neural
network structure for this piecewise linear form. We provide
similar neuralization results for the soft k-means case, as
well as a probabilistic interpretation, in Appendix E of the
Supplement. We will also study more complex neuralization

4

scenarios in Sections III and IV when considering kernel-based
clustering and deep clustering.

B. Propagation of the Cluster Assignment

So far, we have rewritten the k-means decision function
for each cluster as a neural network. This initial step gives
access to a broader range of explanation techniques such as
integrated gradients [29], or layer-wise relevance propagation
(LRP) [17], [67]. The LRP technique, in particular, leverages
the neural network structure to produce robust explanation in
a single forward/backward pass. Unlike the standard gradient
propagation pass which provides a highly localized view of
the function, LRP applies propagation rules that are purposely
designed for the task of explanation, and ensure certain de-
sirable properties of an explanation such as conservation of
predicted evidence and local consistency of explanations [17],
[67].

Let us start with the output of the neural network fc, which
we wish to attribute to neurons in the intermediate layer
(hk)k, by propagating through the min function. We follow a
min-take-most (MTM) strategy, where smallest inputs to that
function receive the largest share of the quantity to redistribute,
in particular, we apply the propagation rule:

Rk =
exp(−βhk)∑
k 6=c exp(−βhk)

fc (2)

where β is a stiffness hyperparameter. The stiffness parameter
interpolates between a uniform redistribution strategy (β → 0)
and a min-take-all strategy (β → ∞). Note that compared to
these two extreme cases, our approach allows to contextualize
the explanation (i.e. not redistributing on clusters competitors
that are too far and therefore irrelevant), and at the same time,
ensures continuity of the explanation as we transition from
one nearest cluster competitor to another. We propose to set
it according to the simple heuristic:

β = E[fc]
−1 (3)

where the expectation is computed over the whole dataset. In
order words, considering fc to be a ‘typical’ score in the pool,
we want the stiffness parameter to be inversely proportional
to it.

We now consider how to further redistribute the intermediate
relevance scores Rk to the input layer, where the dimensions
correspond to observed quantities that are assumed to be
interpretable by the user. To achieve this, We propose the LRP
the propagation rule:

Ri =
∑
k 6=c

(xi −mik) · wik∑
i(xi −mik) · wik

Rk (4)

where mk = (µc + µk)/2 is the mid-point between the
centroids of the cluster of interest and the competitor. In other
words, we attribute on dimensions where the input activation
relative to the mid-point, x−mk, matches the model response
wk.

It can be noted that the proposed propagation rules ensure
a certain number of desirable properties of an explanation,

in particular, it satisfies the conservation property
∑
iRi =

fc(x), it preserves the continuity of fc(x), and it is invariant
to any translation of the clustering in input space.

C. Theoretical Embedding

We provide further theoretical support for the rules in Eqs.
(2) and (4) by showing that their application produce, for
special cases, explanations that coincide with the Shapley
Value. The Shapley Value [30], [68], [69], originally proposed
in the context of game theory, is a theoretically grounded
solution to the problem of attributing the value of a coalition of
players to individual players in the coalition. The attribution
is based on the effect of removing certain players from the
coalition, and can be shown to be the only solution that satis-
fies four basic axioms, namely efficiency, symmetry, linearity,
and ‘null player’. For our comparison, we interpret the set
of players as the individual input features (or activations) and
the withdrawal of a player from the coalition as replacing the
corresponding feature value xi by some reference value x̃i.
The exact Shapley Value formula is provided in Appendix B
in the Supplement.

Proposition 2. Redistribution of fc(h) on cluster competitors,
performed by Eq. (2) and parameter β = 0, corresponds to
the Shapley Value obtained with the reference point h̃ = 0.

(The proof is given in Appendix B of the Supplement.) The
parameter β = 0 corresponds to a uniform redistribution of fc
to the cluster competitors. The corresponding reference point
h̃ = 0 can be interpreted as the image of a point x̃ in input
space that is equidistant from all cluster centroids. (Note that
this point may not exist in low-dimensional spaces.)

Proposition 3. When the number of clusters is equal to 2, the
model reduces to fc(x) = w>k x + bk, and redistribution by
Eqs. (2) and (4) corresponds to the Shapley Value obtained
with the reference point x̃ = mk.

(See Appendix B of the Supplement for a proof.) In other
words, the explanation coincides with Shapley values with the
reference point x̃ chosen at the mid-point between the clusters
centroids µk and µc. Such reference point is a natural choice
for explaining why a point is member of one cluster and not
the other cluster.

III. EXTENSION TO KERNEL K-MEANS

The standard k-means clustering algorithm has strong lim-
itations in terms of representation power, as it only allows
to represent clusters that are pairwise linearly separable. The
kernel k-means model [11] is a straightforward extension of
k-means where the data is first mapped to a feature space
via some map x 7→ Φ(x) induced by some kernel function
K(x,u). The decision function implemented by kernel k-
means is given by:

∀k 6=c : ‖Φ(x)− µc‖2

< ‖Φ(x)− µk‖2 (5)

where the centroids are also defined in feature space.

5

If we were to apply the same explanation framework as
in Section II, we would obtain an explanation in terms of
dimensions of the feature space, and we would then need to
further backpropagate through the feature map Φ. While this
is technically possible (e.g. for a Gaussian kernel K(x,u) =
exp(−γ‖x−u‖2), one can use random approximations of the
feature map), we consider instead a more intuitive formulation,
specific to the Gaussian kernel case, where the distance to a
particular cluster is modeled by a soft minimum over distance
to the cluster members. Specifically, we consider in place of
Eq. (5) the decision function

∀k 6=c : LME
i∈Cc

−γ{‖x− ui‖2}
< LME

j∈Ck
−γ{‖x− uj‖2} (6)

where (ui)i and (uj)j are sets of data points (or support
vectors) representing the two clusters, Cc, Ck ⊂ N are the non-
overlapping sets of indices of support vectors that represent
these clusters, and where LME−γ denotes a generalized F -
mean with F (t) = e−γt, i.e.

LME
i∈C

−γ{si} = − 1

γ
log
(1

|C|
∑
i∈C

exp(−γsi)
)
. (7)

The latter can be interpreted as a soft min-pooling and it
converges to a hard min-pooling when γ →∞.

The two distance measures on which the decision functions
of Eqs. (5) and (6) are based, are illustrated for some toy one-
dimensional cluster c composed of 6 data points in Fig. 3.

‖Φ(x)− µc‖2 LME−γi∈Cc{·}

0

2

0

2

Fig. 3. Distance between some data point x and a cluster c depicted as a
collection of black dots. The distance is either computed in feature space, or
using the soft min-pooling of Eq. (6).

While the two functions clearly differ, one can also observe
that they build comparable level sets. In fact, we show in
Proposition 4 that these two measures of distance are essen-
tially the same up to some monotonous nonlinear transforma-
tion, thereby leading to the same decision function.

Proposition 4. Let µc = 1
Zc

∑
i∈Cc Φ(ui) where Φ is some

feature map associated to the Gaussian kernel K(x,u) =
exp(−γ‖x− u‖2) and Zc is a normalization factor. The two
distance functions appearing in Eqs. (5) and (6) can be related
as:

LME
i∈Cc

−γ{‖x− ui‖2} = gc(‖Φ(x)− µc‖2) (8)

where gc is a monotonically increasing function defined as:

gc(ξ) = γ−1Li1(ξ/2 + ∆c) + γ−1Hc (9)

with Li1 is the polylogarithm of order 1, ∆c = (1−‖µc‖2)/2,
and Hc = log(|Cc|/Zc).

A proof is given in Appendix C of the Supplement. For-
mally, equivalence between the two decision functions (Eqs.
(5) and (6)) is ensured when the function gc does not depend
on the choice of cluster c. When choosing the normalization
factor Zc = |Cc| (standard kernel k-means), the term Hc

vanishes but the term ∆c remains, and the converse happens
if setting ‖µc‖ = 1, i.e. Zc = ‖

∑
i∈Cc Φ(ui)‖ (spherical

kernel k-means). In practice, both terms remain near zero if
we observe that each cluster is equally heterogeneous and have
consequently the same norm in feature space. In that case, the
two decision boundaries become equivalent. An advantage of
the latter decision function is that it can exactly reproduced
by a neural network.

