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Abstract. Stationary Subspace Analysis (SSA) [3] is an unsupervised
learning method that finds subspaces in which data distributions stay
invariant over time. It has been shown to be very useful for studying
non-stationarities in various applications [5, 10, 4, 9]. In this paper, we
present the first SSA algorithm based on a full generative model of the
data. This new derivation relates SSA to previous work on finding in-
teresting subspaces from high-dimensional data in a similar way as the
three easy routes to independent component analysis [6], and provides
an information geometric view.
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1 Introduction

Finding subspaces which contain interesting structures in high-dimensional data
is an important preprocessing step for efficient information processing. A classical
example is Principal Component Analysis (PCA) that extracts low-dimensional
subspaces which capture as much variance of the observations as possible. In con-
trast, more recent approaches consider other criteria than maximum variance.
For instance, non-Gaussian component analysis (NGCA) [2, 7], a general semi-
parametric framework including projection pursuit [8], extracts non-Gaussian

structures, e.g. subspaces which reveal clusters or heavy tailed distributions.
Another recent direction is colored subspace analysis [13] which searches for
linear projections having temporal correlations. What all these methods have
in common is that i.i.d. (white) Gaussian random variables are considered as
noise, and each method seeks to maximize a specific deviation from it to un-
cover an informative subspace. This fact reminded us of the thought-provoking
paper [6] showing three easy routes to Independent Component Analysis (ICA).
Independent components can be extracted either by using non-Gaussianity, or
by non-whiteness of spectrum, or by non-stationarity [11] of the variance. The
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goal of this paper is to discuss projection methods corresponding to the third
route, i.e. based on finding non-stationary structures.

Recently, Bünau et al. [3] proposed a novel technique called Stationary Sub-
space Analysis (SSA) which finds the low-dimensional projections having sta-
tionary distributions from high-dimensional observations. This is an instrumen-
tal analysis whenever the observed data is conceivably generated as a mixture of
underlying stationary and non-stationary components: a single non-stationary
source mixed into the observed signals can make the whole data appear non-
stationary; and non-stationary sources with low power can remain hidden among
strong stationary components. Uncovering these two groups of sources is there-
fore a key step towards understanding the data. Stationary Subspace Analysis
has been applied successfully to biomedical signal processing [5], Computer Vi-
sion [10], high-dimensional change point detection [4] and domain adaptation
problems [9].

However, the SSA algorithm [3] is based on finding the stationary sources
and does not model the non-stationary components, i.e. unlike [11], the SSA
algorithm is not derived from any generative model of the observed data. In this
paper, we assume a linear mixing model with uncorrelated stationary and non-
stationary sources and compute the maximum likelihood estimators of the pro-
jections onto both subspaces. That is, we also explicitly model the non-stationary
part. The objective function turns out to be a combination of the original SSA
objective and a term which penalizes cross-covariances between the stationary
and non-stationary sources.

The remainder of this paper is organized as follows. After explaining our
model assumptions in Section 2, we derive the objective function of the maximum
likelihood approach in Section 3 and provide a geometrical illustration. Then,
we present the results of the numerical simulations in Section 4.

2 Block Gaussian Model for SSA

In the SSA model [3], we assume that the system of interest consists of d sta-
tionary source signals ss(t) = [s1(t), s2(t), . . . , sd(t)]

⊤ (called s-sources) and
D−d non-stationary source signals sn(t) = [sd+1(t), sd+2(t), . . . , sD(t)]⊤ (also n-

sources) where the observed signals x(t) are a linear superposition of the sources,

x(t) = A s(t) =
[
As An

] [ss(t)
sn(t)

]
, (1)

and A is an invertible matrix. Note that we do not assume that the sources s(t)
are independent. We refer to the spaces spanned by As and An as the s- and
n-space respectively. The goal is to factorize the observed signals x(t) according
to Eq. (1), i.e. to find a linear transformation Â−1 that separates the s-sources
from the n-sources. Given this model, the s-sources and the n-space are uniquely
identifiable whereas the n-sources and the s-space are not (see [3] for details).

In order to invert the mixing of stationary and non-stationary sources, we
divide the time series x(t) of length T into L epochs defined by the index sets
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T1, . . . , TL. Even though the SSA model includes both the stationary and the
non-stationary sources, the SSA algorithm [3] optimizes only the stationarity
of the estimated stationary sources and does not optimize the non-stationary
source estimates: the approach is to find the projection such that the difference
between the mean and covariance in each epoch is identical to the average mean
and covariance over all epochs.