Proposition 5. The decision function in Eq. (6) can be
reproduced by a four-layer neural network composed of a
linear layer followed by three pooling layers:

Neuralized kernel k-means

hijk = w>ijx+ bij (layer 1)

hjk = LME
i∈Cc

γ{hijk} (layer 2)

hk = LME
j∈Ck

−γ{hjk} (layer 3)

fc = min
k 6=c
{hk} (layer 4)

where wij = 2 · (ui − uj) and bij = ‖uj‖2 − ‖ui‖2, where
LMEγ and LME−γ can be interpreted as soft max-pooling
and soft min-pooling respectively, and assigning to cluster c
if fc(x) > 0.

The proof is given in the Appendix D of the Supplement. An
example showing the equivalence between the neural network
output and Eq. (6) is given in Fig. 4.

1
2

3

1
2

3

Fig. 4. Left: Partition implemented by a kernel k-means clustering with three
clusters C1, C2, C3 supported by seven support vectors each. Right: Neural
network output fc(x) associated to the cluster C1.

This neural network we have proposed can now be used
to support the process of explanation. Because the network is
again composed of linear and pooling layers, propagation rules
proposed for the k-means case remain applicable. In particular,
redistribution in pooling layers can be achieved using Eq. (2)

6

(and switching the sign for the soft max-pooling case)1. The
directional redistribution in the first layer can be achieved
using Eq. (4). However, we must handle the case where some
relevance lands on a deactivated (or weakly activated) neuron
hijk, as the latter does not provide directionality in input
space. Such special case can be handled by only propagating
part of the relevance (and dissipating the rest), specifically, by
performing the reassignment:

Rijk ← Rijk · (hijk/hk) (10)

The latter ensures that the relevance continuously converges
to zero as the neuron hijk becomes deactivated.

In terms of computational cost, we note that the number of
neurons in our neuralized k-means model grows quadratically
with the number of support vectors per cluster, whereas the
complexity of a simple evaluation of the decision function
is linear with the number of support vectors. (A complexity
analysis of the different explanation methods is given in Table
II of Section VII.) For NEON to maintain its computational
advantage compared to approaches based on function evalua-
tion such as integrated gradients [29] or prediction difference
analysis [56], the number of support vectors must be kept
small, typically, in the order of 10 support vectors per cluster.
Practical approaches to produce a limited number of points
include e.g. reduced sets [70], [71], [72], vector quantization
[73], or representing each cluster as a mixture model with
finitely many mixture elements (we use this approach in
Section VI-A). Alternatively, when for modeling purposes it
is necessary to maintain a large number of support vectors
per cluster, one can adopt a pruning strategy, where we only
evaluate in the forward and backward pass the most relevant
part of the network, i.e. the few neurons that significantly
affect the output for a given input x.

IV. EXTENSION TO DEEP CLUSTERING

Unlike kernel k-means, deep k-means makes use of a feature
map given explicitly as a sequence of layer-wise mappings
Ψ(x) = ΨL ◦ · · · ◦ Ψ1(x), and the feature map is typically
learned via backpropagation to produce the desired cluster
structure.

Various formulations of deep k-means have been proposed
in the literature. Clustering solutions produced by [14], [15]
optimize a hard k-means objective based on distances in
feature space. Using the same assignment model as for k-
means, but this time in feature space, we decide for cluster c
if:

∀k 6=c : ‖Ψ(x)− µc‖2

< ‖Ψ(x)− µk‖2 (11)

This lets us rewrite the full model as a the stacking of the L
layers of the neural network Φ with the neuralized k-means
model defined in Proposition 1:

1The relevance attributed to neuron hijk is thus given as

Rijk =
exp(γhijk)∑
i∈Cc exp(γhijk)

·
exp(−γhjk)∑
j∈Ck exp(−γhjk)

·Rk.

Neuralized deep k-means

a = ΨL ◦ · · · ◦Ψ1(x) (layers 1 . . . L)

hk = w>k a+ bk (layer L+ 1)
fc = min

k 6=c
{hk} (layer L+ 2)

where wk = 2 ·(µc−µk) and bk = ‖µk‖2−‖µc‖2. Note that
beyond a simple application of standard k-means on top of a
given layer, there has been many proposals for deep clustering.

Two quite popular formulations make use of a soft cluster
assignment model, specifically, a softargmax model [23], [41],
or a t-Student similarity model [12], [42]. These soft cluster-
ing approaches bring a probabilistic interpretation of cluster
assignments, and build entropy-based optimization criteria. In
the soft k-means models of [23], [41], the data is first projected
on some direction µc associated to the cluster, and mapped
to a probability score using a softmax. Here we first consider
the explanation of the clustering outcome, in other words, we
place the decision boundary at the location where there is
as much evidence for the given cluster assignment as for the
assignment onto the nearest competitor.

∀k 6=c : pc(x) > pk(x) (12)

with pc(x) =
exp(µ>c a)∑
k exp(µ>k a)

and a = Ψ(x)

Proposition 6. The decision function of Eq. (12) can be
expressed by the neural network:

Neuralized deep soft clustering (relative)

a = ΨL ◦ · · · ◦Ψ1(x) (layers 1 . . . L)

hk = w>k a (layer L+ 1)

fc = min
k 6=c
{hk} (layer L+ 2)

where wk = µc − µk, and testing for fc ≥ 0. Furthermore,
fc has a probabilistic interpretation as the log-likelihood ratio
log(pc(x)/maxk 6=c{pk(x)}).

A proof is given in Appendix E of the Supplement. The
solution in [12], [42] is also based on a soft-assignment
model, where the exponential terms are replaced by t-Student
distributions. The latter does not allow for a similar neural
network reformulation as above, however, it converges to
hard k-means when the activations a of the different clusters
become strongly separated.

Alternatively, one can be interested in why an assignment
onto a cluster exceeds a particular probability threshold.
Specifically, we would like to explain the decision function:

pc(x) > θ (13)

where the probability scores are defined in the same way as
in Eq. (12), and where θ is some value between 0 and 1.

Proposition 7. The decision function of Eq. (13) can be
expressed by the neural network:

7

MTM

k-means kernel k-means deep k-means
linear
min
LME

in
pu

t

in
pu

t

in
pu

t

DIR DIR MTMMTM MTM MTM Standard LRP

DIR

MTM

directional LRP
min/max-take-most LRP

Fig. 5. Examples of clustering models whose cluster assignments can be explained with our NEON approach. The neuralized models, each of which can be
expressed as combinations of detection layers and pooling layers, are depicted along with the propagation rules applied at each layer.

Neuralized deep soft clustering (absolute)

a = ΨL ◦ · · · ◦Ψ1(x) (layers 1 . . . L)

hk = w>k a+ bk (layer L+ 1)

fc = LME
k 6=c

−1{hk} (layer L+ 2)

where wk = µc − µk, bk = − log(N − 1) + log((1 − θ)/θ)
and testing for fc ≥ 0. Furthermore fc = log(pc(x)/(1 −
pc(x))) + log((1− θ)/θ), i.e. it a log-likelihood ratio plus an
offset.

A proof is given in Appendix E of the Supplement. Like for
kernel the k-means case, min-take-most can be applied to the
min layers. For the last neuralized variant featuring the LME
computation, one also needs to handle the case where non-zero
relevance scores Rk land on deactivated neurons (hk = 0). To
avoid this, we perform the reassignment Rk ← Rk · (hk/fc).
For further propagation of relevance scores into the neural
network, we notice that all layers up to layer L + 1 form a
standard neural network. Hence, propagation rules designed in
the context of neural network are applicable. For propagation
rules specific to deep neural networks, we refer to the papers
[57], [74] which cover in particular convolutional layers and
LSTM blocks.