In this paper, we derive a maximum likelihood estimator for the SSA model
under the following additional assumptions.

• The sources s are independent in time.

• The s-sources ss are drawn from a d-dimensional GaussianN (µs, Σs), which
is constant in time

• In each epoch ℓ, the n-sources sn are drawn from a (D − d)-dimensional
Gaussian N (µn

ℓ , Σ
n

ℓ ), i.e. their distribution varies over epochs

• The s- and n-sources are group-wise uncorrelated.

Thus the true distribution of the observed signals x(t) in epoch ℓ is N (mℓ, Rℓ),
where mℓ = Aµℓ, Rℓ = AΣℓA

⊤ and

µℓ =

[
µ

s

µ
n

ℓ

]
, Σℓ =

[
Σs 0
0 Σn

ℓ

]
. (2)

The unknown parameters of the model are the mixing matrix A, the mean and
covariance of the s-sources (µs, Σs) and those of the n-sources {(µn

ℓ , Σ
n

ℓ )}
L
ℓ=1

.

3 Maximum Likelihood and its Information Geometric

Interpretation

In this section, we derive the objective function of the maximum likelihood SSA
(MLSSA). Under the block Gaussian model, the negative log likelihood to be
minimized becomes

LML = −
L∑

ℓ=1

∑

t∈Tℓ

log p(x(t)|A,µs,µn

ℓ , Σ
s, Σn

ℓ )

= T log | detA|+
TD

2
log 2π +

1

2

L∑

ℓ=1

∑

t∈Tℓ

[
log detΣℓ

+Tr
{
Σ−1

ℓ A−1 (x(t)−mℓ) (x(t) −mℓ)
⊤
A−⊤

}]
. (3)

It is known that the maximum likelihood estimation can be regarded as the
minimum Kullback-Leibler-divergence (KLD) projection [1]. Let

xℓ =
1

|Tℓ|

∑

t∈Tℓ

x(t), R̂ℓ =
1

|Tℓ|

∑

t∈Tℓ

(x(t)− xℓ) (x(t)− xℓ)
⊤

(4)
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be the sample mean and covariance of the ℓ-th chunk, where |Tℓ| denotes its
length. Indeed, the likelihood LML can be expressed as

LML =

L∑

ℓ=1

|Tℓ|DKL

[
N (xℓ, R̂ℓ)

∥∥∥ N (mℓ, Rℓ)
]
+ const. (5)

In the following, we derive the estimators of the moment parameters explicitly
as functions of the mixing matrix A which leads to an objective function for
estimating A. Since the KL-divergence is invariant under linear transformations,
the divergence between the two distributions of the observation x is equal to
that between the corresponding distributions of the sources s = A−1x, i.e.

DKL

[
N (xℓ, R̂ℓ)

∥∥∥ N (mℓ, Rℓ)
]

= DKL

[
N (A−1xℓ, A

−1R̂ℓA
−⊤)

∥∥∥ N (µℓ, Σℓ)
]
. (6)

The central idea of this paper is to regard the KL-divergence as a distance
measure in the space of Gaussian probability distributions, which leads to an
information geometric viewpoint of the SSA objective. The divergence in Equa-
tion (6) is the distance between the empirical distribution of the demixed signals
and the true underlying sources. According to our assumption the true model
lies on a manifold M defined by Equation (2), i.e.

M :=

{
N(µ, Σ)

∣∣∣∣Σ =

[
Σs 0
0 Σn

]}
. (7)

Therefore it is convenient to split the divergence (6) into the following two parts,

1. an orthogonal projection D1 onto the manifold M,

D1 = DKL

[
N (A−1xℓ, A

−1R̂ℓA
−⊤)

∥∥∥ N (µ̃ℓ, Σ̃ℓ)
]
,

2. and a component D2 in the manifold,

D2 = DKL

[
N (µ̃ℓ, Σ̃ℓ)

∥∥∥ N (µℓ, Σℓ)
]
.