V. EXTENSION TO ANY CLUSTERING

Not all clusterings can be readily obtained by standard /
kernel / deep k-means or combinations of them. Algorithms
such as DBSCAN [75], hierarchical agglomerative clustering
[76], or spectral clustering [77], [78], are based on a different
principle, and typically lead to different cluster solutions. For
these clusterings we observe however that the decision func-
tion they implement is typically based on evaluating distances
between individual data points. Hence, the kernel k-means
model we have proposed provides a natural surrogate for
modeling the cluster assignment of these models. In particular,
the identified four-layer architecture can be kept fixed, and the
parameters (e.g. data point weightings) can be fine-tuned to fit
the decision boundary. Once the model boundaries coincide,
the model can be used in a second step to extract explanations.
The same fine-tuning strategy can be used to handle cluster
solutions that are not the sole result of a cluster algorithm
but that have instead been curated by humans to match their
expert knowledge.

Compared to a standard surrogate approach that would
use a generic classifier to fit the cluster assignments, using
a standard / kernel / deep k-means surrogate ensures that the
needed adjustment is minimal, thereby preventing the decision
strategy of the two models to become substantially different. In
particular, one minimizes the risk of introducing a Clever Hans
effect into the explanation (cf. [79]), or removing such Clever
Hans effect. The risk would indeed be that the surrogate model
yields a false interpretation (too optimistic or too pessimistic)
of the original model’s decision strategy.

VI. APPLICATIONS

We have proposed to extend Explainable AI to clustering,
and have contributed the neuralization-propagation technique
(NEON) to efficiently extract these explanations. In the fol-
lowing, we demonstrate on three showcase examples how one
benefits in multiple ways of enriching cluster assignments with
explanations.

A. Better Validation of a Clustering Model

The following showcase demonstrates how an explanation
of cluster assignments can serve to produce a rich and nuanced
assessment of cluster quality that goes beyond conventional
metrics such as cluster purity.

We consider for this experiment the 20newsgroups dataset
[80] that contains messages from 20 public mailing lists,
recorded around the year 1996. Headers, footers and quotes are
removed from the messages. Each document D is represented
as a collection of words defined as any sequence of letters
of length at least three. Stop words are removed. Document
vectors are then produced by mapping each word t it contains
to its tok2vec representation ϕ(t)2 (similar to word2vec [81]),
and computing the average x = 1

|D|
∑
t∈D ϕ(t). We cluster

the data using a kernel k-means model with 10 support vectors
per cluster. Initializing the kernel clustering with ground truth
labels and training the kernel k-means model with an EM-style
procedure (see Appendix F of the Supplement for details), the
cluster assignment converges to a local optimum with the final
assignment visualized in Fig. 6 (middle).

We now focus on assessing the quality of the learned clus-
ters. The Adjusted Rand Index (ARI) metric gives a score of
32%, whereas the same model trained with fixed assignments

2We use spaCy md word embeddings: https://spacy.io

https://spacy.io

8

Cluster Assignments

label: sci.space
cluster: 14

Yes, long before Star Trek. Before Einstein,
in fact. Vulcan as a planet inside Mercury
was hypothesized to explain a perturbation of
Mercury's orbit that could not be explained
by the known planets. But Einstein's theory
of relativity explained Mercury's motion, and
analysis of Mercury's motion now shows there
are _not_ any planets inside its orbit.

label: alt.atheism
cluster: 14

[rest deleted...] You were a liberal arts
major, weren'tcha? Guess you never saw that
photo of the smallest logo in the world--
"IBM" made with noble gas atoms (krypton?
xenon? I forget the specifics). Atoms, trees,
electrons are all independently observable and
verifiable. Morals aren't. See the difference?
Tep

label: comp.os.ms-windows.misc
cluster: 2

I've been using version 2.5.2 of ghostscript,
and I'm quite satisfied with it. There are,
actually, 3 versions: a plain dos version, a
386 version, and a windows version.

label: misc.forsale
cluster: 2

He is probably referring to the DOS version..
the dos versions is up to like version 6
i think. The window version just came out
recently so it is only up to like version 2 or
something.

Fig. 6. Application of NEON to the clustering of newsgroup data. Newsgroup texts where words relevant for cluster membership are highlighted. Gray words
are out of vocabulary.

to the true labels reaches 45%. From this score, one could
conclude that the algorithm has learned ‘bad’ clusters. Instead,
cluster explanations, which expose to the user what in a given
document is relevant for its membership to a certain cluster,
will give a quite different picture. We first note that a direct
application of the NEON method we have proposed to obtain
such explanation would result in an explanation in terms of the
dimensions of the input vector x, which is not interpretable
by a human as word and document embeddings are usually
abstract. A more interpretable word-level explanation can
be achieved, by observing that the mapping from words to
document (an averaging of word vectors) and the first layer of
the neuralized kernel k-means, are both linear. Thus, they can
be combined into a single ‘big’ linear layer that takes as input
each word distinctly. These scores can then be pooled over
word dimensions [82], leading to a single relevance score Rt
for each individual word t. These explanations can be rendered
as highlighted text.

We select a few messages that we show in Fig. 6. The two
messages on the left are assigned to the same cluster but were
posted to different newsgroups. Here, NEON highlights in
both documents the term “version”. Closely related terms like
“DOS”, “windows” and “ghostscript” are highlighted as well.
The fact that “version” was found in both messages and that
other related words were present constitutes an explanation
and justification for these two messages being assigned to the
same cluster.

As a second example, consider messages on the right
in Figure 6, posted on two different groups, but that are
assigned to the same cluster. The top message is discussing
specifics of Mercury’s motion, whilst the bottom message
draws an analogy between physical objects and morals. The
most relevant terms are related to physics, such as “Einstein”
or “atoms”. Also more broadly used terms (that may appear
in other clusters too) like “motion” or “smallest” provide

evidence for cluster membership. Here again, the words that
have been selected hint at meaningful similarity between
these two messages, thus justifying the assignment of these
messages to the same cluster.

Overall, in this showcase experiment, minimizing the clus-
tering objective has led to a rather low ARI. According to
common validation procedures, this would constitute a reason
for rejection. Instead, the cluster membership explanations
produced by NEON could pinpoint to the user meaningful
cluster membership decisions that speak in favor of the learned
cluster structure.

B. Getting Insights into Neural Network Representations

Our second showcase example demonstrates how cluster
explanations can be applied beyond clusters assessment, in
particular, how it can be used as a way of getting insights
into some given data representation Φ, e.g. some layer of a
neural network. An direct inspection of the multiple neurons
composing the neural network layer is generally unfeasible
as there are many such neurons, and their relation to the
input is highly nonlinear. The problem of understanding deep
representations has received significant attention in recent
years [79], [83], [84].

We consider the data representations built by the well-
known VGG-16 convolutional network [85]. The VGG-16
network consists of a classifier built on a feature extractor. The
feature extractor is composed of five blocks alternating multi-
ple convolutions and ReLU activations. Each block terminates
with a 2× 2 spatial pooling, thereby creating increasingly
more abstract and spatially invariant representations.

To analyze representations produced by VGG-16, we feed
some image of interest into the network, leading to spatial
activation maps at the output of each block. Collecting the
activations at the output of a given block, we build a dataset,
where each spatial location in the block corresponds to one

9

Artificial Spiral

bl
oc
k
3

bl
oc
k
4

horizontal
edges

less specific
for diagonal
edges

vertical edges

selective for
curvature

“Poker Game” (Coolidge, 1894)
bl
oc
k
3

bl
oc
k
5

green
background

vertical edges
top-left
curvature

horizontal
edges

fur texture

dogs
table clutter

lamp painting

Fig. 7. NEON analysis of images represented at different layers of a deep neural network (pretrained VGG-16). K-means clustering with K = 8 is performed
at the output of these two blocks. Each column shows the pixel-wise contributions for one of these clusters.

data point. After this, we apply k-means with K = 8 on
these data points (rescaled to unit norm) and neuralize the
model. For each cluster, we consider the model outputs fc (the
positive part), and propagate these outputs backward through
the network using LRP in the neuralized model and further
down into the VGG-16 layers to form a collection of pixel-
wise heatmaps associated to each cluster. When computing the
explanations, we set β according to our heuristic in Eq. (3),
and in convolution layers, we use LRP-γ [57] with γ = 0.25
in blocks 1–3 and γ = 0.1 in blocks 4–5.

Cluster explanations are shown in Fig. 7 for an artificial
spiral image, and one of the well-known “dogs playing poker”
images, titled “Poker Game” by Cassius Marcellus Coolidge,
1894. Images were fed to the network at resolution 448× 448,
which can be interpreted as applying VGG-16 to the multiple
224× 224 patches of that image. In the artificial spiral image,
clusters at the output of Block 3 map to edges with certain
angle orientations as well as colors (black and white) or edge
types (black-to-white, or white-to-black). Interestingly, strictly
vertical and strictly horizontal edges fall in clusters with very
high angle specificity, whereas edges with other angles fall
into broader clusters. When building clusters at Block 4, color
and edge information become less prominent. Clusters are
now very selective for the angle of the curvature, something
needed to represent higher-level concepts. Hence, this analysis
reveals to the user a specific property of the VGG-16 neural
network which is the progressive building of curvature in deep
representations. In the Poker Game image, we observe at Block
3 a cluster that spans the green texture in the background, one
that spans the fur texture associated to the dogs, and further
clusters that react to edges of various orientations. After Block
5, the clusters once again form higher-level concepts. There is
a cluster for the big lamp at the top of the image, a cluster for
the painting in the upper right, and a cluster that represents

the dogs. Note that it only represents the most discriminative
part of the dog, and build invariance w.r.t. other parts of the
dogs, in particular, the fur texture. This reveals to the user
how VGG-16 progressively builds high-level abstractions and
become invariant to certain visual features.

To summarize, our cluster explanations could extract useful
insight about the way VGG-16 represents its input from a
small selection of images. In particular, our analysis does away
with the high dimensionality of neural network representation
by providing an explanation that fits in only 8 heatmaps, hence
easily interpretable by the user.

C. Getting Insights into the Data

While Explainable AI techniques have shown helpful to
shed light into the decision strategy associated to specific
models and data representations, it also provides a useful tool
to extract insight into the data distribution itself (exploratory
data analysis). This is often the case in scientific applications
[25], [60], where the model serves to extract structures in
the data rather than being of interest on its own. Our last
showcase demonstrates that NEON, in conjunction with a
well-functioning clustering model, can extract such insight
into the data. In particular, we find that clusters of the data
can be linked to contiguous patterns in pixel space, often
corresponding to the image segments provided by the user.

To demonstrate this property of the data, we consider the
PASCAL VOC 2007 dataset [86] which comes with segmen-
tation masks separating the different objects. We consider a
similar setting to Section VI-B, where we build a collection
of K-cluster models based on activation vectors at different
spatial locations and at a given layer of the pretrained VGG-16
network. The assignment of these activation vectors onto the
learned clusters is then attributed to the input pixels using

10

our NEON explanation framework to form a collection of
K heatmaps. Fig. 8 (top) shows an example of heatmaps
we get for an image of a kid with a small motorbike. We
observe that the attribution of cluster membership onto pixels
highlight that cluster models distinct objects in the image, here,
the kid, the motorbike and the background. We perform an
experiment where measure to what degree explained clusters
match the different segmentation masks. Similarity between
heatmaps and segmentation masks is measured by a maximum
weight matching (Hungarian algorithm) between masks and
clusters, where the weight is given by their cosine similarity.
The procedure is depicted in Fig. 8 (middle). The matching
is reduced to a single score S ∈ [−1,+1] by averaging the
cosine similarity of all matchings. A perfect score of S = 1
can only be achieved if the clusters are strictly equivalent to
the matched segmentation masks.

input image 0.60

0.34

cos(𝙭 , 𝙮) 0.45

1 2 3 4 5
0.0

0.2

0.4 NEON
FM
LO
NetDissect1
NetDissect2

𝔼
𝒟
[c
os
(𝙭
,𝙮
)]

Fig. 8. Quantitative evaluation of NEON’s ability to extract meaningful
summaries. Top: The cluster explanation is matched with ground truth object
segmentation masks by means of cosine similarity. Bottom: Comparison of
NEON to other methods. For each method we show the average cosine score
over the whole dataset. Results are shown for different blocks on the x-axis.

For comparison, we construct two simple baselines that
do not make use of clustering: The first baseline takes the
top-k most activated (in the L∞ sense) feature maps (FM).
The second baseline takes the top-k most activated locations
(LO). In addition we consider a recently proposed method,
NetDissect [84], which identifies meaningful segments of an
image by thresholding spatial activation maps. Thresholds
applied by NetDissect are learned in a supervised manner to
match a rich set of concepts (e.g. wood, red or carpet) from
the Broden dataset. The NetDissect1 baseline takes the top-K
segmentation maps. NetDissect2 takes K centroids from all
segmentation maps. For every method in our benchmark, we
fix K = 4 (the average number of objects in the dataset) and
apply the same LRP propagation rules for NEON, FM and LO.

Examples of heatmaps produced by each method are given in
Appendix J.

Average cosine similarities for each method applied at the
output of each block3 are given in Fig. 8 (bottom). The
NEON approach clearly and consistently delivers the best
results except for Block 5, where NetDissect2 shows a better
performance. Interestingly, the highest correlation is found in
lower layers, confirming that low-level features such as color
or textures are good descriptors of the spatial occupancy of
an object, whereas higher-level features may build too much
invariance to comprehensively highlight segments. The higher
performance of NetDissect in higher-layer can be attributed
to the smoother way it renders explanation in pixel-space (cf.
Appendix J in the Supplement), thereby ‘undoing’ some of
the invariances the neural network might have built.

Overall, our NEON approach allows to shed light into the
statistics of complex data distributions, for example, by finding
that clusters in image data, especially those coding for low-
level information content such as texture or color, substantially
correlate with image segments.

VII. EVALUATION

While the section above has demonstrated the multiple
practical benefits one can get from bringing Explainable AI
to clustering, we would like to study here more specifically
the technical ability of NEON as an explanation method for
clustering. We consider a broad spectrum of desiderata of an
explanation method, and evaluate NEON against a number
of simple contributed baselines. We stress that the baselines
we use were originally proposed for explaining classification,
however, with some adaptations that we propose, they can be
extended to the clustering case and therefore serve as baselines
in our evaluation.

In particular, we consider Integrated Gradients (IG) [29]
where the explanation scores are computed by integrating
the model output between the dataset mean x̄ and the data
point x following some linear path. We then apply Predic-
tion Difference Analysis (PDA) [56], [87] where we score
the different dimension based on the effect on the decision
function of removing the corresponding feature. (Missing
feature is imputed using the same KDE model as used in our
evaluation procedure.) Then, we consider Dimension Removal
(DR), a variant of PDA, where we instead of removing the
dimension i of the data point, we remove this dimension
from all distance computations occurring in the computation
of the neural network output. Finally, we include three simple
baselines: random attribution, square difference (x − x̃)2,
which computes element-wise the square difference to some
predefined reference point x̃, and sensitivity analysis (∇f)2,
which computes the square of the derivative along each input
dimension.

A. Desiderata and Evaluation Metrics
In the context of explaining image classifiers, [88] proposed

the ‘pixel-flipping’ technique for evaluating explanations. The

3NetDissect only has results for Blocks 3–5 due to its high computational
cost in the lower layers.

11

technique consists of constructing a plot that keeps track of
decision function, specifically the cluster indicator function
gc(x) = 1{x→cluster c}, as we add or remove features by order
of relevance according to the explanation, and measuring the
area under the curve (AUC). We start from this algorithm
and adapt it to our setting. In particular, instead of flipping
pixels, we consider general features, and similar to [64] start
from an ‘empty’ data point, and add the features from most to
least relevant. Missing features are inpainted using a simple
conditional kernel density estimation (KDE) model, the details
of which we provide in Appendix G in the Supplement, or
replaced by zero when the input features are activations of a
deep neural network. The procedure for computing the AUC
is detailed in Algorithm 1. The higher the AUC, the better
the explanation. The analysis can be extended to a whole
dataset by computing by averaging the AUC obtained for each
individual data point.