This decomposition is illustrated in Figure 1. It is also known as the generalized
pythagorean theorem in information geometry [1]. The orthogonal projection
onto the manifold M is given by

µ̃ℓ =

[
µ̃

s

ℓ

µ̃
n

ℓ

]
=

[ (
A−1

)
s

xℓ(
A−1

)
n

xℓ

]
= A−1xℓ, (8)

Σ̃ℓ =

[
Σ̃s

ℓ 0

0 Σ̃n

ℓ

]
=



(
A−1

)
s

R̂ℓ

{(
A−1

)
s

}⊤

0

0
(
A−1

)
n

R̂ℓ

{(
A−1

)
n

}⊤


 , (9)

where
(
A−1

)
s

and
(
A−1

)
n

are the projection matrices to the stationary and
non-stationary sources respectively. The projection onto the manifold M does
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M

(A−1xℓ, A
−1R̂ℓA

−⊤)

(µ̃
ℓ
, Σ̃ℓ)

([
µ̃
s

ℓ
µ
n

ℓ

]
,

[
Σ̃s

ℓ
0

0 Σn

ℓ

])

([
µ
s

µ̃
n

ℓ

]
,

[
Σs

0

0 Σ̃n

ℓ

])

(µ
ℓ
, Σℓ)

D1

D
s

2

D
n

2

D2

Fig. 1. A geometrical view of the divergence decomposition. The divergence D1 cor-
responds to the orthogonal projection onto the manifold of models and D2 is the
divergence on the manifold, which can be further decomposed according to the block
diagonal structure of the source covariance matrix.

not affect the mean, it merely sets the off diagonal blocks of the covariance
matrix to zero. Conversely, on the manifold M, only the diagonal blocks vary,
thus the above projection is orthogonal w.r.t. the Fisher information matrix.
For more details, see [1]. Since on M the stationary and non-stationary sources
are independent by definition, we can further decompose the distance D2 from
N (µ̃ℓ, Σ̃ℓ) to the true distribution N (µℓ, Σℓ) into two independent parts,

D2 = Ds

2 +Dn

2

= DKL

[
N (µ̃s

ℓ , Σ̃
s

ℓ )
∥∥∥ N (µs, Σs)

]
+DKL

[
N (µ̃n

ℓ , Σ̃
n

ℓ )
∥∥∥ N (µn

ℓ , Σ
n

ℓ )
]
.

This decomposition leads to the following expression for the likelihood,

LML =

L∑

ℓ=1

|Tℓ|
{
DKL

[
N (A−1xℓ, A

−1R̂ℓA
−⊤)

∥∥∥ N (µ̃ℓ, Σ̃ℓ)
]

+DKL

[
N (µ̃s

ℓ , Σ̃
s

ℓ )
∥∥∥ N (µs, Σs)

]

+DKL

[
N (µ̃n

ℓ , Σ̃
n

ℓ )
∥∥∥ N (µn

ℓ , Σ
n

ℓ )
]}

. (10)

The moment parameters (µs, Σs) of the s-sources appear only in the second
term, while those of the n-sources {(µn

ℓ , Σ
n

ℓ )}
L
ℓ=1

are included only in the third
term. Therefore, for fixed A, the moment estimators (denoted with hats) mini-

mizing the likelihood LML can be calculated from {(µ̃ℓ, Σ̃ℓ)}Lℓ=1:

• for the n-sources, (µ̂n

ℓ , Σ̂
n

ℓ ) = (µ̃n

ℓ , Σ̃
n

ℓ ), which means that Dn

2 = 0,
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• the mean µ̂
s of the s-sources is the weighted average

∑L
ℓ=1

|Tℓ|
T µ̃

s

ℓ or equiv-

alently
(
A−1

)
s

x, where x = 1

T

∑T
t=1

x(t) is the global mean,

• the covariance Σs of the s-sources is the projection of the global covariance

R̂ = 1

T

∑T
t=1

(x(t)− x) (x(t)− x)
⊤
onto the s-space, i.e.

(
A−1

)
s

R̂
{(

A−1
)
s

}⊤

By substituting these moment estimators, we obtain an objective function to
determine the mixing matrix A,

LML =

L∑

ℓ=1

|Tℓ|
{
DKL

[
N (A−1xℓ, A

−1R̂ℓA
−⊤)

∥∥∥ N (µ̃ℓ, Σ̃ℓ)
]

+ DKL

[
N (µ̃s

ℓ , Σ̃
s

ℓ )
∥∥∥ N (µ̂s

, Σ̂s)
]}

. (11)