Algorithm 1 Area under the curve (AUC) computation for
a data point z ∈ Rd and the explanation (Ri)i ∈ Rd of its
prediction.
I = ∅
curve = []

for ι ∈ argsort((−Ri)i) do
I = I ∪ {ι}
x ∼ pKDE(x | zI)
curve.append(gc(x))

end for
return area_under(curve)

Consider now the five desiderata of an explanation listed
in [89], namely, fidelity, understandability, sufficiency, low
construction overhead, and runtime efficiency. We argue that
Algorithm 1 captures to a reasonable extent the first three of
them: Fidelity (D1): Algorithm 1 keeps track of the model
output as we add features. This favors techniques that ex-
plain the model output rather than some other function.
Understandability (D2): It is desirable that the explanation
is understandable by its user, e.g. expressible in terms of
input features, and simple enough (e.g. a few relevant fea-
tures). Algorithm 1 implements such desiderata by verifying
whether the few most relevant features returned by the ex-
planation produce a substantial increase of the model output.
Sufficiency (D3): The explanation should be sufficient for its
user, i.e. provide sufficient information about the model’s
decision strategy. Algorithm 1 requests a score for each
individual feature (or at least a full ranking of those features).
This favors explanations with this level of resolution compared
to more coarse-grained explanations.

To assess the fulfilment of the last two desiderata, we
proceed as follows: Low construction overhead (D4): The
explanation technique should not be too complex or costly
to implement. Our evaluation will rank explanation methods
depending on whether they only need access to the decision
function, access to some differentiable function reproducing
the decision function, or access to the neural network internals
of that function. Runtime efficiency (D5): The explanation

should be computable quickly. In our evaluation, we will pro-
vide the algorithmic complexity of each explanation method
and perform additional runtime comparisons.

B. AUC Evaluation Results

To test desiderata D1–D3, we first perform the AUC evalu-
ation presented in Algorithm 1 on a set of models trained on
different datasets of various dimensionality and complexity.
We consider first a set of standard k-means models trained on
a number of datasets from the UCI repository (details and links
to the datasets are provided in Appendix H of the Supplement),
and where the number of clusters K is determined using the
elbow method [90]. Then, we consider more complex kernel k-
means models which we train on further datasets from the UCI
dataset. We also consider the kernel k-means model trained
on the 20newsgroup dataset [80] (news in Table I) which
we have showcased in Section VI-A. The training algorithm
we have used for kernel k-means is detailed in Appendix
F in the Supplement. Finally, we consider deep k-means
models built on the popular STL-10 [91] image recognition
dataset. We consider either a standard k-means model built
on the features at the output of block 5 of the VGG-16 deep
neural network pretrained on ImageNet (VGG-s), or the same
VGG-16 network without supervised pretraining (VGG-u) and
coupled with the recently proposed SCAN [23] clustering
model4 for deep clustering. For each dataset and model, we
set the NEON hyperparameter according to the heuristic in
Eq. (3). For deep models, we choose β in the same way
and furthermore choose the LRP rule LRP-γ [57], with the
parameter γ set heuristically to 0.1.

After producing explanations for the cluster assignment of
each model, we compute the AUC as follows: For k-means
and kernel k-means, we iteratively add each individual input
dimensions, and use kernel density estimation (KDE) inpaint-
ing for the missing features, with the KDE scale parameter
chosen in a way that maximizes data likelihood (using leave-
one-out cross-validation, cf. Appendix G). For deep k-means,
we do not attribute directly on pixels but instead on low-
level concepts as represented by the 256 feature maps at the
output of block 3 of the VGG-16 network. Because the neural
network ReLU activations have a natural reference point at
zero (deactivated state), we inpaint by setting the missing
features to zero. The results are shown in Table I.

We observe that the proposed NEON explanation method
is equal or superior to all baselines on the vast majority
of considered models and datasets. We note the relatively
poor performance of method based on prediction difference
analysis, where the removal of individual features seems
insufficient to capture the more global structure of the cluster
assignment.

1) Effect of K and d on NEON performance: To get
further insights into the performance of NEON, we perform
an experiment where we take an existing dataset, the winer
dataset, and generate scenarios of varying complexity by

4We train exactly the same model as in [23], but replace the resnet-18
feature extractor by a VGG-16 feature extractor, which comes with extensively
tested LRP rules [57], [62].

12

TABLE I
AUC SCORE COMPUTED WITH ALGORITHM 1 AND SERVING AS A PROXY FOR THE FULFILLMENT OF DESIDERATA D1–D3. THE HIGHER THE AUC

SCORE THE BETTER THE EXPLANATION METHOD. WE FIND THAT THE PROPOSED NEON METHOD SCORES THE HIGHEST FOR THE VAST MAJORITY OF
MODELS. ENTRIES WHERE THE OTHER METHODS IN OUR BENCHMARK ARE INAPPLICABLE OR COMPUTATIONALLY PROHIBITIVE ARE DENOTED BY ‘—’.

dataset model methods
name N D K type random (x− x̃)2 PDA0 PDAcs (∇fc)2 IG-10 DR NEON

buddy 249 6 7 kmeans 71.77 75.00 70.06 70.81 73.32 74.76 76.41 78.42
c2000 2000 68 7 kmeans 90.71 95.12 90.67 90.87 92.01 93.82 92.15 95.21
hepac 615 11 8 kmeans 61.16 74.04 59.67 60.03 76.50 77.56 76.20 80.19
seeds 210 7 6 kmeans 75.73 78.64 76.07 76.09 81.62 79.54 81.16 82.81
winer 178 13 6 kmeans 78.36 85.04 77.01 78.15 82.99 85.87 85.10 87.23

news 250 300 20 kernel 40.07 42.83 51.55 — 40.40 40.40 — 54.50
trpad 980 10 9 kernel 58.68 71.34 58.87 58.32 68.76 71.44 67.35 74.92
sales 811 52 6 kernel 82.30 87.28 82.66 82.33 86.72 86.51 83.47 87.21
water 527 38 5 kernel 79.30 87.30 79.13 78.89 85.01 86.82 83.55 87.66
whlsl 440 6 8 kernel 54.98 63.91 54.88 55.11 64.53 64.93 62.60 67.37

STL-10 5000 256 10 deep (VGG-s) 50.52 66.66 75.30 — 56.11 66.99 — 77.93
STL-10 5000 256 100 deep (VGG-s) 32.42 53.34 48.78 — 39.47 41.85 — 65.09
STL-10 5000 256 1000 deep (VGG-s) 27.32 50.36 46.63 — 34.99 38.85 — 52.38

STL-10 5000 256 10 deep (VGG-u / SCAN) 58.66 68.54 75.69 — 59.40 70.84 — 85.76
STL-10 5000 256 100 deep (VGG-u / SCAN) 38.72 49.02 31.77 — 41.73 25.52 — 55.38
STL-10 5000 256 1000 deep (VGG-u / SCAN) 22.98 32.45 9.28 — 27.63 6.83 — 23.40

training clustering model between K = 2 to K = 64, and
also removing input features to generate dataset dimensions
from d = 2 to d = 13. The results are shown in Fig. 9.

2 4 8 16 32 64

nclusters

‖x − x̃‖2

PDA0

PDAcs

(∇fc)2

IG-10

DR

NEON

random

2 4 6 8 10 13

ndimensions

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Fig. 9. Effect of the number of clusters nclusters on the AUC performance
of each explanation method on the winer dataset.

We observe that in every regime, NEON has equal or
superior performance to all baselines. Anecdotally, NEON
performs equivalently to IG-10 and DR for K = 2 (this can
also be shown theoretically based on a similar argument to the
one found in Proposition 3), but it start to outperform these
methods as soon as the number of clusters grow.

2) Sensitivity of NEON to Hyperparameters: Unlike other
baseline methods used in our benchmark, NEON comes with
a ‘stiffness’ hyperparameter β for which we have proposed
to choose heuristically following Eq. (3), and for deep clus-
tering, with a parameter γ associated with the propagation
in convolution layers. We would like to test the sensitivity
of NEON to these parameters, first to verify the soundness
of our heuristic, but also to check whether other choices
of parameters lead to further improvements or conversely a
degradation of NEON performance. Results are given in Fig.
10, where we superpose on the same plot the performance at

the heuristically set value for the hyperparameter (orange dot),
the performance for other values of the hyperparameter (solid
gray line), and the performance of best performing baseline
(dotted blue line).

10 3 100 103
0.5

1.0

10 3 100 103
0.5

1.0

10 3 100 103
0.5

1.0

buddy c2000 hepac

10 3 100 103
0.5

1.0

10 3 100 103
0.5

1.0

10 3 100 103
0.5

1.0

news trpad sales

10 2 10 1 100
0.1

1.0

10 2 10 1 100
0.1

1.0

10 2 10 1 100
0.1

1.0

STL-10 K=10 STL-10 K=100 STL-10 K=1000

𝛽 =

𝛾 =

AU
C

AU
C

Fig. 10. Evaluating of NEON hyperparameters on a selection of clustering
models. 1st row: k-means models, 2nd row: kernel k-means models, 3rd row:
deep models (VGG-u / SCAN). The y-axis shows the pixel flipping AUC.
The first two rows show the effect of the min-take-most parameter β, with
the orange marker indicating the proposed heuristic β = E[fc]−1, the dotted
line is the best performing baseline (cf. Table I). The last row shows the effect
of the LRP convolution parameter γ, with the orange marker indicating our
heuristic γ = 0.1, and where we set β = E[fc]−1.

We observe that the simple heuristic proposed in Eq. (3)
nicely correlates with the peak of AUC performance, thereby
providing empirical justification for the proposed heuristic. We
note that even if the hyperparameter β is chosen inadequately,
AUC performance degrades in most cases only to a minor
extent. Conversely, an optimization of the NEON hyperpa-

13

TABLE II
FULFILLMENT OF LOW CONSTRUCTION OVERHEAD AND RUNTIME

EFFICIENCY DESIDERATA FOR THE METHODS IN OUR BENCHMARK.

Method Overhead (D4) Runtime (D5)
standard kernel

(x− x̃)2 – O(d) O(d)
PDA hc O(Kd2) O(Kd2p)
(∇fc)2 ∇fc O(Kd) O(Kdp)
IG-10 ∇fc O(10Kd) O(10Kdp)
DR (µc)c O(Kd2) O(Kd2p)
NEON NN O(Kd) O(Kdp2)

rameters brings slight additional gains on the AUC score.
Notably, the seemingly limited performance of NEON on deep
clustering with K = 1000 can be overcome by choosing a
larger value for the parameter γ, in turn making NEON again
the best performing method. In addition to maximizing the
AUC score, the hyperparameters of NEON and the possibility
to optimize them can be especially useful when bringing
explainability to new tasks with specific performance metrics.

C. Construction Overhead and Runtime

Lastly, we would like to study the fulfillment by NEON of
desiderata D4 (low construction overhead) and D5 (runtime
efficiency), comparatively to other methods in our benchmark.
We resort to a qualitative analysis for D4, where we categorize
methods according to what needs to be constructed addition-
ally to the clustering decision function. Results are shown in
Table II (second column). The symbol ‘–’ indicates that we
do not even need the decision function, ‘gc’ indicates that
we need the decision function only, ‘∇fc’ indicates that we
need a differentiable surrogate function fc and its gradient,
‘(uc)c’ indicates that we need the cluster centroids, or the
cluster support vectors for kernel k-means, and finally, ‘NN’
indicates that we need the neural network equivalent of the
surrogate function fc. The proposed NEON method has the
highest overhead in our benchmark as it requires a neural
network equivalent. However, since we have already derived
these neural network equivalents in the technical section, there
is no significant obstacle to apply NEON on the studied models
(k-means, kernel k-means, deep k-means, and related).

Regarding the runtime efficiency (D5), we perform a com-
plexity analysis of the different explanation methods, where d
is the number of input dimensions, K is the number of clusters,
and p is the number of support vectors per cluster in the kernel
k-means case. Results are shown in Table II (last column).
We observe that for k-means, NEON computational cost is
lower than most explanation methods, by only require a single
forward and backward pass, whereas many other explanation
methods typically need to evaluate the model multiple times.
(An empirical runtime comparison to all baselines for various
k-means models can be found in Appendix I of the Supple-
ment.) For kernel k-means, results are more balanced, with
NEON being slower an simple sensitivity analysis, but running
faster than the more advanced PDA/DR and IG competitors if
the number support vectors is smaller than the number of input

dimensions or the number of integration steps respectively.
Hence, while for standard k-means, we can generally claim
that NEON has high efficiency, for kernel k-means, one need to
additionally ensure that the number of support vectors remains
small, typically less than 10.

Overall, we have demonstrated in our benchmark that
NEON fares on average the highest, comparing favorably to
all competitors when considering the multiple aspects that
enter into the assessment of an explanation method. Therefore,
NEON constitutes so far the most appropriate and powerful
method for tackling the problem of explaining cluster assign-
ments.

VIII. CONCLUSION

We have contributed by for the first time bringing Explain-
able AI to clustering and have proposed a general framework,
called neuralization-propagation, for explaining cluster assign-
ments of a broad range of clustering models. The proposed
method converts, without retraining, the clustering model
into a functionally equivalent neural network composed of
detection and pooling layers. This conversion step which we
have called ‘neuralization’ enables cluster assignments to be
efficiently attributed to input variables by means of a reverse
propagation procedure.

Quantitative evaluation shows that our explanation method
is capable of identifying cluster-relevant input features in a
precise and systematic manner, from the simplest k-means
model to some of the most recent proposals such as the SCAN
deep clustering model [23]. The performance remains high
across all considered data types, in particular, abstract vector
data, text, natural images, or neuron activations.

The method we have proposed complements standard clus-
ter validation techniques by providing a rich interpretable
feedback into the nature of the clusters built. Furthermore,
when paired with a well-functioning clustering algorithm,
it provides a useful tool for exploratory data analysis and
knowledge discovery where complex data distributions are first
summarized into finitely many clusters, that are then exposed
to the human in an interpretable manner.

ACKNOWLEDGEMENTS

This work was supported by the German Ministry for
Education and Research under Grant Nos. 01IS14013A-
E, 01GQ1115, 01GQ0850, 01IS18025A, 031L0207D, and
01IS18037A, and the German Research Foundation (DFG) in
the DAEDALUS graduate school. KRM was partly supported
by the Institute for Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea
government (No. 2017-0-00451, No. 2017-0-01779).

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[2] R. Xu and D. C. W. II, “Survey of clustering algorithms,” IEEE Trans.
Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[3] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[4] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer New York, 2009.

14

[5] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expression
data: A survey,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp.
1370–1386, 2004.

[6] H. Celiker and J. Gore, “Clustering in community structure across repli-
cate ecosystems following a long-term bacterial evolution experiment,”
Nature Communications, vol. 5, no. 1, Aug. 2014.

[7] D. Mekala, V. Gupta, B. Paranjape, and H. Karnick, “SCDV : Sparse
composite document vectors using soft clustering over distributional
representations,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017, pp. 659–669.

[8] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[9] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[11] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2004, pp. 551–556.

[12] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proceedings of the 33nd International Con-
ference on Machine Learning, 2016, pp. 478–487.

[13] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, “Deep clustering:
Discriminative embeddings for segmentation and separation,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
2016, pp. 31–35.

[14] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 70. PMLR, 2017,
pp. 3861–3870.

[15] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in 15th European Conference
on Computer Vision, 2018, pp. 139–156.

[16] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV (1), ser. Lecture Notes in Computer Science,
vol. 8689. Springer, 2014, pp. 818–833.

[17] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PLOS ONE, vol. 10, no. 7,
p. e0130140, 2015.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[19] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in IEEE International Conference on Com-
puter Vision, 2017, pp. 618–626.

[20] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller,
Explainable AI: interpreting, explaining and visualizing deep learning.
Springer Nature, 2019, vol. 11700.

[21] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2018.

[22] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller,
“Explaining deep neural networks and beyond: A review of methods and
applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278,
2021.