Moreover, since the solution is undetermined up to scaling, sign and linear
transformations within the s- and n-space, we set the estimated s-sources to zero
mean and unit variance by centering and whitening of the data, i.e. we write the
estimated demixing matrix as A−1 = BŴ where Ŵ = R̂−1/2 is a whitening
matrix and B is an orthogonal matrix. Let yℓ = Ŵxℓ and V̂ℓ = Ŵ R̂ℓŴ

⊤ be the

mean and covariance of the centerized and whitened data y(t) = Ŵx(t) in the
ℓ-th epoch. Then, the objective function becomes

LML =

L∑

ℓ=1

|Tℓ|
{
DKL

[
N (Byℓ, BV̂ℓB

⊤)
∥∥∥ N (Byℓ, b-diag[B

sV̂ℓ (B
s)

⊤
, BnV̂ℓ (B

n)
⊤
] )
]

+ DKL

[
N (Bsyℓ, B

sV̂ℓ (B
s)

⊤
)
∥∥∥ N (0, Id)

]}
, (12)

where B⊤ =
[
(Bs)⊤, (Bn)⊤

]
and “b-diag” denotes the block diagonal matrix

with given sub-matrices. The second term coincides with the original SSA ob-
jective. The first term comes from the orthogonality assumption and can be
regarded as a joint block diagonalization criterion. The implication of this joint
objective is illustrated in Section 4. The objective function (12) can be further
simplified as

LML =

L∑

ℓ=1

|Tℓ|

2

{
log det(Σ̃n

ℓ )− log det(Σℓ) + (µ̃s

ℓ)
⊤µ̃s

ℓ

}
+ const. (13)

where µ̃
s = Bsyℓ, Σ̃

s

ℓ = BsV̂ℓ(B
s)⊤ and Σℓ := BV̂ℓB

⊤ = A−1R̂ℓA
−⊤. As in

the SSA algorithm [3], we optimize the objective function (12) using a gradi-
ent descent algorithm taking into account the Lie group structure of the set of
orthogonal matrices [12].

4 Numerical Example

We compare the performance of our novel method with the original SSA algo-
rithm [3]. In particular, we study the case where the epoch covariance matrices
are exactly block diagonalizable as this matches the assumptions of our method.



An Information Geometric View of SSA 7

In Figure 2, we compare MLSSA and SSA over varying numbers of epochs
using 5 stationary sources and a 20-dimensional input space, i.e. d = 5 and D =
20. For each epoch we randomly sample a block diagonalizable covariance matrix
and a mean vector and mix them with a random, but well-conditioned matrix A.
Note that no estimation error is introduced as we sample both moments directly.
As performance measure we use the median angle to the true n-subspace over
100 trials and represent the 25% and 75% quantiles by error bars. For each trial,
in order to avoid local minima, we restart the optimization procedure five times
and select the solution with the lowest objective function value.

From the results we see that our method yields a much lower error than
the original approach, especially when a small number of epochs is used. For
instance, when using MLSSA (red line) 10 epochs are sufficient to achieve neg-
ligible errors (around 0.01 degree) whereas for the original SSA algorithm (blue
line) more than 30 epochs are required. Although it seems that thanks to the
first term in Eq. (12), i.e. joint block diagonalization, MLSSA allows a much
faster convergence than the original method, more experiments will be needed
to obtain a full picture.
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Fig. 2. Performance Comparison between the proposed method (MLSSA) and the
original SSA for a varying number of epochs. The red curve shows the performance,
measured as the median angle to the true n-subspace over 100 trials, of our method
whereas the blue curve stands for the results obtained with SSA. The 25% and 75%
quantiles are represented by the error bars. Note that we use randomly sampled block
diagonalizable covariance matrices in our experiments and set the dimensionality of
the stationary subspace to 5 (out of 20 dimensions). Our proposed method significantly
outperforms SSA in this example, especially when less than 30 epochs are used. MLSSA
obviously exploits (by the first term in Eq. (12)) the block diagonalizable structure of
the covariance matrices and thus reconstructs the true stationary subspace much faster
(i.e. with less epochs) than SSA.
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5 Conclusions

In this paper, we developed the first generative version of SSA. The generative
model is a block Gaussian model and the objective function of the maximum
likelihood approach turns out to be a combination of the original SSA and a
joint block diagonalization term. This new derivation not only helps the the-
oretical understanding of the procedure in the information geometrical frame-
work, but the algorithm also yields competitive results. Moreover, the likelihood
formulation allows future extension towards model selection methods and for
incorporating prior knowledge.
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