[23] W. V. Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and
L. V. Gool, “SCAN: learning to classify images without labels,” in ECCV
(10), ser. Lecture Notes in Computer Science, vol. 12355. Springer,
2020, pp. 268–285.

[24] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
Church, “Systematic determination of genetic network architecture,”
Nature Genetics, vol. 22, no. 3, pp. 281–285, Jul. 1999.

[25] G. Ciriello, M. L. Miller, B. A. Aksoy, Y. Senbabaoglu, N. Schultz, and
C. Sander, “Emerging landscape of oncogenic signatures across human
cancers,” Nature Genetics, vol. 45, no. 10, pp. 1127–1133, Sep. 2013.

[26] A. K. Kau, Y. E. Tang, and S. Ghose, “Typology of online shoppers,”
Journal of Consumer Marketing, vol. 20, no. 2, pp. 139–156, Apr. 2003.

[27] J. M. Zurada, A. Malinowski, and I. Cloete, “Sensitivity analysis for
minimization of input data dimension for feedforward neural network,”
in IEEE International Symposium on Circuits and Systems, 1994, pp.
447–450.

[28] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. Müller, “How to explain individual classification decisions,”
Journal of Machine Learning Research, vol. 11, pp. 1803–1831, 2010.

[29] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 3319–3328.

[30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30,
2017, pp. 4768–4777.

[31] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller,
“Explaining nonlinear classification decisions with deep Taylor decom-
position,” Pattern Recognition, vol. 65, pp. 211–222, 2017.

[32] W. Landecker, M. D. Thomure, L. M. A. Bettencourt, M. Mitchell, G. T.
Kenyon, and S. P. Brumby, “Interpreting individual classifications of hi-
erarchical networks,” in IEEE Symposium on Computational Intelligence
and Data Mining, 2013, pp. 32–38.

[33] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in Proceedings of
the 34th International Conference on Machine Learning, 2017.

[34] J. Kauffmann, K.-R. Müller, and G. Montavon, “Towards explaining
anomalies: A deep Taylor decomposition of one-class models,” Pattern
Recognit., vol. 101, p. 107198, 2020.

[35] L. Arras, G. Montavon, K.-R. Müller, and W. Samek, “Explaining
recurrent neural network predictions in sentiment analysis,” in Proceed-
ings of the 8th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, 2017, pp. 159–168.

[36] C. Schäfer and J. Laub, “Annealed κ-means clustering and decision
trees,” in Classification—the Ubiquitous Challenge. Springer, 2005,
pp. 682–689.

[37] D. Bertsimas, A. Orfanoudaki, and H. M. Wiberg, “Interpretable clus-
tering via optimal trees,” CoRR, vol. abs/1812.00539, 2018.

[38] R. Fraiman, B. Ghattas, and M. Svarc, “Interpretable clustering using
unsupervised binary trees,” Adv. Data Anal. Classif., vol. 7, no. 2, pp.
125–145, 2013.

[39] M. Moshkovitz, S. Dasgupta, C. Rashtchian, and N. Frost, “Explainable
k-means and k-medians clustering,” in Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, ser. Proceedings of Machine Learning Research, vol. 119.
PMLR, 2020, pp. 7055–7065.

[40] P. Geurts, N. Touleimat, M. Dutreix, and F. d’Alché-Buc, “Inferring
biological networks with output kernel trees,” BMC Bioinform., vol. 8,
no. S-2, 2007.

[41] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in ICCV. IEEE Computer Society, 2017, pp.
5747–5756.

[42] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in ICONIP (2), ser. Lecture Notes in Computer Science,
vol. 10635. Springer, 2017, pp. 373–382.

[43] X. Peng, J. T. Zhou, and H. Zhu, “k-meansnet: When k-means meets
differentiable programming,” CoRR, vol. abs/1808.07292, 2018.

[44] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised
learning,” J. Mach. Learn. Res., vol. 5, pp. 845–889, 2004.

[45] M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, “Simultaneous
feature selection and clustering using mixture models,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154–1166, 2004.

[46] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” J. Intell. Inf. Syst., vol. 17, no. 2-3, pp. 107–145, 2001.

[47] T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann, “Stability-based
validation of clustering solutions,” Neural Computation, vol. 16, no. 6,
pp. 1299–1323, 2004.

[48] M. Meila, “How to tell when a clustering is (approximately) correct
using convex relaxations,” in Advances in Neural Information Processing
Systems 31, 2018, pp. 7418–7429.

[49] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

[50] T. Metsalu and J. Vilo, “ClustVis: a web tool for visualizing clustering
of multivariate data using principal component analysis and heatmap,”
Nucleic Acids Research, vol. 43, no. W1, pp. W566–W570, May 2015.

[51] M. Kern, A. Lex, N. Gehlenborg, and C. R. Johnson, “Interactive visual
exploration and refinement of cluster assignments,” BMC Bioinformatics,
vol. 18, no. 1, Sep. 2017.

[52] K. Hansen, D. Baehrens, T. Schroeter, M. Rupp, and K.-R. Müller,
“Visual interpretation of kernel-based prediction models,” Molecular
Informatics, vol. 30, no. 9, pp. 817–826, 2011.

[53] P. D'haeseleer, “How does gene expression clustering work?” Nature
Biotechnology, vol. 23, no. 12, pp. 1499–1501, Dec. 2005.

15

[54] D. Sculley, “Web-scale k-means clustering,” in WWW. ACM, 2010,
pp. 1177–1178.

[55] J. O. Hanson, J. R. Rhodes, S. H. M. Butchart, G. M. Buchanan,
C. Rondinini, G. F. Ficetola, and R. A. Fuller, “Global conservation of
species’ niches,” Nature, vol. 580, no. 7802, pp. 232–234, Mar. 2020.

[56] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing
deep neural network decisions: Prediction difference analysis,” in ICLR
(Poster). OpenReview.net, 2017.

[57] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller,
“Layer-wise relevance propagation: An overview,” in Explainable AI,
ser. Lecture Notes in Computer Science. Springer, 2019, vol. 11700,
pp. 193–209.

[58] S. Lapuschkin, A. Binder, K.-R. Müller, and W. Samek, “Understanding
and comparing deep neural networks for age and gender classification,”
in Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2017, pp. 1629–1638.

[59] Y. Ding, Y. Liu, H. Luan, and M. Sun, “Visualizing and understanding
neural machine translation,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, 2017, pp. 1150–1159.

[60] F. Horst, S. Lapuschkin, W. Samek, K.-R. Müller, and W. I. Schöllhorn,
“Explaining the unique nature of individual gait patterns with deep
learning,” Scientific Reports, vol. 9, p. 2391, Feb. 2019.

[61] L. Perotin, R. Serizel, E. Vincent, and A. Guérin, “CRNN-based mul-
tiple DoA estimation using acoustic intensity features for ambisonics
recordings,” J. Sel. Topics Signal Processing, vol. 13, no. 1, pp. 22–33,
2019.

[62] O. Eberle, J. Büttner, F. Krautli, K.-R. Müller, M. Valleriani, and
G. Montavon, “Building and interpreting deep similarity models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

[63] C. J. Anders, L. Weber, D. Neumann, W. Samek, K.-R. Müller, and
S. Lapuschkin, “Finding and removing clever hans: Using explanation
methods to debug and improve deep models,” Information Fusion,
vol. 77, pp. 261–295, 2022.

[64] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schütt, K.-R.
Müller, and G. Montavon, “Higher-order explanations of graph neural
networks via relevant walks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[65] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
Physiology, vol. 160, no. 1, pp. 106–154, Jan. 1962.

[66] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34, pp.
43–98, 1956.

[67] G. Montavon, “Gradient-based vs. propagation-based explanations: An
axiomatic comparison,” in Explainable AI, ser. Lecture Notes in Com-
puter Science. Springer, 2019, vol. 11700, pp. 253–265.

[68] L. S. Shapley, “17. a value for n-person games,” in Contributions to
the Theory of Games (AM-28), Volume II. Princeton University Press,
1953.

[69] E. Strumbelj and I. Kononenko, “An efficient explanation of individual
classifications using game theory,” J. Mach. Learn. Res., vol. 11, pp.
1–18, 2010.

[70] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller,
G. Rätsch, and A. J. Smola, “Input space versus feature space in kernel-
based methods,” IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1000–
1017, 1999.

[71] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An
introduction to kernel-based learning algorithms,” IEEE transactions on
neural networks, vol. 12, no. 2, pp. 181–201, 2001.

[72] B. Schölkopf and A. J. Smola, Learning with Kernels: support vector
machines, regularization, optimization, and beyond. MIT Press, 2002.

[73] R. Zhang and A. I. Rudnicky, “A large scale clustering scheme for kernel
k-means,” in 16th International Conference on Pattern Recognition,
2002, pp. 289–292.

[74] L. Arras, J. A. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer,
K.-R. Müller, S. Hochreiter, and W. Samek, “Explaining and interpreting
LSTMs,” in Explainable AI, ser. Lecture Notes in Computer Science.
Springer, 2019, vol. 11700, pp. 211–238.

[75] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, 1996, pp. 226–231.

[76] J. C. Gower and G. J. S. Ross, “Minimum spanning trees and single
linkage cluster analysis,” Applied Statistics, vol. 18, no. 1, p. 54, 1969.

[77] M. Meila and J. Shi, “Learning segmentation by random walks,” in
Advances in Neural Information Processing Systems 13, 2000, pp. 873–
879.

[78] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems 14, 2001, pp. 849–856.

[79] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and
K.-R. Müller, “Unmasking Clever Hans predictors and assessing what
machines really learn,” Nature Communications, vol. 10, p. 1096, 2019.

[80] T. Joachims, “A probabilistic analysis of the Rocchio algorithm with
TFIDF for text categorization,” in Proceedings of the Fourteenth Inter-
national Conference on Machine Learning, 1997, pp. 143–151.

[81] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, 2013.

[82] L. Arras, F. Horn, G. Montavon, K.-R. Müller, and W. Samek, ““What
is relevant in a text document?”: An interpretable machine learning
approach,” PLOS ONE, vol. 12, no. 8, p. e0181142, 2017.

[83] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Syn-
thesizing the preferred inputs for neurons in neural networks via deep
generator networks,” in Advances in Neural Information Processing
Systems 29, 2016, pp. 3387–3395.

[84] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting deep visual
representations via network dissection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2018.

[85] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, 2015.

[86] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[87] I. Covert, S. Lundberg, and S. Lee, “Explaining by removing: A unified
framework for model explanation,” CoRR, vol. abs/2011.14878, 2020.

[88] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller,
“Evaluating the visualization of what a deep neural network has learned,”
IEEE transactions on neural networks and learning systems, vol. 28,
no. 11, pp. 2660–2673, 2017.

[89] W. R. Swartout and J. D. Moore, Explanation in Second Generation
Expert Systems. Berlin, Heidelberg: Springer-Verlag, 1993, p. 543–585.

[90] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ”kneedle”
in a haystack: Detecting knee points in system behavior,” in 2011 31st
International Conference on Distributed Computing Systems Workshops,
2011, pp. 166–171.

[91] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in AISTATS, ser. JMLR Proceedings,
vol. 15. JMLR.org, 2011, pp. 215–223.

Jacob Kauffmann received a Bachelors degree in
Computer Science from TU Berlin in 2014 and a
Masters degree in Computer Science from TU Berlin
in 2017. He is currently a Ph. D. student in the
Machine Learning Group at TU Berlin.

Malte Esders received a Bachelors degree in Cog-
nitive and Neurobiological Psychology from Utrecht
University in 2014, and a Masters degree in Compu-
tational Neuroscience from TU Berlin in 2017. He is
currently a Ph. D. student in the Machine Learning
Group at TU Berlin.

16

Lukas Ruff received the bachelor’s degree in math-
ematical finance from the University of Konstanz,
Konstanz, Germany, in 2015, and the joint master’s
degree in statistics from the Humboldt University of
Berlin (HU Berlin), Berlin, Germany, the Technische
Universität Berlin (TU Berlin), Berlin, and Freie
Universität Berlin (FU Berlin), Berlin, in 2017. He
finished his Ph.D. degree in 2021 at the Machine
Learning Group, TU Berlin specializing on anomaly
detection. He is now with AIGNOSTICS a Berlin-
based start-up applying ML methods for digital

pathology .

Grégoire Montavon is a senior researcher in the
Machine Learning Group at the Technische Uni-
versität Berlin, and in the Berlin Institute for the
Foundations of Learning and Data (BIFOLD). He re-
ceived a Masters degree in Communication Systems
from École Polytechnique Fédérale de Lausanne
in 2009, and a Ph.D. degree in Machine Learning
from the Technische Universität Berlin in 2013. He
is a member of the ELLIS Unit Berlin, and an
editorial board member of Pattern Recognition. He
is recipient of the 2020 Pattern Recognition Best

Paper Award. His research interests include explainable machine learning,
deep neural networks, and unsupervised learning.

Wojciech Samek (M’13) is head of the Depart-
ment of Artificial Intelligence and the Explainable
AI Group at Fraunhofer Heinrich Hertz Institute,
Berlin, Germany. He studied computer science at
Humboldt University of Berlin, from 2004 to 2010,
and received the Ph.D. degree with distinction from
the Technical University of Berlin in 2014. During
his studies he was awarded scholarships from the
German Academic Scholarship Foundation and the
DFG Research Training Group GRK 1589/1, and
was a visiting researcher at NASA Ames Research

Center, Mountain View, USA. He is associated faculty at the Berlin Institute
for the Foundation of Learning and Data (BIFOLD), the ELLIS Unit Berlin
and the DFG Graduate School BIOQIC. Furthermore, he is an editorial board
member of Pattern Recognition, PLoS ONE and IEEE TNNLS, and an elected
member of the IEEE MLSP Technical Committee. He has been serving as
an AC for NAACL’21, and was a recipient of multiple best paper awards,
including the 2020 Pattern Recognition Best Paper Award. His research
interest include deep learning, explainable AI, neural network compression,
and federated learning.

Klaus-Robert Müller (M’12) has been a professor
of computer science at Technische Universität Berlin
since 2006; at the same time he is co-directing
the Berlin Big Data Center. He studied physics in
Karlsruhe from 1984 to 1989 and obtained his Ph.D.
degree in computer science at Technische Universität
Karlsruhe in 1992. After completing a postdoctoral
position at GMD FIRST in Berlin, he was a research
fellow at the University of Tokyo from 1994 to 1995.
In 1995, he founded the Intelligent Data Analysis
group at GMD-FIRST (later Fraunhofer FIRST) and

directed it until 2008. From 1999 to 2006, he was a professor at the University
of Potsdam. He was awarded the Olympus Prize for Pattern Recognition
(1999), the SEL Alcatel Communication Award (2006), the Science Prize
of Berlin by the Governing Mayor of Berlin (2014), and the Vodafone
Innovations Award (2017). In 2012, he was elected member of the German
National Academy of Sciences-Leopoldina, in 2017 of the Berlin Brandenburg
Academy of Sciences and also in 2017 external scientific member of the
Max Planck Society. Form 2019 on he became ISI Highly Cited Researcher.
His research interests are intelligent data analysis and machine learning
with applications in neuroscience (specifically brain-computer interfaces),
medicine, physics, chemistry and the humanities.

	Introduction
	Related Work

	Explaining K-Means Cluster Assignments
	Neuralization of the Cluster Assignment
	Propagation of the Cluster Assignment
	Theoretical Embedding

	Extension to Kernel K-Means
	Extension to Deep Clustering
	Extension to Any Clustering
	Applications
	Better Validation of a Clustering Model
	Getting Insights into Neural Network Representations
	Getting Insights into the Data

	Evaluation
	Desiderata and Evaluation Metrics
	AUC Evaluation Results
	Effect of K and d on NEON performance
	Sensitivity of NEON to Hyperparameters

	Construction Overhead and Runtime

	Conclusion
	References
	Biographies
	Jacob Kauffmann
	Malte Esders
	Lukas Ruff
	Grégoire Montavon
	Wojciech Samek
	Klaus-Robert Müller

